PGP word list: Difference between revisions
m →History and structure: clean up, typos fixed: Yucatan → Yucatán using AWB |
No edit summary |
||
(47 intermediate revisions by 38 users not shown) | |||
Line 1: | Line 1: | ||
The '''PGP Word List''' ( |
The '''PGP Word List''' ("[[Pretty Good Privacy]] word list", also called a '''biometric word list''' for reasons explained below) is a list of [[word]]s for conveying data [[bytes]] in a clear unambiguous way via a voice channel. They are analogous in purpose to the [[NATO phonetic alphabet]], except that a longer list of words is used, each word corresponding to one of the 256 distinct numeric byte values. |
||
==History and structure== |
==History and structure== |
||
The PGP Word List |
The PGP Word List was designed in 1995 by [[Patrick Juola]], a [[Computational linguistics|computational linguist]], and [[Philip Zimmermann]], creator of [[Pretty Good Privacy|PGP]].<ref name="Juola1996a">{{cite book |first1=Patrick |last1=Juola |first2=Philip |last2=Zimmermann |title=Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96 |chapter=Whole-word phonetic distances and the PGPfone alphabet |chapter-url=http://www.mathcs.duq.edu/~juola/papers.d/icslp96.pdf |year=1996 |volume=1 |pages=98–101 |doi=10.1109/ICSLP.1996.607046 |isbn=0-7803-3555-4 |s2cid=10385500 }}</ref><ref name="Juola1996b">{{cite journal |first=Patrick |last=Juola |url=http://www.mathcs.duq.edu/~juola/papers.d/pgpfonenemlap.ps |title=Isolated Word Confusion Metrics and the PGPfone Alphabet |year=1996 |publisher=Oxford University, Dept. of Experimental Psychology |journal=Proceedings of New Methods in Language Processing 2 |location=Ankara, Turkey|arxiv=cmp-lg/9608021 |bibcode=1996cmp.lg....8021J }}</ref> The words were carefully chosen for their [[phonetic]] distinctiveness, using [[genetic algorithms]] to select lists of words that had optimum separations in [[phoneme]] space. The candidate word lists were randomly drawn from [[Grady Ward]]'s [[Moby Project|Moby Pronunciator]] list as raw material for the search, successively refined by the genetic algorithms. The automated search converged to an optimized solution in about 40 hours on a [[DEC Alpha]], a particularly fast machine in that era. |
||
The |
The Zimmermann–Juola list was originally designed to be used in [[PGPfone]], a secure VoIP application, to allow the two parties to verbally compare a short authentication string to detect a [[man-in-the-middle attack]] (MiTM). It was called a [[biometric]] word list because the authentication depended on the two human users recognizing each other's distinct voices as they read and compared the words over the voice channel, binding the identity of the speaker with the words, which helped protect against the MiTM attack. The list can be used in many other situations where a biometric binding of identity is not needed, so calling it a biometric word list may be imprecise. Later, it was used in [[Pretty Good Privacy|PGP]] to compare and verify PGP [[public key]] [[message digest|fingerprints]] over a voice channel. This is known in PGP applications as the "biometric" representation. When it was applied to PGP, the list of words was further refined, with contributions by [[Jon Callas]]. More recently, it has been used in [[Zfone]] and the [[ZRTP]] protocol, the successor to PGPfone. |
||
The list is actually composed of two lists, each containing 256 [[phonetics|phonetically]] distinct words, in which each word represents a different byte value between 0 and 255. Two lists are used because reading aloud long random sequences of human words usually risks three kinds of errors: 1) transposition of two consecutive words, 2) duplicate words, or 3) omitted words. To detect all three kinds of errors, the two lists are used alternately for the even-offset bytes and the odd-offset bytes in the byte sequence. Each byte value is actually represented by two different words, depending on whether that byte appears at an even or an odd offset from the beginning of the byte sequence. The two lists are readily distinguished by the number of [[syllables]]; the even list has words of two syllables, the odd list has three. The two lists have a maximum word length of 9 and 11 letters, respectively. Using a two-list scheme was suggested by Zhahai Stewart. |
