Minotaur IV: Difference between revisions
No edit summary |
Fixing Minotaur IV Lite suborbital information. Suborbital launch information is presented as downrange distance, not altitude. I couldn't find an infobox value for downrange distance, so I kept it in the section header like previous versions |
||
(168 intermediate revisions by 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Space launch vehicle}} |
|||
{{Launching/Minotaur|type=rocket}} |
|||
{{Use American English|date=July 2020}} |
|||
{{Use dmy dates|date=July 2020}} |
|||
{{infobox rocket |
{{infobox rocket |
||
|image = Minotaur-4-Lite HTV-2a |
|image = Minotaur-4-Lite HTV-2a 2.jpg |
||
|caption = Launch of the first Minotaur IV Lite |
|caption = Launch of the first Minotaur IV Lite |
||
|name = Minotaur IV |
|||
|name = Minotaur IV |
|||
|function = Expendable launch system |
|||
|function = Expendable launch system |
|||
|manufacturer = [[Orbital Sciences]] |
|||
|manufacturer = {{ubl|[[Northrop Grumman]]|[[Boeing]]|[[Lockheed Martin]]|Denver Aerospace}} |
|||
|country-origin = {{USA}} |
|||
|cpl = $50 million<ref>{{cite web|title=Minotaur rocket poised to send research to new heights|date=November 18, 2010|author=Stephen Clark|publisher=Spaceflight Now |url=http://spaceflightnow.com/minotaur/stps26/101118preview/}}</ref> |
|||
|height = {{convert|23.88|m}} |
|||
| |
|height = {{cvt|23.88|m}} |
||
|diameter = {{cvt|2.34|m}} |
|||
|mass = 86,300 [[Kilogram|kg]] |
|||
|mass = {{cvt|86300|kg}} |
|||
|stages = 4 |
|||
|status = Active |
|||
|stages = 4 |
|||
|sites = [[Vandenberg AFB Space Launch Complex 8|SLC-8]], [[Vandenberg AFB]]<br/>[[Mid-Atlantic Regional Spaceport|LP-0B]], [[Mid-Atlantic Regional Spaceport|MARS]]<br/>[[Kodiak Launch Complex Pad 1|LP-1]], [[Kodiak Launch Complex|Kodiak]] |
|||
|status = Active |
|||
|first=22 April 2010 |
|||
|sites = {{Unbulleted list |
|||
|launches = 1 |
|||
| [[Cape Canaveral Space Force Station|Cape Canaveral]], [[Cape Canaveral Launch Complex 46|SLC-46]] |
|||
|success = 1 |
|||
| [[Pacific Spaceport Complex – Alaska|Kodiak Island]], LP-1 |
|||
|capacities = |
|||
| [[Vandenberg SFB|Vandenberg]], [[Vandenberg Space Launch Complex 8|SLC-8]] |
|||
| [[Mid-Atlantic Regional Spaceport|Wallops Island]], [[Mid-Atlantic Regional Spaceport#LP-0B|LP-0B]] |
|||
}} |
|||
|first = 22 April 2010 |
|||
|last = 15 July 2020 |
|||
|launches = 7 |
|||
|success = 7 |
|||
|capacities = |
|||
{{Infobox Rocket/Payload |
{{Infobox Rocket/Payload |
||
|location |
|location = [[Low Earth orbit|LEO]] |
||
| |
|altitude = {{cvt|200|km}} |
||
|inclination= 28.5° |
|||
|mass = '''IV:''' {{cvt|1591|kg}}<br />'''IV+:''' {{cvt|1837|kg}}<ref name="guide">{{Cite web |url=https://www.northropgrumman.com/wp-content/uploads/Minotaur-IV-VI-User-Guide.pdf |title=Minotaur IV, V, VI User's Guide |date=2020-09-10|access-date=2024-05-14|author=Northrop Grumman|website=northropgrumman.com}}</ref> |
|||
}} |
}} |
||
{{Infobox Rocket/Payload |
|||
|family = [[Minotaur (rocket)|Minotaur]] |
|||
|location = [[Sub-orbital spaceflight|6600km S/O trajectory]] |
|||
|derivatives = [[Minotaur V]] |
|||
|mass = '''IV Lite:''' {{cvt|3000|kg}}<ref name=guide/> |
|||
