Inosine pranobex: Difference between revisions
m Open access bot: pmc, doi updated in citation with #oabot. |
Citation bot (talk | contribs) Add: journal, pages. | Use this bot. Report bugs. | Suggested by Graeme Bartlett | #UCB_toolbar |
||
(15 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Mixture of chemical compounds}} |
{{short description|Mixture of chemical compounds}} |
||
{{cs1 config|name-list-style=vanc|display-authors=6}} |
|||
{{Infobox drug |
{{Infobox drug |
||
| drug_name = Isoprinosine |
| drug_name = Isoprinosine |
||
| type = combo |
| type = combo |
||
| component1 = Inosine |
| component1 = Inosine |
||
| class1 = Immunostimulant |
| class1 = Immunostimulant |
||
| component2 =Dimethylaminoisopropanol |
| component2 = Dimethylaminoisopropanol |
||
| class2 = Immunostimulant |
| class2 = Immunostimulant |
||
| component3 = Acedoben |
| component3 = Acedoben |
||
| class3 = Immunostimulant |
| class3 = Immunostimulant |
||
| INN = Inosine acedoben dimepranol |
| INN = Inosine acedoben dimepranol |
||
<!-- | IUPAC_name = 9-[(2''R'',3''R'',4''S'',5''R'')-3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3''H''-purin-6-one : 4-acetamidobenzoic acid : 1-(dimethylamino)propan-2-ol --> |
<!-- | IUPAC_name = 9-[(2''R'',3''R'',4''S'',5''R'')-3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3''H''-purin-6-one : 4-acetamidobenzoic acid : 1-(dimethylamino)propan-2-ol -->| image = Inosine pranobex.png |
||
| |
| alt = |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
| tradename = Imunovir, Delimmun, Isoprinosine |
|||
⚫ | |||
⚫ | |||
⚫ | |||
| |
| MedlinePlus = |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
| |
| pregnancy_US = <!-- A/B/C/D/X/N --> |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
| routes_of_administration = Oral |
| routes_of_administration = Oral |
||
| legal_status = Rx-only |
| legal_status = Rx-only |
||
<!-- Pharmacokinetic data --> |
<!-- Pharmacokinetic data -->| bioavailability = |
||
| |
| protein_bound = |
||
| |
| metabolism = |
||
| |
| metabolites = |
||
| |
| onset = |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
| CAS_number_Ref = {{cascite|correct|CAS}} |
|||
⚫ | |||
⚫ | |||
<!-- Identifiers --> |
|||
| |
| UNII_Ref = {{fdacite|correct|FDA}} |
||
⚫ | |||
| CAS_number = |
|||
⚫ | |||
| UNII_Ref = {{fdacite|correct|FDA}} |
|||
⚫ | |||
| UNII = W1SO0V223F |
|||
| |
| ATC_prefix = J05 |
||
| |
| ATC_suffix = AX05 |
||
| |
| PubChem = 135449284 |
||
| |
| DrugBank = |
||
⚫ | |||
| PubChem=135449284 |
|||
| |
| KEGG = D01995 |
||
⚫ | |||
⚫ | |||
⚫ | |||
| KEGG = D01995 |
|||
⚫ | |||
⚫ | |||
}} |
|||
'''Inosine pranobex''' ([[British Approved Name|BAN]]; also known as '''inosine acedoben dimepranol''' ([[International nonproprietary name|INN]])''', methisoprinol''', inosiplex or Isoprinosine) is an [[antiviral drug]] that is a combination of [[inosine]] and dimepranol acedoben (a [[salt (chemistry)|salt]] of [[acetamidobenzoic acid]] and [[dimethylaminoisopropanol]]) in a ratio of 1 to 3. It is used primarily in European countries, especially as a treatment for acute viral infections, such as the common cold. |
'''Inosine pranobex''' ([[British Approved Name|BAN]]; also known as '''inosine acedoben dimepranol''' ([[International nonproprietary name|INN]])''', methisoprinol''', inosiplex or Isoprinosine) is an [[antiviral drug]] that is a combination of [[inosine]] and dimepranol acedoben (a [[salt (chemistry)|salt]] of [[acetamidobenzoic acid]] and [[dimethylaminoisopropanol]]) in a ratio of 1 to 3. It is used primarily in European countries, especially as a treatment for acute viral infections, such as the common cold. |
||
Line 56: | Line 52: | ||
=== Immunomodulatory effects === |
=== Immunomodulatory effects === |
||
Inosine pranobex acts as an [[immunostimulant]], an analog of [[thymus|thymus hormones]]<ref>{{cite web| work = American Cancer Society |title=Inosine Pranobex |url= http://www.cancer.org/treatment/treatmentsandsideeffects/complementaryandalternativemedicine/pharmacologicalandbiologicaltreatment/inosine-pranobex |archive-url=https://web.archive.org/web/20100823035720/http://www.cancer.org/Treatment/TreatmentsandSideEffects/ComplementaryandAlternativeMedicine/PharmacologicalandBiologicalTreatment/inosine-pranobex |
Inosine pranobex acts as an [[immunostimulant]], an analog of [[thymus|thymus hormones]].<ref>{{cite web| work = American Cancer Society |title=Inosine Pranobex |url= http://www.cancer.org/treatment/treatmentsandsideeffects/complementaryandalternativemedicine/pharmacologicalandbiologicaltreatment/inosine-pranobex |archive-url=https://web.archive.org/web/20100823035720/http://www.cancer.org/Treatment/TreatmentsandSideEffects/ComplementaryandAlternativeMedicine/PharmacologicalandBiologicalTreatment/inosine-pranobex |archive-date=23 August 2010 |access-date=31 July 2013 }}</ref> It is indicated for an entire spectrum of patients with clinical manifestations of [[Immunodeficiency|immune deficiency]]. It modulates the immune system by immunostimulation or immunooptimisation of defensive inflammation<ref name="Krejsek_2016">{{cite book | vauthors = Krejsek J, Andrýs C, Krčmová I | title = Imunologie člověka | trans-title = Human immunology | location = Czechia | publisher = Garamon sro, Hradec Králové | date = 2016 | oclc = 982100822 |language=cs }}</ref> at the cellular level, e.g. by interfering with energy metabolism, cell signalling and proliferation. |
||
One of the main immunostimulatory effects of inosine pranobex lies in [[T cell|T-cell]] modulation.<ref name=" |
One of the main immunostimulatory effects of inosine pranobex lies in [[T cell|T-cell]] modulation.<ref name="Sliva_2019">{{cite journal | vauthors = Sliva J, Pantzartzi CN, Votava M | title = Inosine Pranobex: A Key Player in the Game Against a Wide Range of Viral Infections and Non-Infectious Diseases | journal = Advances in Therapy | volume = 36 | issue = 8 | pages = 1878–1905 | date = August 2019 | pmid = 31168764 | pmc = 6822865 | doi = 10.1007/s12325-019-00995-6 }}</ref> Its administration has been shown both in vivo and in vitro to induce [[T helper cell|Th1 cell-type]] response, as evidenced by the increase in pro-inflammatory [[Cytokine|cytokines]] (e.g. [[Interleukin 2|IL-2]], [[Interferon gamma|ILN-γ]]) in [[mitogen]]- or [[antigen]]-activated cells.<ref>{{cite journal | vauthors = Petrova M, Jelev D, Ivanova A, Krastev Z | title = Isoprinosine affects serum cytokine levels in healthy adults | journal = Journal of Interferon & Cytokine Research | volume = 30 | issue = 4 | pages = 223–228 | date = April 2010 | pmid = 20038210 | doi = 10.1089/jir.2009.0057 }}</ref> As such, T-cell maturation and differentiation is further fostered.<ref>{{cite journal | vauthors = You Y, Wang L, Li Y, Wang Q, Cao S, Tu Y, Li S, Bai L, Lu J, Wei Z, Chen W, Hao F | title = Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients | journal = The Journal of Dermatology | volume = 42 | issue = 6 | pages = 596–601 | date = June 2015 | pmid = 25819042 | doi = 10.1111/1346-8138.12845 }}</ref> The increase of ILN-γ in serum is proven to inhibit the production of [[Interleukin 10|IL-10]],<ref>{{cite journal | vauthors = Sabat R, Grütz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J | title = Biology of interleukin-10 | journal = Cytokine & Growth Factor Reviews | volume = 21 | issue = 5 | pages = 331–344 | date = October 2010 | pmid = 21115385 | doi = 10.1016/j.cytogfr.2010.09.002 | url = http://www.hzg.de/imperia/md/content/gkss/zentrale_einrichtungen/bibliothek/journals/2010/Sabat-cytgrowthfactrev.pdf }}</ref> which could explain the drug's suppressive effect on anti-inflammatory cytokines. |
||
It also modulates components of [[Innate immune system|innate immunity]]. In respect to [[Natural killer cell|natural killer cells]], both population<ref>{{ |