The list is actually composed of two lists, each containing 256 [[phonetics|phonetically]] distinct words, in which each word represents a different byte value between 0 and 255. Two lists are used because reading aloud long random sequences of human words usually risks three kinds of errors: 1) transposition of two consecutive words, 2) duplicate words, or 3) omitted words. To detect all three kinds of errors, the two lists are used alternately for the even-offset bytes and the odd-offset bytes in the byte sequence. Each byte value is actually represented by two different words, depending on whether that byte appears at an even or an odd offset from the beginning of the byte sequence. The two lists are readily distinguished by the number of [[syllables]]; the even list has words of two syllables, the odd list has three. The two lists have a maximum word length of 9 and 11 letters, respectively. Using a two-list scheme was suggested by Zhahai Stewart. |
||
== Word lists == |
|||
Here are the two lists of words as presented in the PGPfone Owner's Manual.<ref>{{cite web |url=http://web.mit.edu/network/pgpfone/manual/index.html#PGP000062 |title=Archived copy |website=web.mit.edu |access-date=12 January 2022 |archive-url=https://web.archive.org/web/20100326141145/http://web.mit.edu/network/pgpfone/manual/index.html#PGP000062 |archive-date=26 March 2010 |url-status=dead}}</ref> |
|||
{| class="wikitable" style="float: left;" |
{| class="wikitable" style="float: left;" |
||
Line 531: | Line 535: | ||
|FE||woodlark||yesteryear |
|FE||woodlark||yesteryear |
||
|- |
|- |
||
|FF||Zulu|| |
|FF||Zulu||{{not a typo|Yucatan}} |
||
|} |
|} |
||
{{clear}} |
|||
<div style="clear: both;"></div> |
|||
==Examples== |
==Examples== |
||
Each byte in a bytestring is encoded as a single word. A sequence of bytes is rendered in [[network byte order]], from left to right. For example, the leftmost (i.e. byte 0) is considered "even" and is encoded using the PGP Even Word table. The next byte to the right (i.e. byte 1) is considered "odd" and is encoded using the PGP Odd Word table. This process repeats until all bytes are encoded. Thus, "E582" produces "topmost Istanbul", whereas "82E5" produces "miser travesty". |
Each byte in a bytestring is encoded as a single word. A sequence of bytes is rendered in [[network byte order]], from left to right. For example, the leftmost (i.e. byte 0) is considered "even" and is encoded using the PGP Even Word table. The next byte to the right (i.e. byte 1) is considered "odd" and is encoded using the PGP Odd Word table. This process repeats until all bytes are encoded. Thus, "E582" produces "topmost Istanbul", whereas "82E5" produces "miser travesty". |
||
A PGP public key fingerprint that displayed in hexadecimal as |
A PGP public key fingerprint that displayed in [[hexadecimal]] as |
||
:<code>E582 94F2 E9A2 2748 6E8B</code> |
:<code>E582</code> <code>94F2</code> <code>E9A2</code> <code>2748</code> <code>6E8B</code> |
||
:<code>061B 31CC 528F D7FA 3F19</code> |
:<code>061B</code> <code>31CC</code> <code>528F</code> <code>D7FA</code> <code>3F19</code> |
||
⚫ | |||
:<code>topmost Istanbul Pluto vagabond</code> |
|||
⚫ | |||
:<code>treadmill Pacific brackish dictator</code> |
|||
:<code>goldfish Medusa afflict bravado</code> |
|||
:<code>topmost Istanbul</code> <code>Pluto vagabond</code> <code>treadmill Pacific</code> <code>brackish dictator</code> <code>goldfish Medusa</code> |
|||
:<code>chatter revolver Dupont midsummer</code> |
|||
:<code>stopwatch whimsical cowbell bottomless</code> |
:<code>afflict bravado</code> <code>chatter revolver</code> <code>Dupont midsummer</code> <code>stopwatch whimsical</code> <code>cowbell bottomless</code> |
||
The order of bytes in a bytestring depends on [[ |
The order of bytes in a bytestring depends on [[endianness]]. |
||
== Other word lists for data == |
== Other word lists for data == |
||
Line 554: | Line 558: | ||
There are several other word lists for conveying data in a clear unambiguous way via a voice channel: |
There are several other word lists for conveying data in a clear unambiguous way via a voice channel: |
||
* the [[NATO phonetic alphabet]] maps individual letters and digits to individual words |
* the [[NATO phonetic alphabet]] maps individual letters and digits to individual words |
||
* the [[S/KEY]] system maps 64 bit numbers to 6 short words of 1 to 4 characters each from a publicly accessible 2048-word dictionary. The same dictionary is used in RFC 2289. |