|stagedata = |
|||
}} |
|||
|family = [[Minotaur (rocket)|Minotaur]] |
|||
|derivatives = [[Minotaur V]] |
|||
|stagedata = |
|||
{{Infobox Rocket/Stage |
{{Infobox Rocket/Stage |
||
|type = |
|type = stage |
||
|stageno = |
|stageno = First |
||
|name = |
|name = [[LGM-118 Peacekeeper|SR-118]] |
||
|thrust = {{cvt|2224|kN}}<ref name=guide/> |
|||
|engines = 1 [[solid rocket|Solid]] |
|||
|SI = {{cvt|229|isp}}<ref name="MinV">{{Cite web |url=https://spaceflight101.com/members/wp-content/uploads/sites/54/2017/02/Minotaur-V.pdf|title=Minotaur V Launch Vehicle|first=Patrick|last=Blau|date=2017-02-02|access-date=2024-05-15|website=spaceflight101.com}}</ref> |
|||
|thrust = {{convert|2200|kN}} |
|||
|burntime = |
|burntime = 56.6 seconds |
||
|fuel = |
|fuel = [[Hydroxyl-terminated polybutadiene|HTPB]] |
||
}} |
}} |
||
{{Infobox Rocket/Stage |
{{Infobox Rocket/Stage |
||
|type = |
|type = stage |
||
|stageno = |
|stageno = Second |
||
|name = |
|name = [[LGM-118 Peacekeeper|SR-119]] |
||
|thrust = {{cvt|1223|kN}}<ref name=guide/> |
|||
|engines = 1 [[solid rocket|Solid]] |
|||
| |
|SI = {{cvt|308|isp}}<ref name=MinV/> |
||
|burntime = |
|burntime = 61 seconds |
||
|fuel = |
|fuel = [[Hydroxyl-terminated polybutadiene|HTPB]] |
||
}} |
}} |
||
{{Infobox Rocket/Stage |
{{Infobox Rocket/Stage |
||
|type = |
|type = stage |
||
|stageno = |
|stageno = Third |
||
|name = |
|name = [[LGM-118 Peacekeeper|SR-120]] |
||
|thrust = {{cvt|289|kN}}<ref name=guide/> |
|||
|engines = 1 [[solid rocket|Solid]] |
|||
| |
|SI = {{cvt|300|isp}}<ref name=MinV/> |
||
|burntime = |
|burntime = 72 seconds |
||
|fuel = |
|fuel = NEPE |
||
}} |
}} |
||
{{Infobox Rocket/Stage |
{{Infobox Rocket/Stage |
||
|type = |
|type = stage |
||
|stageno = |
|stageno = Fourth |
||
|diff = |
|diff = Minotaur IV |
||
|name = |
|name = [[Orion (rocket stage)|Orion 38]] |
||
| |
|thrust = {{cvt|32.2|kN}} |
||
| |
|SI = {{cvt|288|isp}} |
||
|burntime = |
|burntime = 67.7 seconds |
||
|fuel = |
|fuel = [[Hydroxyl-terminated polybutadiene|HTPB]] |
||
}} |
}} |
||
{{Infobox Rocket/Stage |
{{Infobox Rocket/Stage |
||
|type = |
|type = stage |
||
|stageno = |
|stageno = Fourth |
||
|diff = |
|diff = Minotaur IV+ |
||
|name = |
|name = [[Star 48|Star 48BV]] |
||
| |
|thrust = {{cvt|68.6|kN}} |
||
| |
|SI = {{cvt|288|isp}} |
||
|burntime = |
|burntime = 84.1 seconds |
||
|fuel = |
|fuel = [[Hydroxyl-terminated polybutadiene|HTPB]] |
||
}} |
}} |
||
}} |
}} |
||
'''Minotaur IV''', also known as '''Peacekeeper SLV''' and '''OSP-2 PK''' is an active [[expendable launch system]] derived from the [[LGM-118 |
'''Minotaur IV''', also known as '''Peacekeeper SLV''' and '''OSP-2 PK''' is an active [[expendable launch system]] derived from the [[LGM-118 Peacekeeper]] [[Intercontinental ballistic missile|ICBM]]. It is operated by [[Northrop Grumman#Space Systems|Northrop Grumman Space Systems]], and made its maiden flight on 22 April 2010, carrying the [[DARPA Falcon Project#Follow on hypersonic program|HTV-2a]] Hypersonic Test Vehicle.