Jump to content

Kretschmann scalar: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Examples: Example from mathematica
Tags: Mobile edit Mobile web edit
Changing short description from "The Kretschmann scalar, is a scalar quantity used in general relativity to measure the curvature of spacetime." to "Quadratic scalar invariant"
 
(21 intermediate revisions by 13 users not shown)
Line 1: Line 1:
{{Short description|Quadratic scalar invariant}}
In the theory of [[pseudo-Riemannian manifold|Lorentzian manifolds]], particularly in the context of applications to [[general relativity]], the '''Kretschmann scalar''' is a quadratic [[curvature invariant (general relativity)|scalar invariant]]. It was introduced by [[Erich Kretschmann]].<ref name="Henry"/>
In the theory of [[pseudo-Riemannian manifold|Lorentzian manifolds]], particularly in the context of applications to [[general relativity]], the '''Kretschmann scalar''' is a quadratic [[curvature invariant (general relativity)|scalar invariant]]. It was introduced by [[Erich Kretschmann]].<ref name="Henry"/>


==Definition==
==Definition==
The Kretschmann invariant is<ref name="Henry">{{cite journal|title=Kretschmann Scalar for a Kerr-Newman Black Hole |author=Richard C. Henry |journal=[[The Astrophysical Journal]] |publisher=The American Astronomical Society |year=2000 |url=http://iopscience.iop.org/0004-637X/535/1/350/fulltext/40794.text.html |pages=350–353 |volume=535 |arxiv=astro-ph/9912320v1|bibcode = 2000ApJ...535..350H |doi = 10.1086/308819 }}</ref><ref>{{Harvnb|Grøn|Hervik|2007 |loc=p 219}}</ref>
The Kretschmann invariant is<ref name="Henry">{{cite journal|title=Kretschmann Scalar for a Kerr-Newman Black Hole |author=Richard C. Henry |journal=[[The Astrophysical Journal]] |publisher=The American Astronomical Society |year=2000 |pages=350–353 |volume=535 |issue=1 |arxiv=astro-ph/9912320v1|bibcode = 2000ApJ...535..350H |doi = 10.1086/308819 |s2cid=119329546 }}</ref><ref>{{Harvnb|Grøn|Hervik|2007 |loc=p 219}}</ref>
:<math> K = R_{abcd} \, R^{abcd}</math>
:<math> K = R_{abcd} \, R^{abcd}</math>
where <math>
where <math>R_{abcd}</math> is the [[Riemann curvature tensor]]. Because it is a sum of squares of tensor components, this is a ''quadratic'' invariant.
R^{a}{}_{bcd} =
\partial_{c}\Gamma^{a}{}_{db} -
\partial_{d}\Gamma^{a}{}_{cb} +
\Gamma^{a}{}_{ce}\Gamma^{e}{}_{db} -
\Gamma^{a}{}_{de}\Gamma^{e}{}_{cb}</math> is the [[Riemann curvature tensor]] and <math>\Gamma</math> is the [[Christoffel symbol]]. Because it is a sum of squares of tensor components, this is a ''quadratic'' invariant.

[[Einstein summation convention]] with [[Raising_and_lowering_indices|raised and lowered indices]] is used above and throughout the article. An explicit summation expression is
:<math> K = R_{abcd} \, R^{abcd} =\sum_{a =0}^{3}\sum_{b =0}^3 \sum_{c=0}^3\sum_{d=0}^3 R_{abcd} \, R^{abcd} \text{ with } R^{abcd} =\sum_{i=0}^3 g^{ai}\,\sum_{j=0}^3 g^{bj}\,\sum_{k=0}^3 g^{ck}\,\sum_{\ell=0}^3 g^{d\ell}\, R_{ijk\ell}. \,</math>


===Examples===
===Examples===
Line 10: Line 19:
:<math> K = \frac{48 G^2 M^2}{c^4 r^6} \,.</math>
:<math> K = \frac{48 G^2 M^2}{c^4 r^6} \,.</math>
where <math>G</math> is the gravitational constant.
where <math>G</math> is the gravitational constant.