* the [[S/KEY]] system maps 64 bit numbers to 6 short words of 1 to 4 characters each from a publicly accessible 2048-word dictionary. The same dictionary is used in RFC 1760 and RFC 2289. |
||
* the [[Diceware]] system maps |
* the [[Diceware]] system maps five base-6 random digits (almost 13 bits of entropy) to a word from a dictionary of 7,776 distinct words. |
||
** the [[Electronic Frontier Foundation]] has published a set of improved word lists based on the same concept<ref>{{Cite web|url=https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases|title = EFF's New Wordlists for Random Passphrases|date = 19 July 2016}}</ref> |
|||
* FIPS 181: [[Automated Password Generator]] converts random numbers into somewhat pronounceable "words". |
* FIPS 181: [[Automated Password Generator]] converts random numbers into somewhat pronounceable "words". |
||
* mnemonic encoding converts 32 bits of data into 3 words from a vocabulary of 1626 words.<ref>[http://www.tothink.com/mnemonic/ mnemonic encoding] and [ |
* mnemonic encoding converts 32 bits of data into 3 words from a vocabulary of 1626 words.<ref>[http://www.tothink.com/mnemonic/ mnemonic encoding] {{webarchive|url=https://web.archive.org/web/20080302025836/http://www.tothink.com/mnemonic/ |date=2008-03-02 }} and [https://github.com/singpolyma/mnemonicode updated code]</ref> |
||
* [[what3words]] encodes geographic coordinates in 3 dictionary words. |
|||
* the BIP39 standard permits encoding a cryptographic key of fixed size (128 or 256 bits, usually the unencrypted master key of a [[Cryptocurrency wallet]]) into a short sequence of readable words known as the [[seed phrase]], for the purpose of storing the key offline. This is used in cryptocurrencies such as [[Bitcoin]] or [[Monero]]. |
|||
* Like the PGP word list, the [https://developer.blockchaincommons.com/bytewords/ Bytewords] standard maps each possible byte to a word. There is only one list, rather than two. The words are uniformly four letters long and can be uniquely identified by their first and last letters |
|||
==References== |
==References== |
||
Line 564: | Line 572: | ||
[[Category:Spelling alphabets]] |
[[Category:Spelling alphabets]] |
||
[[Category:Binary-to-text encoding formats]] |
|||
[[Category:Military communications]] |
[[Category:Military communications]] |
||
[[Category:Cryptography]] |
[[Category:Cryptography]] |
||
[[Category: |
[[Category:OpenPGP]] |
Latest revision as of 21:49, 16 August 2024
The PGP Word List ("Pretty Good Privacy word list", also called a biometric word list for reasons explained below) is a list of words for conveying data bytes in a clear unambiguous way via a voice channel. They are analogous in purpose to the NATO phonetic alphabet, except that a longer list of words is used, each word corresponding to one of the 256 distinct numeric byte values.
History and structure
[edit]The PGP Word List was designed in 1995 by Patrick Juola, a computational linguist, and Philip Zimmermann, creator of PGP.[1][2] The words were carefully chosen for their phonetic distinctiveness, using genetic algorithms to select lists of words that had optimum separations in phoneme space. The candidate word lists were randomly drawn from Grady Ward's Moby Pronunciator list as raw material for the search, successively refined by the genetic algorithms. The automated search converged to an optimized solution in about 40 hours on a DEC Alpha, a particularly fast machine in that era.
The Zimmermann–Juola list was originally designed to be used in PGPfone, a secure VoIP application, to allow the two parties to verbally compare a short authentication string to detect a man-in-the-middle attack (MiTM). It was called a biometric word list because the authentication depended on the two human users recognizing each other's distinct voices as they read and compared the words over the voice channel, binding the identity of the speaker with the words, which helped protect against the MiTM attack. The list can be used in many other situations where a biometric binding of identity is not needed, so calling it a biometric word list may be imprecise. Later, it was used in PGP to compare and verify PGP public key fingerprints over a voice channel. This is known in PGP applications as the "biometric" representation. When it was applied to PGP, the list of words was further refined, with contributions by Jon Callas. More recently, it has been used in Zfone and the ZRTP protocol, the successor to PGPfone.