It also modulates components of [[Innate immune system|innate immunity]]. In respect to [[Natural killer cell|natural killer cells]], both population<ref>{{cite journal | vauthors = Rumel Ahmed S, Newman AS, O'Daly J, Duffy S, Grafton G, Brady CA, John Curnow S, Barnes NM, Gordon J | title = Inosine Acedoben Dimepranol promotes an early and sustained increase in the natural killer cell component of circulating lymphocytes: A clinical trial supporting anti-viral indications | journal = International Immunopharmacology | volume = 42 | pages = 108–114 | date = January 2017 | pmid = 27912146 | doi = 10.1016/j.intimp.2016.11.023 }}</ref> and activity<ref>{{cite journal | vauthors = Hersey P, Edwards A | title = Effect of isoprinosine on natural killer cell activity of blood mononuclear cells in vitro and in vivo | journal = International Journal of Immunopharmacology | volume = 6 | issue = 4 | pages = 315–320 | date = January 1984 | pmid = 6207121 | doi = 10.1016/0192-0561(84)90048-1 }}</ref> increased as a result of inosine pranobex therapy.<ref>{{cite journal | vauthors = Rumel Ahmed S, Newman AS, O'Daly J, Duffy S, Grafton G, Brady CA, John Curnow S, Barnes NM, Gordon J | title = Inosine Acedoben Dimepranol promotes an early and sustained increase in the natural killer cell component of circulating lymphocytes: A clinical trial supporting anti-viral indications | journal = International Immunopharmacology | volume = 42 | pages = 108–114 | date = January 2017 | pmid = 27912146 | doi = 10.1016/j.intimp.2016.11.023 }}</ref> It has also been proven that other cells of the innate immunity are affected,<ref>{{cite journal | vauthors = Tsang KY, Pan JF, Swanger DL, Fudenberg HH | title = In vitro restoration of immune responses in aging humans by isoprinosine | journal = International Journal of Immunopharmacology | volume = 7 | issue = 2 | pages = 199–206 | date = January 1985 | pmid = 2409037 | doi = 10.1016/0192-0561(85)90027-X }}</ref> as [[neutrophil]], [[monocyte]] and [[macrophage]] [[chemotaxis]] and [[phagocytosis]] were enhanced in cancer patients.<ref>{{cite journal | vauthors = Tsang KY, Fudenberg HH, Pan JF, Gnagy MJ, Bristow CB | title = An in vitro study on the effects of isoprinosine on immune responses in cancer patients | journal = International Journal of Immunopharmacology | volume = 5 | issue = 6 | pages = 481–490 | date = January 1983 | pmid = 6198297 | doi = 10.1016/0192-0561(83)90041-3 }}</ref> |
||
=== Antiviral properties === |
=== Antiviral properties === |
||
Inosine pranobex also has direct antiviral properties.<ref name=" |
Inosine pranobex also has direct antiviral properties.<ref name="Krejsek_2016" /> Several hypotheses have been formed over time, but all of them agree that the drug has direct effect on viral RNA synthesis via inhibiting transcription and translation of the genetic code at cellular level.<ref>{{cite journal | vauthors = You Y, Wang L, Li Y, Wang Q, Cao S, Tu Y, Li S, Bai L, Lu J, Wei Z, Chen W, Hao F | title = Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients | journal = The Journal of Dermatology | volume = 42 | issue = 6 | pages = 596–601 | date = June 2015 | pmid = 25819042 | doi = 10.1111/1346-8138.12845 }}</ref> |
||
In fact, cellular RNA and protein synthesis are markedly depressed shortly after viral infection, as the cell is instructed to focus resources on producing viral RNA instead. Inosine pranobex is believed to override this mechanism and incentivize cellular RNA synthesis over viral.<ref>{{ |
In fact, cellular RNA and protein synthesis are markedly depressed shortly after viral infection, as the cell is instructed to focus resources on producing viral RNA instead. Inosine pranobex is believed to override this mechanism and incentivize cellular RNA synthesis over viral.<ref>{{cite journal | vauthors = Ohnishi H, Kosuzume H, Inaba H, Okura M, Morita Y, Mochizuki H, Suzuki Y | title = Mechanism of host defense suppression induced by viral infection: mode of action of inosiplex as an antiviral agent | journal = Infection and Immunity | volume = 38 | issue = 1 | pages = 243–250 | date = October 1982 | pmid = 6183209 | pmc = 347725 | doi = 10.1128/iai.38.1.243-250.1982 }}</ref><ref name="Gordon_1972">{{cite journal | vauthors = Gordon P, Brown ER | title = The antiviral activity of isoprinosine | journal = Canadian Journal of Microbiology | volume = 18 | issue = 9 | pages = 1463–1470 | date = September 1972 | pmid = 4341918 | doi = 10.1139/m72-224 }}</ref> It has been suggested that the drug itself, or any one of its components, directly acts on the [[Ribosome|ribosomes]] of infected cells providing an advantage to cellular RNA in competition for synthesis.<ref name="Gordon_1972" /> This could also result in errors in the viral RNA transcription, which would hinder viral proliferation as well.<ref>{{cite book | vauthors = DeSimone C, Hadden JW | chapter = Prohost Modulation of Immunity by Isoprinosine and NPT 15392 |date=1987 | title = Antibiosis and Host Immunity |pages=279–290 |place=Boston, MA |publisher=Springer US |isbn=978-1-4612-9058-2 |doi=10.1007/978-1-4613-1901-6_32 }}</ref> |
||
Another hypothesis suggests that [[inosine]] itself has direct antiviral properties, as evidenced by the rather fast metabolism of the compound.<ref |
Another hypothesis suggests that [[inosine]] itself has direct antiviral properties, as evidenced by the rather fast metabolism of the compound.<ref name="Sliva_2019" />It is assumed that the drug breaks down metabolically into its constituents, therefore permitting direct inosine action. Inosine is proven to act on ribosome directly,<ref>{{cite journal | vauthors = Licht K, Hartl M, Amman F, Anrather D, Janisiw MP, Jantsch MF | title = Inosine induces context-dependent recoding and translational stalling | journal = Nucleic Acids Research | volume = 47 | issue = 1 | pages = 3–14 | date = January 2019 | pmid = 30462291 | doi = 10.1093/nar/gky1163 }}</ref> as such one theory suggests that it inhibits the synthesis of [[phosphoribosyl pyrophosphate]] from [[Ribose 5-phosphate|ribose phosphate]], the former being an intermediate in the biosynthesis of [[purine nucleotides]] such as [[adenylate]] and [[guanylate]]. A 2014 study<ref>{{cite journal | vauthors = Alseth I, Dalhus B, Bjørås M | title = Inosine in DNA and RNA | journal = Current Opinion in Genetics & Development | volume = 26 | pages = 116–123 | date = June 2014 | pmid = 25173738 | doi = 10.1016/j.gde.2014.07.008 | doi-access = free }}</ref> has also shown that inosine affects DNA and RNA directly, as such the wobble mechanism, in which inosine replaces [[adenine]], might result in errors in viral RNA furthermore. |
||
It is apparent that inosine pranobex acts on the [[viral replication]] through many mechanisms, and is as such pleiotropic in nature. Most of these mechanisms are not specific to certain viruses and as such the drug is potent in treating a wide spectrum of viral infections, something that is rather uncommon for antivirals, as they tend to be very specific in their target. These mechanisms are also so general that no virus has been ever shown to develop resistance to them.<ref name=" |
It is apparent that inosine pranobex acts on the [[viral replication]] through many mechanisms, and is as such pleiotropic in nature. Most of these mechanisms are not specific to certain viruses and as such the drug is potent in treating a wide spectrum of viral infections, something that is rather uncommon for antivirals, as they tend to be very specific in their target. These mechanisms are also so general that no virus has been ever shown to develop resistance to them.<ref name="Sliva_2019" /> |
||
Macroscopically, antiviral activity has been documented [[in vivo]] on several animal models, and experimentally tested on the [[cytomegalovirus]] and [[Influenza]] disease strains. [[In vitro]], there is antiviral activity documented for many RNA and DNA viruses including, but not limited to: [[herpes simplex virus]], cytomegalovirus, [[adenovirus]], [[poliovirus]], and Influenza A and B viruses.<ref>{{ |
Macroscopically, antiviral activity has been documented [[in vivo]] on several animal models, and experimentally tested on the [[cytomegalovirus]] and [[Influenza]] disease strains. [[In vitro]], there is antiviral activity documented for many RNA and DNA viruses including, but not limited to: [[herpes simplex virus]], cytomegalovirus, [[adenovirus]], [[poliovirus]], and Influenza A and B viruses.<ref>{{cite journal | vauthors = Muldoon RL, Mezny L, Jackson GG | title = Effect of isoprinosine against influenza and some other viruses causing respiratory diseases | journal = Antimicrobial Agents and Chemotherapy | volume = 2 | issue = 3 | pages = 224–228 | date = September 1972 | pmid = 4790561 | pmc = 444295 | doi = 10.1128/AAC.2.3.224 }}</ref> |
||
== Indications == |
== Indications == |
||
=== Preventative use === |