For a de Sitter or Anti de Sitter metric
:<math>ds^2 = - \mathrm{d}t^2 + e^{2Ht}\left(\frac{\mathrm{d}r^2}{1-k r^2} + r^2 \mathrm{d}\theta^2 + r^2 \sin^2 \theta \mathrm{d}\phi^2 \right)</math>,
the Kretschmann scalar is
:<math>K=24H^4</math>.


For a general [[Friedmann–Lemaître–Robertson–Walker metric|FRW spacetime]] with metric
For a general [[Friedmann–Lemaître–Robertson–Walker metric|FRW spacetime]] with metric
:<math>ds^2 = - \mathrm{d}t^2 + {a(t)}^2 \left(\frac{\mathrm{d}r^2}{1-k r^2} + r^2 \mathrm{d}\theta^2 + r^2 \sin^2 \theta \mathrm{d}\phi^2 \right)</math>,
:<math>ds^2 = - \mathrm{d}t^2 + {a(t)}^2 \left(\frac{\mathrm{d}r^2}{1-k r^2} + r^2 \, \mathrm{d}\theta^2 + r^2 \sin^2 \theta \, \mathrm{d}\varphi^2 \right),</math>
the Kretschmann scalar is
the Kretschmann scalar is
:<math>K=\frac{12 \left(a(t)^2 a''(t)^2+\left(k+a'(t)^2\right)^2\right)}{a(t)^4}</math>.
:<math>K=\frac{12 \left[a(t)^2 a''(t)^2+\left(k+a'(t)^2 \right)^2\right]}{a(t)^4}.</math>


==Relation to other invariants==
==Relation to other invariants==
Another possible invariant (which has been employed for example in writing the gravitational term of the Lagrangian for some ''higher-order gravity'' theories) is
Another possible invariant (which has been employed for example in writing the gravitational term of the Lagrangian for some ''higher-order gravity'' theories) is
:<math>C_{abcd} \, C^{abcd}</math>
:<math>C_{abcd} \, C^{abcd}</math>
where <math>C_{abcd}</math> is the [[Weyl tensor]], the conformal curvature tensor which is also the completely traceless part of the Riemann tensor. In <math>d</math> dimensions this is related to the Kretschmann invariant by<ref name="CherubiniBini2002">{{cite journal|last1=Cherubini|first1=Christian|last2=Bini|first2=Donato|last3=Capozziello|first3=Salvatore|last4=Ruffini|first4=Remo|title=Second Order Scalar Invariants of the Riemann Tensor: Applications to Black Hole Spacetimes|journal=International Journal of Modern Physics D|volume=11|issue=06|year=2002|pages=827–841|issn=0218-2718|doi=10.1142/S0218271802002037|arxiv=gr-qc/0302095v1|bibcode = 2002IJMPD..11..827C }}</ref>
where <math>C_{abcd}</math> is the [[Weyl tensor]], the conformal curvature tensor which is also the completely traceless part of the Riemann tensor. In <math>d</math> dimensions this is related to the Kretschmann invariant by<ref name="CherubiniBini2002">{{cite journal|last1=Cherubini|first1=Christian|last2=Bini|first2=Donato|last3=Capozziello|first3=Salvatore|last4=Ruffini|first4=Remo|title=Second Order Scalar Invariants of the Riemann Tensor: Applications to Black Hole Spacetimes|journal=International Journal of Modern Physics D|volume=11|issue=6|year=2002|pages=827–841|issn=0218-2718|doi=10.1142/S0218271802002037|arxiv=gr-qc/0302095v1|bibcode = 2002IJMPD..11..827C |s2cid=14587539}}</ref>
:<math>R_{abcd} \, R^{abcd} = C_{abcd} \, C^{abcd} +\frac{4}{d-2} R_{ab}\, R^{ab} - \frac{2}{(d-1)(d-2)}R^2</math>
:<math>R_{abcd} \, R^{abcd} = C_{abcd} \, C^{abcd} +\frac{4}{d-2} R_{ab}\, R^{ab} - \frac{2}{(d-1)(d-2)}R^2</math>
where <math>R^{ab}</math> is the [[Ricci curvature]] tensor and <math>R</math> is the Ricci [[scalar curvature]] (obtained by taking successive traces of the Riemann tensor). The Ricci tensor vanishes in vacuum spacetimes (such as the Schwarzschild solution mentioned above), and hence there the Riemann tensor and the Weyl tensor coincide, as do their invariants.
where <math>R^{ab}</math> is the [[Ricci curvature]] tensor and <math>R</math> is the Ricci [[scalar curvature]] (obtained by taking successive traces of the Riemann tensor). The Ricci tensor vanishes in vacuum spacetimes (such as the Schwarzschild solution mentioned above), and hence there the Riemann tensor and the Weyl tensor coincide, as do their invariants.