The list is actually composed of two lists, each containing 256 phonetically distinct words, in which each word represents a different byte value between 0 and 255. Two lists are used because reading aloud long random sequences of human words usually risks three kinds of errors: 1) transposition of two consecutive words, 2) duplicate words, or 3) omitted words. To detect all three kinds of errors, the two lists are used alternately for the even-offset bytes and the odd-offset bytes in the byte sequence. Each byte value is actually represented by two different words, depending on whether that byte appears at an even or an odd offset from the beginning of the byte sequence. The two lists are readily distinguished by the number of syllables; the even list has words of two syllables, the odd list has three. The two lists have a maximum word length of 9 and 11 letters, respectively. Using a two-list scheme was suggested by Zhahai Stewart.
Word lists
[edit]Here are the two lists of words as presented in the PGPfone Owner's Manual.[3]
Hex | Even Word | Odd Word |
---|---|---|
00 | aardvark | adroitness |
01 | absurd | adviser |
02 | accrue | aftermath |
03 | acme | aggregate |
04 | adrift | alkali |
05 | adult | almighty |
06 | afflict | amulet |
07 | ahead | amusement |
08 | aimless | antenna |
09 | Algol | applicant |
0A | allow | Apollo |
0B | alone | armistice |
0C | ammo | article |
0D | ancient | asteroid |
0E | apple | Atlantic |
0F | artist | atmosphere |
10 | assume | autopsy |
11 | Athens | Babylon |
12 | atlas | backwater |
13 | Aztec | barbecue |
14 | baboon | belowground |
15 | backfield | bifocals |
16 | backward | bodyguard |
17 | banjo | bookseller |
18 | beaming | borderline |
19 | bedlamp | bottomless |
1A | beehive | Bradbury |
1B | beeswax | bravado |
1C | befriend | Brazilian |
1D | Belfast | breakaway |
1E | berserk | Burlington |
1F | billiard | businessman |
20 | bison | butterfat |
21 | blackjack | Camelot |
22 | blockade | candidate |
23 | blowtorch | cannonball |
24 | bluebird | Capricorn |
25 | bombast | caravan |
26 | bookshelf | caretaker |
27 | brackish | celebrate |
28 | breadline | cellulose |
29 | breakup | certify |
2A | brickyard | chambermaid |
2B | briefcase | Cherokee |
2C | Burbank | Chicago |
2D | button | clergyman |
2E | buzzard | coherence |
2F | cement | combustion |
30 | chairlift | commando |
31 | chatter | company |
32 | checkup | component |
33 | chisel | concurrent |
34 | choking | confidence |
35 | chopper | conformist |
36 | Christmas | congregate |
37 | clamshell | consensus |
38 | classic | consulting |
39 | classroom | corporate |
3A | cleanup | corrosion |
3B | clockwork | councilman |
3C | cobra | crossover |
3D | commence | crucifix |
3E | concert | cumbersome |
3F | cowbell | customer |
Hex | Even Word | Odd Word |
---|---|---|
40 | crackdown | Dakota |
41 | cranky | decadence |
42 | crowfoot | December |
43 | crucial | decimal |
44 | crumpled | designing |
45 | crusade | detector |
46 | cubic | detergent |
47 | dashboard | determine |
48 | deadbolt | dictator |
49 | deckhand | dinosaur |
4A | dogsled | direction |
4B | dragnet | disable |
4C | drainage | disbelief |
4D | dreadful | disruptive |
4E | drifter | distortion |
4F | dropper | document |
50 | drumbeat | embezzle |
51 | drunken | enchanting |
52 | Dupont | enrollment |
53 | dwelling | enterprise |
54 | eating | equation |
55 | edict | equipment |
56 | egghead | escapade |
57 | eightball | Eskimo |
58 | endorse | everyday |
59 | endow | examine |
5A | enlist | existence |
5B | erase | exodus |
5C | escape | fascinate |
5D | exceed | filament |
5E | eyeglass | finicky |
5F | eyetooth | forever |
60 | facial | fortitude |
61 | fallout | frequency |
62 | flagpole | gadgetry |
63 | flatfoot | Galveston |