=== Preventative use === |
||
For patients with sub-optimally functioning immune systems, inosine pranobex can also be helpful in managing and decreasing the incidence<ref>{{ |
For patients with sub-optimally functioning immune systems, inosine pranobex can also be helpful in managing and decreasing the incidence<ref>{{cite journal | vauthors = Osidak LV, Obraztsova EV | title = Efficacy of the Inosine pranobex molecule in therapeutic and pediatric practice. | journal = Èpidemiologiâ i Infekcionnye Bolezni. Aktual'nye voprosy. | trans-journal = Epidemiology and Infectious Diseases. Current Items |language=ru | date = April 2012 | volume = 15 | issue = 4 | pages = 26-32 https://journals.eco-vector.com/2226-6976/article/view/275885 }}</ref> of common viral infections, such as the common cold or influenza.<ref name="Waldman_1977">{{cite journal | vauthors = Waldman RH, Ganguly R | title = Therapeutic efficacy of inosiplex (Isoprinosine) in rhinovirus infection | journal = Annals of the New York Academy of Sciences | volume = 284 | issue = 1 | pages = 153–160 | date = March 1977 | pmid = 81636 | doi = 10.1111/j.1749-6632.1977.tb21946.x | bibcode = 1977NYASA.284..153W }}</ref> As such, it is commonly prescribed preventatively, albeit at a lower dose. Several studies have investigated the benefits of inosine pranobex therapy in frequently ill children<ref>{{Cite journal | vauthors = Gołębiowska-Wawrzyniak M, Markiewicz K, Kozar A, Derentowicz P, Siwińska-Gołębiowska H |date=2004-06-30 |title=The Study on Therapeutic Efficacy of Inosine Pranobex in Children. |url=http://journal.pan.olsztyn.pl/THE-STUDY-ON-THERAPEUTIC-EFFICACY-OF-INOSINE-PRANOBEX-IN-CHILDREN-,98630,0,2.html |journal=Polish Journal of Food and Nutrition Sciences |language=english |volume=54 |issue=2s |pages=33–36 |issn=1230-0322}}</ref><ref>{{Cite journal | vauthors = Melekhina E, Muzyka A, Lysenkova M, Gorelov A |date=2018 |title=A comparative analysis of therapeutic regimens in children with monthly respiratory infections and reactivation of infection caused by human herpesvirus type 6 |journal=Voprosy praktičeskoj pediatrii |volume=13 |issue=5 |pages=74–82 |doi=10.20953/1817-7646-2018-5-74-82 |issn=1817-7646}}</ref> and returned positive results in both clinical and immunological outcomes. |
||
=== Herpesvirus infections === |
=== Herpesvirus infections === |
||
Typically, inosine pranobex is indicated as a safe antiviral for herpesviruses, such as [[herpes simplex virus|herpes simplex virus types 1 and 2]], [[cytomegalovirus]] (CMV), and [[Epstein–Barr virus|Epstein-Barr virus]] (EBV).<ref>{{cite journal |vauthors=Hashimoto K, Hosoya M | |
Typically, inosine pranobex is indicated as a safe antiviral for herpesviruses, such as [[herpes simplex virus|herpes simplex virus types 1 and 2]], [[cytomegalovirus]] (CMV), and [[Epstein–Barr virus|Epstein-Barr virus]] (EBV).<ref>{{cite journal | vauthors = Hashimoto K, Hosoya M | title = Advances in Antiviral Therapy for Subacute Sclerosing Panencephalitis | journal = Molecules | volume = 26 | issue = 2 | page = 427 | date = January 2021 | pmid = 33467470 | pmc = 7830519 | doi = 10.3390/molecules26020427 | doi-access = free }}</ref> The drug also proved helpful in managing complicated cases of lengthy reactivations of herpesviruses such as EBV, and subsequent post-viral fatigue. |
||
=== Human Papilloma Virus (HPV) infections === |
=== Human Papilloma Virus (HPV) infections === |
||
Inosine pranobex may be prescribed for the treatment of HPV infections both benign and oncogenic<ref>{{Cite web | |
Inosine pranobex may be prescribed for the treatment of HPV infections both benign and oncogenic,<ref>{{Cite web | vauthors = Šimůnková M |title=Inosin pranobex u akutních i chronických virových onemocnění {{!}} MT |url=https://www.tribune.cz/medicina/inosin-pranobex-u-akutnich-i-chronickych-virovych-onemocneni/ |access-date=2024-05-02 |website=www.tribune.cz |language=cs}}</ref> as a very safe and effective alternative therapy. Usually it is administered in combination with other treatment methods, such as [[Carbon-dioxide laser|CO<sub>2</sub> laser]] and [[podophyllotoxin]]. |
||
It was proven to be effective at treating genital warts<ref>{{ |
It was proven to be effective at treating genital warts<ref>{{cite journal | vauthors = Davidson-Parker J, Dinsmore W, Khan MH, Hicks DA, Morris CA, Morris DF | title = Immunotherapy of genital warts with inosine pranobex and conventional treatment: double blind placebo controlled study | journal = Genitourinary Medicine | volume = 64 | issue = 6 | pages = 383–386 | date = December 1988 | pmid = 2465265 | pmc = 1194272 | doi = 10.1136/sti.64.6.383 }}</ref> in combination with conventional non-surgical treatments. It can also be used to treat vulvar HPV infection, and cervical dysplasia.<ref>{{Cite journal | vauthors = Gudz OV, Kamilova IK, Miklin OP |date=2016 |title=HPV infection of the cervix uteri: Prospects for combination treatment |journal=Rossiiskii Vestnik Akushera-ginekologa |volume=16 |issue=2 |page=99 |doi=10.17116/rosakush201616299-103 |issn=1726-6122}}</ref> It was also suggested as a possible alternative treatment for young women with [[Vulvodynia|chronic vulvodynia]].<ref>{{cite journal | vauthors = Sand Petersen C, Weismann K | title = Isoprenosine improves symptoms in young females with chronic vulvodynia | journal = Acta Dermato-Venereologica | volume = 76 | issue = 5 | page = 404 | date = September 1996 | pmid = 8891022 | doi = 10.2340/0001555576404404 | doi-access = free }}</ref> Several long-term studies have shown efficacy even compared to surgical method at treating oral HPV-positive [[Proliferative verrucous leukoplakia|proliferative verrucous leucoplakia]] (PVL).<ref>{{cite journal | vauthors = Femiano F, Gombos F, Scully C | title = Oral proliferative verrucous leukoplakia (PVL); open trial of surgery compared with combined therapy using surgery and methisoprinol in papillomavirus-related PVL | journal = International Journal of Oral and Maxillofacial Surgery | volume = 30 | issue = 4 | pages = 318–322 | date = August 2001 | pmid = 11518355 | doi = 10.1054/ijom.2001.0066 }}</ref><ref name="Sliva_2019" /> |
||
=== Influenza and Rhinovirus infections === |
=== Influenza and Rhinovirus infections === |
||
The evidence in treating rhinovirus infections is mixed. While no statistically significant effect was observed in rhinovirus 44 or 32 infection<ref>{{ |
The evidence in treating rhinovirus infections is mixed. While no statistically significant effect was observed in rhinovirus 44 or 32 infection,<ref>{{cite journal | vauthors = Pachuta DM, Togo Y, Hornick RB, Schwartz AR, Tominaga S | title = Evaluation of isoprinosine in experimental human rhinovirus infection | journal = Antimicrobial Agents and Chemotherapy | volume = 5 | issue = 4 | pages = 403–408 | date = April 1974 | pmid = 15825396 | pmc = 428983 | doi = 10.1128/aac.5.4.403 }}</ref> its administration in rhinovirus 21 infection led to statistically improved health outcomes in patients, shortened infectivity and decreased viral shedding.<ref name="Waldman_1977" /> In Influenza and Influenza-like ([[Respiratory syncytial virus|RSV]], [[Adenoviridae|adenovirus]] and [[Human parainfluenza viruses|parainfluenza virus]]) infections, inosine pranobex did lower the symptom severity and duration.<ref>{{cite journal | vauthors = Beran J, Šalapová E, Špajdel M | title = Inosine pranobex is safe and effective for the treatment of subjects with confirmed acute respiratory viral infections: analysis and subgroup analysis from a Phase 4, randomised, placebo-controlled, double-blind study | journal = BMC Infectious Diseases | volume = 16 | issue = 1 | page = 648 | date = November 2016 | pmid = 27821093 | pmc = 5100179 | doi = 10.1186/s12879-016-1965-5 | doi-access = free }}</ref><ref name="Sliva_2019" /> |
||
=== COVID-19 === |
=== COVID-19 === |
||
When the global coronavirus pandemic hit in 2020, inosine pranobex was one of the first medication used experimentally to treat the [[SARS-CoV-2]] induced virosis, mainly due to its remarkably wide area of use and general antiviral properties. Several clinical trials were conducted returning largely positive results. |