<ref>{{cite press release|title=Orbital Successfully Launches First Minotaur IV Rocket for U.S. Air Force|date=April 27, 2010|publisher=Orbital Sciences Corporation|url=http://www.orbital.com/NewsInfo/release.asp?prid=732}}</ref><ref>{{cite web|url=http://www.af.mil/news/story.asp?id=123200332|title=Air Force Space Officials Prepare To Launch First Minotaur IV|publisher=Air Force News Service|date=April 16, 2010 |archive-url=https://archive.today/20120729045246/http://www.af.mil/news/story.asp?id=123200332|archive-date=July 29, 2012|url-status=dead}}</ref><ref>{{cite news|first=William|last=Graham |url=http://www.nasaspaceflight.com/2010/04/first-minotaur-iv-launch-with-hypersonic-test-vehicle/|title=First Minotaur IV launches with Hypersonic Test Vehicle|publisher=NASAspaceflight.com|date=April 22, 2010}}</ref> The first orbital launch occurred on 26 September 2010 with the [[Space Based Space Surveillance|SBSS]] satellite for the [[United States Air Force]]. |
||
The Minotaur IV vehicle consists of [[Multistage rocket |
The Minotaur IV vehicle consists of [[Multistage rocket|four stages]] and is capable of placing {{convert|1591|kg}} of payload into a [[low Earth orbit]] (LEO).<ref name=guide/><ref name="gunter">{{cite web|url=http://space.skyrocket.de/doc_lau/minotaur-4.htm|title=Minotaur-3/-4/-5 (OSP-2 Peacekeeper SLV)|first=Gunter|last=Krebs|publisher=Gunter's Space Page|access-date=2009-03-04}}</ref> It uses the first three stages of the Peacekeeper missile, combined with a new upper stage. On the baseline version, the fourth stage is an [[Orion (rocket stage)|Orion 38]]. However a higher performance variant, designated '''Minotaur IV+''', uses a [[Star 48|Star 48BV]] instead. A three-stage configuration (no Orion 38), designated the '''Minotaur IV Lite''', is available for [[Sub-orbital spaceflight|suborbital]] trajectories. The Minotaur IV has also been flown with multiple upper stages. A five-stage derivative, the [[Minotaur V]], made its maiden flight on 7 September 2013. |
||
Minotaur IV launches |
Minotaur IV launches are conducted from [[Vandenberg Space Launch Complex 8|SLC-8]] at [[Vandenberg Space Force Base]], [[Mid-Atlantic Regional Spaceport Launch Pad 0|LP-0B]] at the [[Mid-Atlantic Regional Spaceport]], [[Cape Canaveral Launch Complex 46|SLC-46]] at [[Cape Canaveral Space Force Station]] and [[Pacific Spaceport Complex – Alaska]] Pad 1 of the [[Pacific Spaceport Complex – Alaska]] (PSCA). |
||
== |
== Description == |
||
[[File:Minotaur-4-Lite_HTV-2b.jpg|left|thumb|A Minotaur IV Lite rocket at [[Vandenberg Space Launch Complex 8|Vandenberg SLC-8]] prior to the launch of HTV-2b in 2011.]] |
|||
The Minotaur IV (and the overall Minotaur rocket family) was developed by [[Orbital Sciences]] (now owned by [[Northrop Grumman]]) as part of the [[United States Air Force]]'s Orbital Suborbital Program.<ref name=gunter/> There are three variants available: Minotaur IV, IV+, and IV Lite. Minotaur IV and IV+ are used for [[low Earth orbit]] missions, while Minotaur IV Lite is intended for suborbital launches, such as testing prototype hypersonic vehicles. The separate [[Minotaur V]] is also available, consisting of a Minotaur IV+ with an added fifth stage for high-energy trajectories such as [[geostationary transfer orbit]] or [[trans-lunar injection]]. |
|||