64 | flytrap | getaway |
65 | fracture | glossary |
66 | framework | gossamer |
67 | freedom | graduate |
68 | frighten | gravity |
69 | gazelle | guitarist |
6A | Geiger | hamburger |
6B | glitter | Hamilton |
6C | glucose | handiwork |
6D | goggles | hazardous |
6E | goldfish | headwaters |
6F | gremlin | hemisphere |
70 | guidance | hesitate |
71 | hamlet | hideaway |
72 | highchair | holiness |
73 | hockey | hurricane |
74 | indoors | hydraulic |
75 | indulge | impartial |
76 | inverse | impetus |
77 | involve | inception |
78 | island | indigo |
79 | jawbone | inertia |
7A | keyboard | infancy |
7B | kickoff | inferno |
7C | kiwi | informant |
7D | klaxon | insincere |
7E | locale | insurgent |
7F | lockup | integrate |
Hex | Even Word | Odd Word |
---|---|---|
80 | merit | intention |
81 | minnow | inventive |
82 | miser | Istanbul |
83 | Mohawk | Jamaica |
84 | mural | Jupiter |
85 | music | leprosy |
86 | necklace | letterhead |
87 | Neptune | liberty |
88 | newborn | maritime |
89 | nightbird | matchmaker |
8A | Oakland | maverick |
8B | obtuse | Medusa |
8C | offload | megaton |
8D | optic | microscope |
8E | orca | microwave |
8F | payday | midsummer |
90 | peachy | millionaire |
91 | pheasant | miracle |
92 | physique | misnomer |
93 | playhouse | molasses |
94 | Pluto | molecule |
95 | preclude | Montana |
96 | prefer | monument |
97 | preshrunk | mosquito |
98 | printer | narrative |
99 | prowler | nebula |
9A | pupil | newsletter |
9B | puppy | Norwegian |
9C | python | October |
9D | quadrant | Ohio |
9E | quiver | onlooker |
9F | quota | opulent |
A0 | ragtime | Orlando |
A1 | ratchet | outfielder |
A2 | rebirth | Pacific |
A3 | reform | pandemic |
A4 | regain | Pandora |
A5 | reindeer | paperweight |
A6 | rematch | paragon |
A7 | repay | paragraph |
A8 | retouch | paramount |
A9 | revenge | passenger |
AA | reward | pedigree |
AB | rhythm | Pegasus |
AC | ribcage | penetrate |
AD | ringbolt | perceptive |
AE | robust | performance |
AF | rocker | pharmacy |
B0 | ruffled | phonetic |
B1 | sailboat | photograph |
B2 | sawdust | pioneer |
B3 | scallion | pocketful |
B4 | scenic | politeness |
B5 | scorecard | positive |
B6 | Scotland | potato |
B7 | seabird | processor |
B8 | select | provincial |
B9 | sentence | proximate |
BA | shadow | puberty |
BB | shamrock | publisher |
BC | showgirl | pyramid |
BD | skullcap | quantity |
BE | skydive | racketeer |
BF | slingshot | rebellion |
Hex | Even Word | Odd Word |
---|---|---|
C0 | slowdown | recipe |
C1 | snapline | recover |
C2 | snapshot | repellent |
C3 | snowcap | replica |
C4 | snowslide | reproduce |
C5 | solo | resistor |
C6 | southward | responsive |
C7 | soybean | retraction |
C8 | spaniel | retrieval |
C9 | spearhead | retrospect |
CA | spellbind | revenue |
CB | spheroid | revival |
CC | spigot | revolver |
CD | spindle | sandalwood |
CE | spyglass | sardonic |
CF | stagehand | Saturday |
D0 | stagnate | savagery |
D1 | stairway | scavenger |
D2 | standard | sensation |
D3 | stapler | sociable |
D4 | steamship | souvenir |
D5 | sterling | specialist |
D6 | stockman | speculate |
D7 | stopwatch | stethoscope |
D8 | stormy | stupendous |
D9 | sugar | supportive |
DA | surmount | surrender |
DB | suspense | suspicious |
DC | sweatband | sympathy |
DD | swelter | tambourine |
DE | tactics | telephone |
DF | talon | therapist |
E0 | tapeworm | tobacco |
E1 | tempest | tolerance |
E2 | tiger | tomorrow |
E3 | tissue | torpedo |
E4 | tonic | tradition |
E5 | topmost | travesty |
E6 | tracker | trombonist |
E7 | transit | truncated |
E8 | trauma | typewriter |
E9 | treadmill | ultimate |
EA | Trojan | undaunted |
EB | trouble | underfoot |
EC | tumor | unicorn |
ED | tunnel | unify |
EE | tycoon | universe |
EF | uncut | unravel |