When the global coronavirus pandemic hit in 2020, inosine pranobex was one of the first medication used experimentally to treat the [[SARS-CoV-2]] induced virosis, mainly due to its remarkably wide area of use and general antiviral properties. Several clinical trials were conducted returning largely positive results. |
||
Its use was pioneered in the Czech Republic, where it was first noted that use greatly decreases mortality among elderly.<ref>{{ |
Its use was pioneered in the Czech Republic, where it was first noted that use greatly decreases mortality among elderly.<ref>{{cite journal | vauthors = Beran J, Špajdel M, Slíva J | title = Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course | journal = Viruses | volume = 13 | issue = 11 | page = 2246 | date = November 2021 | pmid = 34835052 | pmc = 8619495 | doi = 10.3390/v13112246 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Beran J, Špajdel M, Katzerová V, Holoušová A, Malyš J, Finger Rousková J, Slíva J | title = Inosine Pranobex Significantly Decreased the Case-Fatality Rate among PCR Positive Elderly with SARS-CoV-2 at Three Nursing Homes in the Czech Republic | journal = Pathogens | volume = 9 | issue = 12 | page = 1055 | date = December 2020 | pmid = 33339426 | pmc = 7766462 | doi = 10.3390/pathogens9121055 | doi-access = free }}</ref> In 2022, a large Phase 3 trial concluded that administration of inosine pranobex should start as early as possible with greatly improved outcomes in mild to moderate COVID-19 patients.<ref>{{cite journal | vauthors = Jayanthi CR, Swain AK, Ganga RT, Halnor D, Avhad A, Khan MS, Ghosh A, Choudhary SS, Yannawar AN, Despande S, Patel M, Anne KP, Bangar Y | title = Efficacy and Safety of Inosine Pranobex in COVID-19 Patients: A Multicenter Phase 3 Randomized Double-Blind, Placebo-Controlled Trial | journal = Advanced Therapeutics | volume = 5 | issue = 12 | page = 2200159 | date = September 2022 | pmid = 36246300 | pmc = 9539257 | doi = 10.1002/adtp.202200159 }}</ref> |
||
=== Type B and C Viral Hepatitis === |
=== Type B and C Viral Hepatitis === |
||
In type B hepatitis, inosine pranobex was found ineffective during the acute phase of the infection, though in 28 days lower [[bilirubin]] and [[transaminase]] levels were detected. Greater number of patients became antigen-negative within a 90 day time-frame indicating a faster recovery rate.<ref>{{Cite journal | |
In type B hepatitis, inosine pranobex was found ineffective during the acute phase of the infection, though in 28 days lower [[bilirubin]] and [[transaminase]] levels were detected. Greater number of patients became antigen-negative within a 90 day time-frame indicating a faster recovery rate.<ref>{{Cite journal | vauthors = Indries M |date=December 2013 |title=Clinical and histological corelations in chronic viral hepatitis C |journal=BMC Infectious Diseases |volume=13 |issue=S1 |pages=52 |doi=10.1186/1471-2334-13-s1-p52 |doi-access=free |issn=1471-2334|pmc=3882649 }}</ref> |
||
Type C hepatitis was not studied as extensively, hence not so much data is available. It has been shown that inosine pranobex therapy in combination with [[ribavirin]] normalizes [[Alanine transaminase|alanine aminotransferase]] levels in patients unresponsive to [[interferon]] treatment.<ref>{{ |
Type C hepatitis was not studied as extensively, hence not so much data is available. It has been shown that inosine pranobex therapy in combination with [[ribavirin]] normalizes [[Alanine transaminase|alanine aminotransferase]] levels in patients unresponsive to [[interferon]] treatment.<ref>{{cite journal | vauthors = Pardo M, Carreño V | title = Lack of efficacy of inosine pranobex in the treatment of chronic hepatitis C | journal = Journal of Hepatology | volume = 21 | issue = 2 | page = 278 | date = August 1994 | pmid = 7527438 | doi = 10.1016/s0168-8278(05)80410-6 }}</ref> |
||
=== Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) === |
=== Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) === |
||
There is also some evidence of the drug being helpful in treating [[Post-Viral Fatigue Syndrome|chronic post-viral fatigue]]<ref>{{Cite web |
There is also some evidence of the drug being helpful in treating [[Post-Viral Fatigue Syndrome|chronic post-viral fatigue]].<ref>{{Cite web |title=Největší informační zdroj pro lékaře | trans-title = The largest information source for doctors |url=https://www.prolekare.cz/specialist-agreement |access-date=2024-05-01 |website=www.prolekare.cz |language=cs}}</ref> This might be indicative of the drug being effective even for other [[Post-acute infection syndrome|post-acute infection syndromes]] (PAIS), such as Long COVID (PASC).<ref>{{Cite journal |author=Бабаченко, И. В. |journal=Journal Infectology |date=2024-01-10 |script-title=ru:Эффективность Инозина Пранобекса в лечении и профилактике инфекционных заболеваний (систематический обзор) |url=https://journal.niidi.ru/jofin/article/view/1566 |script-journal=ru:Журнал инфектологии |language=ru |volume=15 |issue=4 |pages=42–53 |doi=10.22625/2072-6732-2023-15-4-42-53 |issn=2072-6732|doi-access=free }}</ref> In 2003, the possibility of using inosine pranobex for treating [[myalgic encephalomyelitis/chronic fatigue syndrome]] was investigated experimentally and returned promising results,<ref>{{Cite journal | vauthors = Diaz-Mitoma F, Turgonyi E, Kumar A, Lim W, Larocque L, Hyde BM |date=January 2003 |title=Clinical Improvement in Chronic Fatigue Syndrome Is Associated with Enhanced Natural Killer Cell-Mediated Cytotoxicity: The Results of a Pilot Study with Isoprinosine |journal=Journal of Chronic Fatigue Syndrome |language=en |volume=11 |issue=2 |pages=71–95 |doi=10.1300/J092v11n02_06 |issn=1057-3321}}</ref> when 6 out of 10 subjects reported noticeable improvement. Promised large scale Phase II/III clinical trials confirming initially observed effects have not been conducted yet as of 2024. |
||
In 2021, the US ME/CFS Clinician Coalition recommended the use of inosine pranobex for "immune dysfunction" symptoms, specifically "frequent viral infections, herpes simplex outbreaks, low natural killer cell activity, sore throat, tender nodes, low grade fevers".<ref>{{ |
In 2021, the US ME/CFS Clinician Coalition recommended the use of inosine pranobex for "immune dysfunction" symptoms, specifically "frequent viral infections, herpes simplex outbreaks, low natural killer cell activity, sore throat, tender nodes, low grade fevers".<ref>{{cite book | vauthors = Campling F, Sharpe M | chapter = Some myths about CFS/ME |date=2008-07-03 | title = Chronic fatigue syndrome (CFS/ME) |pages=57–60 |publisher=Oxford University PressOxford |isbn=978-0-19-923316-8 |doi=10.1093/oso/9780199233168.003.0009 }}</ref> |
||
=== Subacute Sclerosing Panencephalitis (SSPE) === |
=== Subacute Sclerosing Panencephalitis (SSPE) === |
||
Although the effect is unclear, several case reports have suggested that inosine pranobex may provide beneficial therapeutic effects in managing the illness. Several long-term studies suggested that the drug both increased survival and decreased neurological deficiencies.<ref>{{ |
Although the effect is unclear, several case reports have suggested that inosine pranobex may provide beneficial therapeutic effects in managing the illness. Several long-term studies suggested that the drug both increased survival and decreased neurological deficiencies.<ref>{{cite journal | vauthors = Huttenlocher PR, Mattson RH | title = Isoprinosine in subacute sclerosing panencephalitis | journal = Neurology | volume = 29 | issue = 6 | pages = 763–771 | date = June 1979 | pmid = 88024 | doi = 10.1212/WNL.29.6.763 }}</ref> It is not a cure for the illness though, as currently no cure exists. |
||
=== Human Immunodeficiency Virus (HIV) and AIDS === |
=== Human Immunodeficiency Virus (HIV) and AIDS === |
||
Inosine pranobex has been proven to delay [[HIV/AIDS|AIDS]] progression in [[HIV]] positive patients. In a large study of 831 HIV-positive patients, it was found to be very safe with no serious side effects reported.<ref>{{ |
Inosine pranobex has been proven to delay [[HIV/AIDS|AIDS]] progression in [[HIV]] positive patients. In a large Phase I study of 831 HIV-positive patients, it was found to be very safe with no serious side effects reported.<ref>{{cite journal | vauthors = Glasky AJ, Gordon JF | title = Isoprinosine (inosine pranobex BAN, INPX) in the treatment of AIDS and other acquired immunodeficiencies of clinical importance | journal = Cancer Detection and Prevention. Supplement | volume = 1 | pages = 597–609 | date = 1987-01-01 | pmid = 2446760 }}</ref> |