The Minotaur IV family is derived from the LGM-118 Peacekeeper [[intercontinental ballistic missile]] (ICBM), deployed from 1985 until 2005. The Minotaur IV family utilizes decommissioned Peacekeeper solid rocket motors, which compose the first three stages in all Minotaur IV rockets and derivatives. This relatively simple architecture allows Minotaur to be launched from essentially anywhere in the US through the use of mobile launch facilities - although this capability has never been needed.<ref name=guide/> Because of its use of decommissioned ICBM components, Minotaur IV can only be used to launch US government missions. |
|||
=== Minotaur IV === |
|||
The standard Minotaur IV rocket is composed of four stages. The first stage SR118 motor provides {{convert|2224|kN}} of thrust during its 56.6-second burn, followed immediately after by stage separation and second-stage ignition. The second stage, powered by an SR119 motor, burns for 61 seconds and provides an average thrust of {{convert|1223|kN}}. The third stage then burns for 72 seconds, with an average thrust of {{convert|289|kN}}. The initial three stages all have [[thrust vector control]], allowing them to steer the rocket downrange by gimballing the motor nozzles. The second and third stages also feature extendable nozzles, allowing for improved performance in the upper portions of Earth's atmosphere as well as the vacuum of space. |
|||
The fourth stage of the Minotaur IV is the Orion 38 motor, which is also used in the [[Minotaur-C]], [[Minotaur I]], [[Pegasus (rocket)|Pegasus]], and [[Ground-Based Interceptor]] rockets. This motor performs the final orbital insertion burn for the payload. Like the first three stages, the Orion 38 also features thrust vectoring, with a 5-degree range of motion.<ref name=guide/> |
|||
On one occasion, for the [[ORS-5]] mission, Minotaur IV was outfitted with a second Orion 38 motor to allow the payload to be inserted into an equatorial orbit. In addition, another Minotaur IV mission featured a [[Hydrazine Auxiliary Propulsion System]] (HAPS) for additional orbital maneuvering capability. The HAPS was developed for the Pegasus rocket to fine-tune the payload's orbit since solid motors are not capable of fine adjustments. |
|||
=== Minotaur IV+ === |
|||
The Minotaur IV+ is a higher-performance variant of the Minotaur IV. The first three stages are identical, but the Orion 38 fourth stage is replaced with a Star 48BV motor. The Star motor features more propellant than the Orion motor, allowing the rocket to carry roughly {{cvt|200|kg}} of extra payload to low-Earth orbit, or can allow for payloads to be sent to elliptical orbits. The Star 48BV burns for 85.2 seconds with an average thrust of {{convert|68.63|kN}} and also features thrust vectoring, which is uncommon for Star 48 motors.<ref name=guide/> The Star 48 motor has also seen use on the [[Atlas V]], [[Delta IV]], and [[Space Shuttle]], alongside over 70 missions on the [[Delta II]]. |
|||