F0 | unearth | upcoming |
F1 | unwind | vacancy |
F2 | uproot | vagabond |
F3 | upset | vertigo |
F4 | upshot | Virginia |
F5 | vapor | visitor |
F6 | village | vocalist |
F7 | virus | voyager |
F8 | Vulcan | warranty |
F9 | waffle | Waterloo |
FA | wallet | whimsical |
FB | watchword | Wichita |
FC | wayside | Wilmington |
FD | willow | Wyoming |
FE | woodlark | yesteryear |
FF | Zulu | Yucatan |
Examples
[edit]Each byte in a bytestring is encoded as a single word. A sequence of bytes is rendered in network byte order, from left to right. For example, the leftmost (i.e. byte 0) is considered "even" and is encoded using the PGP Even Word table. The next byte to the right (i.e. byte 1) is considered "odd" and is encoded using the PGP Odd Word table. This process repeats until all bytes are encoded. Thus, "E582" produces "topmost Istanbul", whereas "82E5" produces "miser travesty".
A PGP public key fingerprint that displayed in hexadecimal as
E582
94F2
E9A2
2748
6E8B
061B
31CC
528F
D7FA
3F19
would display in PGP Words (the "biometric" fingerprint) as
topmost Istanbul
Pluto vagabond
treadmill Pacific
brackish dictator
goldfish Medusa
afflict bravado
chatter revolver
Dupont midsummer
stopwatch whimsical
cowbell bottomless
The order of bytes in a bytestring depends on endianness.
Other word lists for data
[edit]There are several other word lists for conveying data in a clear unambiguous way via a voice channel:
- the NATO phonetic alphabet maps individual letters and digits to individual words
- the S/KEY system maps 64 bit numbers to 6 short words of 1 to 4 characters each from a publicly accessible 2048-word dictionary. The same dictionary is used in RFC 1760 and RFC 2289.
- the Diceware system maps five base-6 random digits (almost 13 bits of entropy) to a word from a dictionary of 7,776 distinct words.
- the Electronic Frontier Foundation has published a set of improved word lists based on the same concept[4]
- FIPS 181: Automated Password Generator converts random numbers into somewhat pronounceable "words".
- mnemonic encoding converts 32 bits of data into 3 words from a vocabulary of 1626 words.[5]
- what3words encodes geographic coordinates in 3 dictionary words.
- the BIP39 standard permits encoding a cryptographic key of fixed size (128 or 256 bits, usually the unencrypted master key of a Cryptocurrency wallet) into a short sequence of readable words known as the seed phrase, for the purpose of storing the key offline. This is used in cryptocurrencies such as Bitcoin or Monero.
- Like the PGP word list, the Bytewords standard maps each possible byte to a word. There is only one list, rather than two. The words are uniformly four letters long and can be uniquely identified by their first and last letters
References
[edit]- This article incorporates material that is copyrighted by PGP Corporation and has been licensed under the GNU Free Documentation License. (per Jon Callas, CTO, CSO PGP Corporation, 4-Jan-2007)
- ^ Juola, Patrick; Zimmermann, Philip (1996). "Whole-word phonetic distances and the PGPfone alphabet" (PDF). Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96. Vol. 1. pp. 98–101. doi:10.1109/ICSLP.1996.607046. ISBN 0-7803-3555-4. S2CID 10385500.
- ^ Juola, Patrick (1996). "Isolated Word Confusion Metrics and the PGPfone Alphabet". Proceedings of New Methods in Language Processing 2. Ankara, Turkey: Oxford University, Dept. of Experimental Psychology. arXiv:cmp-lg/9608021. Bibcode:1996cmp.lg....8021J.
- ^ "Archived copy". web.mit.edu. Archived from the original on 26 March 2010. Retrieved 12 January 2022.
{{cite web}}
: CS1 maint: archived copy as title (link) - ^ "EFF's New Wordlists for Random Passphrases". 19 July 2016.
- ^ mnemonic encoding Archived 2008-03-02 at the Wayback Machine and updated code