||
== Dosing == |
== Dosing == |
||
For acute infection, the typical dose is 50 mg/day/kg of body weight. For prevention of chronic issues lower doses are typically recommended, usually under 2 g/day. The maximum dose permitted is around 4 g/day. The toxicity of the drug in humans is unknown, but doses upward of 1 g/kg of body weight were toxic in rodents<ref name=" |
For acute infection, the typical dose is 50 mg/day/kg of body weight. For prevention of chronic issues lower doses are typically recommended, usually under 2 g/day. The maximum dose permitted is around 4 g/day. The toxicity of the drug in humans is unknown, but doses upward of 1 g/kg of body weight were toxic in rodents.<ref name="go.drugbank.com" /> |
||
== Safety == |
== Safety == |
||
The most commonly found effects are [[nausea]] and [[vomiting]]. [[Hypotension]], [[Somnolence|drowsiness]] and skin irritation may also occur. Metabolism of the inosine component of the drug can lead to an increase in uric acid levels in both blood and urine. The occurrence of transient reversible [[Hyperuricemia|hyperuricaemia]] occurs in about 10% of patients taking inosine pranobex.<ref>{{ |
The most commonly found effects are [[nausea]] and [[vomiting]]. [[Hypotension]], [[Somnolence|drowsiness]] and skin irritation may also occur. Metabolism of the inosine component of the drug can lead to an increase in uric acid levels in both blood and urine. The occurrence of transient reversible [[Hyperuricemia|hyperuricaemia]] occurs in about 10% of patients taking inosine pranobex.<ref>{{cite journal | vauthors = You Y, Wang L, Li Y, Wang Q, Cao S, Tu Y, Li S, Bai L, Lu J, Wei Z, Chen W, Hao F | title = Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients | journal = The Journal of Dermatology | volume = 42 | issue = 6 | pages = 596–601 | date = June 2015 | pmid = 25819042 | doi = 10.1111/1346-8138.12845 }}</ref> Due to the potential risk of hyperuricosuria and the development of [[Nephrolithiasis|urate nephrolithiasis]], increased fluid intake and exclusion of acidic foods is recommended during isoprinosine therapy. Its administration is not recommended in combination with immunosuppressing medicine. |
||
Tolerance studies in healthy individuals and patients have consistently shown that inosine pranobex has no serious side effects and is remarkably well tolerated by the organism. Continuous administration of the drug for up to 7 years, at doses ranging from 1 to 8 g per day, has only occasionally caused transient nausea. This nausea was associated with a large number of tablets ingested. In addition, transient increases in serum and urinary uric acid levels have been reported. This increase in serum [[uric acid]] concentration is more common in male patients than in females.<ref>{{ |
Tolerance studies in healthy individuals and patients have consistently shown that inosine pranobex has no serious side effects and is remarkably well tolerated by the organism. Continuous administration of the drug for up to 7 years, at doses ranging from 1 to 8 g per day, has only occasionally caused transient nausea. This nausea was associated with a large number of tablets ingested. In addition, transient increases in serum and urinary uric acid levels have been reported. This increase in serum [[uric acid]] concentration is more common in male patients than in females.<ref>{{cite journal | vauthors = Campoli-Richards DM, Sorkin EM, Heel RC | title = Inosine pranobex. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy | journal = Drugs | volume = 32 | issue = 5 | pages = 383–424 | date = November 1986 | pmid = 2431857 | doi = 10.2165/00003495-198632050-00001 }}</ref> |
||
Neither long-term damage not death from overdose have been reported in relation to inosine pranobex, doses upward of 1 g/kg of body weight were found to be toxic in rodents<ref name=" |
Neither long-term damage not death from overdose have been reported in relation to inosine pranobex, doses upward of 1 g/kg of body weight were found to be toxic in rodents.<ref name="go.drugbank.com">{{Cite web |title=Inosine pranobex |url=https://go.drugbank.com/drugs/DB13156 |access-date=2024-05-02 |website=go.drugbank.com |language=en}}</ref> The drug is metabolized very quickly, therefore any side effects should subside quickly with no long-term effects. |
||
== History == |
== History == |
||
The first studies conducted with the drug happened as early as the 1970s. It was licensed in 1971<ref name=" |
The first studies conducted with the drug happened as early as the 1970s. It was licensed in 1971<ref name="Beran_2021">{{cite journal | vauthors = Beran J, Špajdel M, Slíva J | title = Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course | journal = Viruses | volume = 13 | issue = 11 | page = 2246 | date = November 2021 | pmid = 34835052 | pmc = 8619495 | doi = 10.3390/v13112246 | doi-access = free }}</ref> with the first robust preliminary review of its efficacy having been published in 1986.<ref>{{cite journal | vauthors = Campoli-Richards DM, Sorkin EM, Heel RC | title = Inosine pranobex. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy | journal = Drugs | volume = 32 | issue = 5 | pages = 383–424 | date = November 1986 | pmid = 2431857 | doi = 10.2165/00003495-198632050-00001 }}</ref> Since the beginning, the drug was praised for its wide array of use cases, it was noted early on that it has a clinically noticeable effect on the immune function. In the 1990s, the possibility of the drug being used for HIV infection has also been investigated thoroughly, with the results typically highlighting improved immune function.<ref>{{cite journal | vauthors = De Simone C, Famularo G, Tzantzoglou S, Moretti S, Jirillo E | title = Inosine pranobex in the treatment of HIV infection: a review | journal = International Journal of Immunopharmacology | volume = 13 | issue = Suppl 1 | pages = 19–27 | date = January 1991 | pmid = 1726683 | doi = 10.1016/0192-0561(91)90120-v }}</ref> Nonetheless, following the development of more effective HIV drugs, this use case has been largely discontinued. |
||
Throughout the 21st century, inosine pranobex has been used mainly in Central and Eastern Europe, in contrast to the [[United States]], where the medication is not as widely available. In Eastern Europe, namely [[Poland]], the medication is available [[Over-the-counter drug|over-the-counter]] under the brand name of Groprinosin® thanks to its safety and low risk of overdose. |
Throughout the 21st century, inosine pranobex has been used mainly in Central and Eastern Europe, in contrast to the [[United States]], where the medication is not as widely available. In Eastern Europe, namely [[Poland]], the medication is available [[Over-the-counter drug|over-the-counter]] under the brand name of Groprinosin® thanks to its safety and low risk of overdose. |
||
In 2020, inosine pranobex was found to be a cheap and effective treatment for [[SARS-CoV-2]] in cases not requiring hospitalization with fatality rate effectively halved as a result of its use<ref name=" |
In 2020, inosine pranobex was found to be a cheap and effective treatment for [[SARS-CoV-2]] in cases not requiring hospitalization with fatality rate effectively halved as a result of its use.<ref name="Beran_2021" /> |
||
== References == |
== References == |
||
Line 131: | Line 127: | ||
[[Category:Antiviral drugs]] |
[[Category:Antiviral drugs]] |
||
{{antiinfective-drug-stub}} |
Latest revision as of 22:21, 19 August 2024
Combination of | |
---|---|
Inosine | Immunostimulant |
Dimethylaminoisopropanol | Immunostimulant |
Acedoben | Immunostimulant |
Clinical data | |
Trade names | Imunovir, Delimmun, Isoprinosine |
Other names | Methisoprinol |
Routes of administration | Oral |
ATC code | |
Legal status | |
Legal status |
|
Identifiers | |
PubChem CID | |
ChemSpider | |
UNII | |
KEGG | |
ECHA InfoCard | 100.048.313 |
Inosine pranobex (BAN; also known as inosine acedoben dimepranol (INN), methisoprinol, inosiplex or Isoprinosine) is an antiviral drug that is a combination of inosine and dimepranol acedoben (a salt of acetamidobenzoic acid and dimethylaminoisopropanol) in a ratio of 1 to 3. It is used primarily in European countries, especially as a treatment for acute viral infections, such as the common cold.