Minotaur IV+ was further evolved to create the [[Minotaur V]] rocket, which adds an extra Star 37FM stage to the vehicle for improved high-energy performance. This configuration has only flown once as of 2024 and is not scheduled for any further launches. In addition, the more powerful [[Minotaur VI]] and [[Minotaur VI#Minotaur VI+|Minotaur VI+]] concepts were based on the Minotaur IV+, featuring an additional SR118 motor as the first stage to improve vehicle performance. However, neither Minotaur VI variant has flown and no flights are scheduled. |
|||
=== Minotaur IV Lite === |
|||
The Minotaur IV Lite is a suborbital configuration of Minotaur IV. It features the same first three stages as the standard variant but lacks a fourth stage. The IV Lite is intended for suborbital missions, allowing government customers to test new technologies like hypersonic aircraft or missile interception. As of May 2024, the Minotaur IV Lite has only flown twice, both times in support of the [[DARPA Falcon Project#Follow on hypersonic program|HTV-2]] program. |
|||
This variant is almost identical to the unflown [[Minotaur III]] rocket, which was also intended to perform suborbital missions. |
|||
== Launch history == |
|||
{| class="wikitable" |
{| class="wikitable" |
||
!Flight No. |
|||
!Date/Time (UTC) |
!Date/Time (UTC) |
||
!Variant |
!Variant |
||
Line 88: | Line 132: | ||
!Outcome |
!Outcome |
||
!Remarks |
!Remarks |
||
|- |
|- |
||
!1 |
|||
|22 April 2010<br/>23:00 |
|22 April 2010<br/>23:00 |
||
|Minotaur IV Lite |
|Minotaur IV Lite |
||
|[[Vandenberg Air Force Base|Vandenberg]], [[Vandenberg Space Launch Complex 8|SLC-8]] |
|||
|Vandenberg SLC-8 |
|||
|[[ |
|[[DARPA Falcon Project#Follow on hypersonic program|HTV-2a]] |
||
|Suborbital |
|Suborbital |
||
|{{Success}} |
|||
|Successful |
|||
|Successful launch, but payload failed |
|||
|Hypersonic Test Vehicle |
|||
|- |
|- |
||
!2 |
|||
| colspan="7" bgcolor="#ffdead" align="center" | '''Scheduled Launches''' |
|||
|{{nowrap|26 September 2010<ref name="MSDB">{{cite web|url=http://msdb.gsfc.nasa.gov/launches.php|title=Launches|last1=Schaub|first1=Michael B.|last2=Schwartz|first2=Patrick C.|work=Mission Set Database |publisher=NASA/Honeywell-TSI|access-date=23 April 2010|url-status=dead|archive-url=https://web.archive.org/web/20090320221234/http://msdb.gsfc.nasa.gov/launches.php|archive-date=20 March 2009}} {{PD-notice}}</ref>}}<br/>04:41 |
|||
|- |
|||
|8 July 2010<ref name="MSDB">{{cite web|url=http://msdb.gsfc.nasa.gov/launches.php|title=Launches|last=Schaub|first=Michael B.|last2=Schwartz|first2=Patrick C.|work=Mission Set Database|publisher=NASA/Honeywell-TSI|accessdate=23 April 2010}}</ref> |
|||
|Minotaur IV |
|Minotaur IV |
||
|[[Vandenberg Air Force Base|Vandenberg]], [[Vandenberg Space Launch Complex 8|SLC-8]] |
|||
|Vandenberg SLC-8 |
|||
|[[SBSS]] |
|[[SBSS]] |
||
| |
|SSO |
||
|{{Success}} |
|||
| |
|||
| |
| |
||
|- |
|- |
||
!3 |
|||
|Fall2010<ref name="MSDB"/> |
|||
|20 November 2010<br/>01:25<ref name="MSDB"/> |
|||
|nowrap|Minotaur IV HAPS |
|nowrap|Minotaur IV HAPS |
||
|Kodiak |
|Kodiak,<br/>LP-1 |
||
|[[ |
| nowrap | [[STPSAT-2]]<br/>[[FASTRAC-A]]<br/>[[FASTRAC-B]]<br/>[[FalconSat-5]]<br/>[[FASTSAT]]<br/>[[O/OREOS]]<br/>[[RAX]]<br/>[[NanoSail-D2]] |
||
|LEO |
|LEO |
||
|{{Success}} |
|||
| |
|||
| |