===Gauge theory invariants===
The Kretschmann scalar and the ''Chern-Pontryagin scalar''
The Kretschmann scalar and the ''Chern-Pontryagin scalar''
:<math>R_{abcd} \, {{}^\star \! R}^{abcd}</math>
:<math>R_{abcd} \, {{}^\star \! R}^{abcd}</math>
where <math>{{}^\star R}^{abcd}</math> is the ''left dual'' of the Riemann tensor, are mathematically analogous (to some extent, physically analogous) to the familiar invariants of the [[electromagnetic field tensor]]
where <math>{{}^\star R}^{abcd}</math> is the ''left dual'' of the Riemann tensor, are mathematically analogous (to some extent, physically analogous) to the familiar invariants of the [[electromagnetic field tensor]]
:<math>F_{ab} \, F^{ab}, \; \; F_{ab} \, {{}^\star \! F}^{ab}</math>
:<math>F_{ab} \, F^{ab}, \; \; F_{ab} \, {{}^\star \! F}^{ab}.</math>
Generalising from the <math>U(1)</math> gauge theory of electromagnetism to general non-abelian gauge theory, the first of these invariants is
:<math>\text{Tr}(F_{ab} F^{ab})</math>,
an expression proportional to the [[Yang–Mills theory|Yang–Mills Lagrangian]]. Here <math>F_{ab}</math> is the curvature of a [[covariant derivative]], and <math>\text{Tr}</math> is a [[Killing form|trace form]]. The Kretschmann scalar arises from taking the connection to be on the [[frame bundle]].


==See also==
==See also==
*[[Carminati-McLenaghan invariants]], for a set of invariants.
*[[Carminati-McLenaghan invariants]], for a set of invariants
*[[Classification of electromagnetic fields]], for more about the invariants of the electromagnetic field tensor.
*[[Classification of electromagnetic fields]], for more about the invariants of the electromagnetic field tensor
*[[Curvature invariant]], for curvature invariants in Riemannian and pseudo-Riemannian geometry in general.
*[[Curvature invariant]], for curvature invariants in Riemannian and pseudo-Riemannian geometry in general
*[[Curvature invariant (general relativity)]].
*[[Curvature invariant (general relativity)]]
*[[Ricci decomposition]], for more about the Riemann and Weyl tensor.
*[[Ricci decomposition]], for more about the Riemann and Weyl tensor


==References==
==References==
Line 44: Line 52:


==Further reading==
==Further reading==
*{{Citation|last=Grøn|first=Øyvind |authorlink=Øyvind Grøn |last2=Hervik |first2=Sigbjørn |title=Einstein's General Theory of Relativity|location=New York|publisher=Springer|year=2007|isbn=978-0-387-69199-2|ref=harv}}
*{{Citation|last1=Grøn|first1=Øyvind |author-link=Øyvind Grøn |last2=Hervik |first2=Sigbjørn |title=Einstein's General Theory of Relativity|location=New York|publisher=Springer|year=2007|isbn=978-0-387-69199-2}}
*{{Citation|author=B. F. Schutz|authorlink=Bernard F. Schutz|title=A First Course in General Relativity (Second Edition)|publisher=Cambridge University Press| year=2009|isbn=978-0-521-88705-2|ref=harv}}
*{{Citation|author=B. F. Schutz|author-link=Bernard F. Schutz|title=A First Course in General Relativity (Second Edition)|publisher=Cambridge University Press|year=2009|isbn=978-0-521-88705-2|url-access=registration|url=https://archive.org/details/firstcourseingen00bern_0}}
*{{Citation|first=Charles W.|last=Misner|authorlink=Charles W. Misner|first2=Kip. S.|last2=Thorne|author2-link=Kip Thorne|first3=John A.|last3=Wheeler|author3-link=John A. Wheeler|title=[[Gravitation (book)|Gravitation]]|publisher= W. H. Freeman|year=1973|isbn=0-7167-0344-0|ref=harv}}
*{{Citation|first1=Charles W.|last1=Misner|author-link=Charles W. Misner|first2=Kip. S.|last2=Thorne|author2-link=Kip Thorne|first3=John A.|last3=Wheeler|author3-link=John A. Wheeler|title=Gravitation|publisher= W. H. Freeman|year=1973|isbn=978-0-7167-0344-0|title-link=Gravitation (book)}}


{{DEFAULTSORT:Kretschmann Scalar}}
{{DEFAULTSORT:Kretschmann Scalar}}

Latest revision as of 06:31, 22 August 2024

In the theory of Lorentzian manifolds, particularly in the context of applications to general relativity, the Kretschmann scalar is a quadratic scalar invariant. It was introduced by Erich Kretschmann.[1]

Definition

[edit]

The Kretschmann invariant is[1][2]

where is the Riemann curvature tensor and is the Christoffel symbol. Because it is a sum of squares of tensor components, this is a quadratic invariant.

Einstein summation convention with raised and lowered indices is used above and throughout the article. An explicit summation expression is

Examples

[edit]

For a Schwarzschild black hole of mass , the Kretschmann scalar is[1]

where is the gravitational constant.

For a general FRW spacetime with metric

the Kretschmann scalar is

Relation to other invariants

[edit]

Another possible invariant (which has been employed for example in writing the gravitational term of the Lagrangian for some higher-order gravity theories) is

where is the Weyl tensor, the conformal curvature tensor which is also the completely traceless part of the Riemann tensor. In dimensions this is related to the Kretschmann invariant by[3]

where is the Ricci curvature tensor and is the Ricci scalar curvature (obtained by taking successive traces of the Riemann tensor). The Ricci tensor vanishes in vacuum spacetimes (such as the Schwarzschild solution mentioned above), and hence there the Riemann tensor and the Weyl tensor coincide, as do their invariants.

Gauge theory invariants

[edit]

The Kretschmann scalar and the Chern-Pontryagin scalar

where is the left dual of the Riemann tensor, are mathematically analogous (to some extent, physically analogous) to the familiar invariants of the electromagnetic field tensor

Generalising from the gauge theory of electromagnetism to general non-abelian gauge theory, the first of these invariants is

,

an expression proportional to the Yang–Mills Lagrangian. Here is the curvature of a covariant derivative, and is a trace form. The Kretschmann scalar arises from taking the connection to be on the frame bundle.

See also

[edit]

References

[edit]
  1. ^ a b c Richard C. Henry (2000). "Kretschmann Scalar for a Kerr-Newman Black Hole". The Astrophysical Journal. 535 (1). The American Astronomical Society: 350–353. arXiv:astro-ph/9912320v1. Bibcode:2000ApJ...535..350H. doi:10.1086/308819. S2CID 119329546.
  2. ^ Grøn & Hervik 2007, p 219
  3. ^ Cherubini, Christian; Bini, Donato; Capozziello, Salvatore; Ruffini, Remo (2002). "Second Order Scalar Invariants of the Riemann Tensor: Applications to Black Hole Spacetimes". International Journal of Modern Physics D. 11 (6): 827–841. arXiv:gr-qc/0302095v1. Bibcode:2002IJMPD..11..827C. doi:10.1142/S0218271802002037. ISSN 0218-2718. S2CID 14587539.

Further reading

[edit]