Mechanism of action
[edit]Immunomodulatory effects
[edit]Inosine pranobex acts as an immunostimulant, an analog of thymus hormones.[1] It is indicated for an entire spectrum of patients with clinical manifestations of immune deficiency. It modulates the immune system by immunostimulation or immunooptimisation of defensive inflammation[2] at the cellular level, e.g. by interfering with energy metabolism, cell signalling and proliferation.
One of the main immunostimulatory effects of inosine pranobex lies in T-cell modulation.[3] Its administration has been shown both in vivo and in vitro to induce Th1 cell-type response, as evidenced by the increase in pro-inflammatory cytokines (e.g. IL-2, ILN-γ) in mitogen- or antigen-activated cells.[4] As such, T-cell maturation and differentiation is further fostered.[5] The increase of ILN-γ in serum is proven to inhibit the production of IL-10,[6] which could explain the drug's suppressive effect on anti-inflammatory cytokines.
It also modulates components of innate immunity. In respect to natural killer cells, both population[7] and activity[8] increased as a result of inosine pranobex therapy.[9] It has also been proven that other cells of the innate immunity are affected,[10] as neutrophil, monocyte and macrophage chemotaxis and phagocytosis were enhanced in cancer patients.[11]
Antiviral properties
[edit]Inosine pranobex also has direct antiviral properties.[2] Several hypotheses have been formed over time, but all of them agree that the drug has direct effect on viral RNA synthesis via inhibiting transcription and translation of the genetic code at cellular level.[12]
In fact, cellular RNA and protein synthesis are markedly depressed shortly after viral infection, as the cell is instructed to focus resources on producing viral RNA instead. Inosine pranobex is believed to override this mechanism and incentivize cellular RNA synthesis over viral.[13][14] It has been suggested that the drug itself, or any one of its components, directly acts on the ribosomes of infected cells providing an advantage to cellular RNA in competition for synthesis.[14] This could also result in errors in the viral RNA transcription, which would hinder viral proliferation as well.[15]
Another hypothesis suggests that inosine itself has direct antiviral properties, as evidenced by the rather fast metabolism of the compound.[3]It is assumed that the drug breaks down metabolically into its constituents, therefore permitting direct inosine action. Inosine is proven to act on ribosome directly,[16] as such one theory suggests that it inhibits the synthesis of phosphoribosyl pyrophosphate from ribose phosphate, the former being an intermediate in the biosynthesis of purine nucleotides such as adenylate and guanylate. A 2014 study[17] has also shown that inosine affects DNA and RNA directly, as such the wobble mechanism, in which inosine replaces adenine, might result in errors in viral RNA furthermore.
It is apparent that inosine pranobex acts on the viral replication through many mechanisms, and is as such pleiotropic in nature. Most of these mechanisms are not specific to certain viruses and as such the drug is potent in treating a wide spectrum of viral infections, something that is rather uncommon for antivirals, as they tend to be very specific in their target. These mechanisms are also so general that no virus has been ever shown to develop resistance to them.[3]
Macroscopically, antiviral activity has been documented in vivo on several animal models, and experimentally tested on the cytomegalovirus and Influenza disease strains. In vitro, there is antiviral activity documented for many RNA and DNA viruses including, but not limited to: herpes simplex virus, cytomegalovirus, adenovirus, poliovirus, and Influenza A and B viruses.[18]
Indications
[edit]Preventative use
[edit]For patients with sub-optimally functioning immune systems, inosine pranobex can also be helpful in managing and decreasing the incidence[19] of common viral infections, such as the common cold or influenza.[20] As such, it is commonly prescribed preventatively, albeit at a lower dose. Several studies have investigated the benefits of inosine pranobex therapy in frequently ill children[21][22] and returned positive results in both clinical and immunological outcomes.
Herpesvirus infections
[edit]Typically, inosine pranobex is indicated as a safe antiviral for herpesviruses, such as herpes simplex virus types 1 and 2, cytomegalovirus (CMV), and Epstein-Barr virus (EBV).[23] The drug also proved helpful in managing complicated cases of lengthy reactivations of herpesviruses such as EBV, and subsequent post-viral fatigue.
Human Papilloma Virus (HPV) infections
[edit]Inosine pranobex may be prescribed for the treatment of HPV infections both benign and oncogenic,[24] as a very safe and effective alternative therapy. Usually it is administered in combination with other treatment methods, such as CO2 laser and podophyllotoxin.
It was proven to be effective at treating genital warts[25] in combination with conventional non-surgical treatments. It can also be used to treat vulvar HPV infection, and cervical dysplasia.[26] It was also suggested as a possible alternative treatment for young women with chronic vulvodynia.[27] Several long-term studies have shown efficacy even compared to surgical method at treating oral HPV-positive proliferative verrucous leucoplakia (PVL).[28][3]
Influenza and Rhinovirus infections
[edit]The evidence in treating rhinovirus infections is mixed. While no statistically significant effect was observed in rhinovirus 44 or 32 infection,[29] its administration in rhinovirus 21 infection led to statistically improved health outcomes in patients, shortened infectivity and decreased viral shedding.[20] In Influenza and Influenza-like (RSV, adenovirus and parainfluenza virus) infections, inosine pranobex did lower the symptom severity and duration.[30][3]
COVID-19
[edit]When the global coronavirus pandemic hit in 2020, inosine pranobex was one of the first medication used experimentally to treat the SARS-CoV-2 induced virosis, mainly due to its remarkably wide area of use and general antiviral properties. Several clinical trials were conducted returning largely positive results.
Its use was pioneered in the Czech Republic, where it was first noted that use greatly decreases mortality among elderly.[31][32] In 2022, a large Phase 3 trial concluded that administration of inosine pranobex should start as early as possible with greatly improved outcomes in mild to moderate COVID-19 patients.[33]
Type B and C Viral Hepatitis
[edit]In type B hepatitis, inosine pranobex was found ineffective during the acute phase of the infection, though in 28 days lower bilirubin and transaminase levels were detected. Greater number of patients became antigen-negative within a 90 day time-frame indicating a faster recovery rate.[34]
Type C hepatitis was not studied as extensively, hence not so much data is available. It has been shown that inosine pranobex therapy in combination with ribavirin normalizes alanine aminotransferase levels in patients unresponsive to interferon treatment.[35]
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
[edit]There is also some evidence of the drug being helpful in treating chronic post-viral fatigue.[36] This might be indicative of the drug being effective even for other post-acute infection syndromes (PAIS), such as Long COVID (PASC).[37] In 2003, the possibility of using inosine pranobex for treating myalgic encephalomyelitis/chronic fatigue syndrome was investigated experimentally and returned promising results,[38] when 6 out of 10 subjects reported noticeable improvement. Promised large scale Phase II/III clinical trials confirming initially observed effects have not been conducted yet as of 2024.
In 2021, the US ME/CFS Clinician Coalition recommended the use of inosine pranobex for "immune dysfunction" symptoms, specifically "frequent viral infections, herpes simplex outbreaks, low natural killer cell activity, sore throat, tender nodes, low grade fevers".[39]
Subacute Sclerosing Panencephalitis (SSPE)
[edit]Although the effect is unclear, several case reports have suggested that inosine pranobex may provide beneficial therapeutic effects in managing the illness. Several long-term studies suggested that the drug both increased survival and decreased neurological deficiencies.[40] It is not a cure for the illness though, as currently no cure exists.
Human Immunodeficiency Virus (HIV) and AIDS
[edit]Inosine pranobex has been proven to delay AIDS progression in HIV positive patients. In a large Phase I study of 831 HIV-positive patients, it was found to be very safe with no serious side effects reported.[41]
Dosing
[edit]For acute infection, the typical dose is 50 mg/day/kg of body weight. For prevention of chronic issues lower doses are typically recommended, usually under 2 g/day. The maximum dose permitted is around 4 g/day. The toxicity of the drug in humans is unknown, but doses upward of 1 g/kg of body weight were toxic in rodents.[42]
Safety
[edit]The most commonly found effects are nausea and vomiting. Hypotension, drowsiness and skin irritation may also occur. Metabolism of the inosine component of the drug can lead to an increase in uric acid levels in both blood and urine. The occurrence of transient reversible hyperuricaemia occurs in about 10% of patients taking inosine pranobex.[43] Due to the potential risk of hyperuricosuria and the development of urate nephrolithiasis, increased fluid intake and exclusion of acidic foods is recommended during isoprinosine therapy. Its administration is not recommended in combination with immunosuppressing medicine.
Tolerance studies in healthy individuals and patients have consistently shown that inosine pranobex has no serious side effects and is remarkably well tolerated by the organism. Continuous administration of the drug for up to 7 years, at doses ranging from 1 to 8 g per day, has only occasionally caused transient nausea. This nausea was associated with a large number of tablets ingested. In addition, transient increases in serum and urinary uric acid levels have been reported. This increase in serum uric acid concentration is more common in male patients than in females.[44]
Neither long-term damage not death from overdose have been reported in relation to inosine pranobex, doses upward of 1 g/kg of body weight were found to be toxic in rodents.[42] The drug is metabolized very quickly, therefore any side effects should subside quickly with no long-term effects.
History
[edit]The first studies conducted with the drug happened as early as the 1970s. It was licensed in 1971[45] with the first robust preliminary review of its efficacy having been published in 1986.[46] Since the beginning, the drug was praised for its wide array of use cases, it was noted early on that it has a clinically noticeable effect on the immune function. In the 1990s, the possibility of the drug being used for HIV infection has also been investigated thoroughly, with the results typically highlighting improved immune function.[47] Nonetheless, following the development of more effective HIV drugs, this use case has been largely discontinued.
Throughout the 21st century, inosine pranobex has been used mainly in Central and Eastern Europe, in contrast to the United States, where the medication is not as widely available. In Eastern Europe, namely Poland, the medication is available over-the-counter under the brand name of Groprinosin® thanks to its safety and low risk of overdose.
In 2020, inosine pranobex was found to be a cheap and effective treatment for SARS-CoV-2 in cases not requiring hospitalization with fatality rate effectively halved as a result of its use.[45]
References
[edit]- ^ "Inosine Pranobex". American Cancer Society. Archived from the original on 23 August 2010. Retrieved 31 July 2013.
- ^ a b Krejsek J, Andrýs C, Krčmová I (2016). Imunologie člověka [Human immunology] (in Czech). Czechia: Garamon sro, Hradec Králové. OCLC 982100822.
- ^ a b c d e Sliva J, Pantzartzi CN, Votava M (August 2019). "Inosine Pranobex: A Key Player in the Game Against a Wide Range of Viral Infections and Non-Infectious Diseases". Advances in Therapy. 36 (8): 1878–1905. doi:10.1007/s12325-019-00995-6. PMC 6822865. PMID 31168764.
- ^ Petrova M, Jelev D, Ivanova A, Krastev Z (April 2010). "Isoprinosine affects serum cytokine levels in healthy adults". Journal of Interferon & Cytokine Research. 30 (4): 223–228. doi:10.1089/jir.2009.0057. PMID 20038210.
- ^ You Y, Wang L, Li Y, Wang Q, Cao S, Tu Y, et al. (June 2015). "Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients". The Journal of Dermatology. 42 (6): 596–601. doi:10.1111/1346-8138.12845. PMID 25819042.
- ^ Sabat R, Grütz G, Warszawska K, Kirsch S, Witte E, Wolk K, et al. (October 2010). "Biology of interleukin-10" (PDF). Cytokine & Growth Factor Reviews. 21 (5): 331–344. doi:10.1016/j.cytogfr.2010.09.002. PMID 21115385.
- ^ Rumel Ahmed S, Newman AS, O'Daly J, Duffy S, Grafton G, Brady CA, et al. (January 2017). "Inosine Acedoben Dimepranol promotes an early and sustained increase in the natural killer cell component of circulating lymphocytes: A clinical trial supporting anti-viral indications". International Immunopharmacology. 42: 108–114. doi:10.1016/j.intimp.2016.11.023. PMID 27912146.
- ^ Hersey P, Edwards A (January 1984). "Effect of isoprinosine on natural killer cell activity of blood mononuclear cells in vitro and in vivo". International Journal of Immunopharmacology. 6 (4): 315–320. doi:10.1016/0192-0561(84)90048-1. PMID 6207121.
- ^ Rumel Ahmed S, Newman AS, O'Daly J, Duffy S, Grafton G, Brady CA, et al. (January 2017). "Inosine Acedoben Dimepranol promotes an early and sustained increase in the natural killer cell component of circulating lymphocytes: A clinical trial supporting anti-viral indications". International Immunopharmacology. 42: 108–114. doi:10.1016/j.intimp.2016.11.023. PMID 27912146.
- ^ Tsang KY, Pan JF, Swanger DL, Fudenberg HH (January 1985). "In vitro restoration of immune responses in aging humans by isoprinosine". International Journal of Immunopharmacology. 7 (2): 199–206. doi:10.1016/0192-0561(85)90027-X. PMID 2409037.
- ^ Tsang KY, Fudenberg HH, Pan JF, Gnagy MJ, Bristow CB (January 1983). "An in vitro study on the effects of isoprinosine on immune responses in cancer patients". International Journal of Immunopharmacology. 5 (6): 481–490. doi:10.1016/0192-0561(83)90041-3. PMID 6198297.
- ^ You Y, Wang L, Li Y, Wang Q, Cao S, Tu Y, et al. (June 2015). "Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients". The Journal of Dermatology. 42 (6): 596–601. doi:10.1111/1346-8138.12845. PMID 25819042.
- ^ Ohnishi H, Kosuzume H, Inaba H, Okura M, Morita Y, Mochizuki H, et al. (October 1982). "Mechanism of host defense suppression induced by viral infection: mode of action of inosiplex as an antiviral agent". Infection and Immunity. 38 (1): 243–250. doi:10.1128/iai.38.1.243-250.1982. PMC 347725. PMID 6183209.
- ^ a b Gordon P, Brown ER (September 1972). "The antiviral activity of isoprinosine". Canadian Journal of Microbiology. 18 (9): 1463–1470. doi:10.1139/m72-224. PMID 4341918.
- ^ DeSimone C, Hadden JW (1987). "Prohost Modulation of Immunity by Isoprinosine and NPT 15392". Antibiosis and Host Immunity. Boston, MA: Springer US. pp. 279–290. doi:10.1007/978-1-4613-1901-6_32. ISBN 978-1-4612-9058-2.
- ^ Licht K, Hartl M, Amman F, Anrather D, Janisiw MP, Jantsch MF (January 2019). "Inosine induces context-dependent recoding and translational stalling". Nucleic Acids Research. 47 (1): 3–14. doi:10.1093/nar/gky1163. PMID 30462291.
- ^ Alseth I, Dalhus B, Bjørås M (June 2014). "Inosine in DNA and RNA". Current Opinion in Genetics & Development. 26: 116–123. doi:10.1016/j.gde.2014.07.008. PMID 25173738.
- ^ Muldoon RL, Mezny L, Jackson GG (September 1972). "Effect of isoprinosine against influenza and some other viruses causing respiratory diseases". Antimicrobial Agents and Chemotherapy. 2 (3): 224–228. doi:10.1128/AAC.2.3.224. PMC 444295. PMID 4790561.
- ^ Osidak LV, Obraztsova EV (April 2012). "Efficacy of the Inosine pranobex molecule in therapeutic and pediatric practice". Èpidemiologiâ i Infekcionnye Bolezni. Aktual'nye voprosy. [Epidemiology and Infectious Diseases. Current Items] (in Russian). 15 (4): 26-32 https://journals.eco-vector.com/2226-6976/article/view/275885.
- ^ a b Waldman RH, Ganguly R (March 1977). "Therapeutic efficacy of inosiplex (Isoprinosine) in rhinovirus infection". Annals of the New York Academy of Sciences. 284 (1): 153–160. Bibcode:1977NYASA.284..153W. doi:10.1111/j.1749-6632.1977.tb21946.x. PMID 81636.
- ^ Gołębiowska-Wawrzyniak M, Markiewicz K, Kozar A, Derentowicz P, Siwińska-Gołębiowska H (2004-06-30). "The Study on Therapeutic Efficacy of Inosine Pranobex in Children". Polish Journal of Food and Nutrition Sciences. 54 (2s): 33–36. ISSN 1230-0322.
- ^ Melekhina E, Muzyka A, Lysenkova M, Gorelov A (2018). "A comparative analysis of therapeutic regimens in children with monthly respiratory infections and reactivation of infection caused by human herpesvirus type 6". Voprosy praktičeskoj pediatrii. 13 (5): 74–82. doi:10.20953/1817-7646-2018-5-74-82. ISSN 1817-7646.
- ^ Hashimoto K, Hosoya M (January 2021). "Advances in Antiviral Therapy for Subacute Sclerosing Panencephalitis". Molecules. 26 (2): 427. doi:10.3390/molecules26020427. PMC 7830519. PMID 33467470.
- ^ Šimůnková M. "Inosin pranobex u akutních i chronických virových onemocnění | MT". www.tribune.cz (in Czech). Retrieved 2024-05-02.
- ^ Davidson-Parker J, Dinsmore W, Khan MH, Hicks DA, Morris CA, Morris DF (December 1988). "Immunotherapy of genital warts with inosine pranobex and conventional treatment: double blind placebo controlled study". Genitourinary Medicine. 64 (6): 383–386. doi:10.1136/sti.64.6.383. PMC 1194272. PMID 2465265.
- ^ Gudz OV, Kamilova IK, Miklin OP (2016). "HPV infection of the cervix uteri: Prospects for combination treatment". Rossiiskii Vestnik Akushera-ginekologa. 16 (2): 99. doi:10.17116/rosakush201616299-103. ISSN 1726-6122.
- ^ Sand Petersen C, Weismann K (September 1996). "Isoprenosine improves symptoms in young females with chronic vulvodynia". Acta Dermato-Venereologica. 76 (5): 404. doi:10.2340/0001555576404404. PMID 8891022.
- ^ Femiano F, Gombos F, Scully C (August 2001). "Oral proliferative verrucous leukoplakia (PVL); open trial of surgery compared with combined therapy using surgery and methisoprinol in papillomavirus-related PVL". International Journal of Oral and Maxillofacial Surgery. 30 (4): 318–322. doi:10.1054/ijom.2001.0066. PMID 11518355.
- ^ Pachuta DM, Togo Y, Hornick RB, Schwartz AR, Tominaga S (April 1974). "Evaluation of isoprinosine in experimental human rhinovirus infection". Antimicrobial Agents and Chemotherapy. 5 (4): 403–408. doi:10.1128/aac.5.4.403. PMC 428983. PMID 15825396.
- ^ Beran J, Šalapová E, Špajdel M (November 2016). "Inosine pranobex is safe and effective for the treatment of subjects with confirmed acute respiratory viral infections: analysis and subgroup analysis from a Phase 4, randomised, placebo-controlled, double-blind study". BMC Infectious Diseases. 16 (1): 648. doi:10.1186/s12879-016-1965-5. PMC 5100179. PMID 27821093.
- ^ Beran J, Špajdel M, Slíva J (November 2021). "Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course". Viruses. 13 (11): 2246. doi:10.3390/v13112246. PMC 8619495. PMID 34835052.
- ^ Beran J, Špajdel M, Katzerová V, Holoušová A, Malyš J, Finger Rousková J, et al. (December 2020). "Inosine Pranobex Significantly Decreased the Case-Fatality Rate among PCR Positive Elderly with SARS-CoV-2 at Three Nursing Homes in the Czech Republic". Pathogens. 9 (12): 1055. doi:10.3390/pathogens9121055. PMC 7766462. PMID 33339426.
- ^ Jayanthi CR, Swain AK, Ganga RT, Halnor D, Avhad A, Khan MS, et al. (September 2022). "Efficacy and Safety of Inosine Pranobex in COVID-19 Patients: A Multicenter Phase 3 Randomized Double-Blind, Placebo-Controlled Trial". Advanced Therapeutics. 5 (12): 2200159. doi:10.1002/adtp.202200159. PMC 9539257. PMID 36246300.
- ^ Indries M (December 2013). "Clinical and histological corelations in chronic viral hepatitis C". BMC Infectious Diseases. 13 (S1): 52. doi:10.1186/1471-2334-13-s1-p52. ISSN 1471-2334. PMC 3882649.
- ^ Pardo M, Carreño V (August 1994). "Lack of efficacy of inosine pranobex in the treatment of chronic hepatitis C". Journal of Hepatology. 21 (2): 278. doi:10.1016/s0168-8278(05)80410-6. PMID 7527438.
- ^ "Největší informační zdroj pro lékaře" [The largest information source for doctors]. www.prolekare.cz (in Czech). Retrieved 2024-05-01.
- ^ Бабаченко, И. В. (2024-01-10). Эффективность Инозина Пранобекса в лечении и профилактике инфекционных заболеваний (систематический обзор). Journal Infectology Журнал инфектологии (in Russian). 15 (4): 42–53. doi:10.22625/2072-6732-2023-15-4-42-53. ISSN 2072-6732.
- ^ Diaz-Mitoma F, Turgonyi E, Kumar A, Lim W, Larocque L, Hyde BM (January 2003). "Clinical Improvement in Chronic Fatigue Syndrome Is Associated with Enhanced Natural Killer Cell-Mediated Cytotoxicity: The Results of a Pilot Study with Isoprinosine". Journal of Chronic Fatigue Syndrome. 11 (2): 71–95. doi:10.1300/J092v11n02_06. ISSN 1057-3321.
- ^ Campling F, Sharpe M (2008-07-03). "Some myths about CFS/ME". Chronic fatigue syndrome (CFS/ME). Oxford University PressOxford. pp. 57–60. doi:10.1093/oso/9780199233168.003.0009. ISBN 978-0-19-923316-8.
- ^ Huttenlocher PR, Mattson RH (June 1979). "Isoprinosine in subacute sclerosing panencephalitis". Neurology. 29 (6): 763–771. doi:10.1212/WNL.29.6.763. PMID 88024.
- ^ Glasky AJ, Gordon JF (1987-01-01). "Isoprinosine (inosine pranobex BAN, INPX) in the treatment of AIDS and other acquired immunodeficiencies of clinical importance". Cancer Detection and Prevention. Supplement. 1: 597–609. PMID 2446760.
- ^ a b "Inosine pranobex". go.drugbank.com. Retrieved 2024-05-02.
- ^ You Y, Wang L, Li Y, Wang Q, Cao S, Tu Y, et al. (June 2015). "Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients". The Journal of Dermatology. 42 (6): 596–601. doi:10.1111/1346-8138.12845. PMID 25819042.
- ^ Campoli-Richards DM, Sorkin EM, Heel RC (November 1986). "Inosine pranobex. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy". Drugs. 32 (5): 383–424. doi:10.2165/00003495-198632050-00001. PMID 2431857.
- ^ a b Beran J, Špajdel M, Slíva J (November 2021). "Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course". Viruses. 13 (11): 2246. doi:10.3390/v13112246. PMC 8619495. PMID 34835052.
- ^ Campoli-Richards DM, Sorkin EM, Heel RC (November 1986). "Inosine pranobex. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy". Drugs. 32 (5): 383–424. doi:10.2165/00003495-198632050-00001. PMID 2431857.
- ^ De Simone C, Famularo G, Tzantzoglou S, Moretti S, Jirillo E (January 1991). "Inosine pranobex in the treatment of HIV infection: a review". International Journal of Immunopharmacology. 13 (Suppl 1): 19–27. doi:10.1016/0192-0561(91)90120-v. PMID 1726683.