|[[STP-S26]] launch. Included a [[Hydrazine]] Auxiliary Propulsion System (HAPS) to take the vehicle to a secondary orbit after placing payloads into the primary orbit. |
||
|- |
|- |
||
!4 |
|||
|4th Q 2010 |
|||
|11 August 2011<br/>14:45<ref>{{cite web|url=http://www.space.com/12601-darpa-falcon-hypersonic-aircraft-launch-test-htv-2.html|title=DARPA Readies Hypersonic Aircraft for Mach 20 Launch Test|last=Hope |first=Dan|website=[[Space.com]]|date=10 August 2011 |access-date=10 Aug 2011}}</ref> |
|||
|Minotaur IV Lite |
|||
|[[Vandenberg Air Force Base|Vandenberg]], [[Vandenberg Space Launch Complex 8|SLC-8]] |
|||
|[[DARPA Falcon Project#Follow on hypersonic program|HTV-2b]] |
|||
|Suborbital |
|||
|{{Success}} |
|||
|Successful launch, but payload failed |
|||
|- |
|||
!5 |
|||
|27 September 2011<br/>15:49 |
|||
|Minotaur IV+ |
|Minotaur IV+ |
||
|Kodiak |
|Kodiak,<br/>LP-1 |
||
|[[TacSat-4]] |
|[[TacSat-4]] |
||
|LEO |
|LEO |
||
|{{Success}} |
|||
| |
|||
|First Minotaur IV+ launch |
|First Minotaur IV+ launch |
||
|- |
|- |
||
!6 |
|||
|1st Q 2011 |
|||
|26 August 2017<br/>06:04 |
|||
|Minotaur IV Lite |
|||
|Minotaur IV / Orion 38 |
|||
|Vandenberg SLC-8 |
|||
|[[Cape Canaveral Air Force Station|CCAFS]], [[Cape Canaveral Launch Complex 46|SLC-46]] |
|||
|[[DARPA_Falcon_Project#Follow_on_hypersonic_program|HTV-2b]] |
|||
|[[ORS-5]] |
|||
|Suborbital |
|||
|LEO<ref name=sfn20150709>{{cite web|last1=Clark|first1=Stephen|title=Minotaur rocket selected to launch military satellite in 2017|url=http://spaceflightnow.com/2015/07/09/minotaur-rocket-selected-to-launch-military-satellite-in-2017/|publisher=Spaceflight Now}}</ref> |
|||
|{{Success}} |
|||
|Ran in a 5-stage configuration, using an extra Orion 38 motor to put ORS-5 in to an equatorial orbit. |
|||
|- |
|||
!7 |
|||
|15 July 2020<br/>13:46<ref name="SFN20200703">{{cite web|url=https://spaceflightnow.com/launch-schedule/|title=Launch Schedule|last1=Clark|first1=Stephen|website=Spaceflight Now|access-date=4 July 2020}}</ref> |
|||
|Minotaur IV / Orion 38 |
|||
|[[Mid-Atlantic Regional Spaceport|MARS]],<br/>[[Mid-Atlantic Regional Spaceport Launch Pad 0|LP-0B]] |
|||
|[[List of NRO launches#Launch history|NROL-129]] |
|||
|[[Low Earth orbit|LEO]]<ref name="sfn20150709" /> |
|||
|{{Success}} |
|||
|Carried four payloads (USA-305 to USA-308). First NRO launch on a Minotaur IV and first from Virginia's Space Coast.<ref name="nrol-129-press-kit">{{cite web|title=NROL-129 Launch Press Kit|publisher=NRO |url=https://www.nro.gov/Portals/65/documents/news/Press%20Kit_Launch_NROL-129.pdf|access-date=9 July 2020}} {{PD-notice}}</ref> |
|||
|- |
|||
|} |
|||
=== Planned launches === |
|||
{| class="wikitable" |
|||
!Date/Time (UTC) |
|||
!Variant |
|||
!Launch Site |
|||
!Payload |
|||
!Trajectory |
|||
!Remarks |
|||
|- |
|||
|2024<ref>{{cite web |url=https://nextspaceflight.com/launches/details/4736 |title=Minotaur IV - NROL-174 |access-date=4 April 2024 |work=Next Spaceflight}}</ref> |
|||
|Minotaur IV |
|||
|[[Vandenberg Space Force Base|Vandenberg]], [[Vandenberg Space Launch Complex 8|SLC-8]] |
|||
|[[List of NRO launches#Launch history|NROL-174]] |
|||
|[[Low Earth orbit|LEO]] |
|||
| |
| |
||
|- |
|||
|September 2024<ref>{{cite web |last=Erwin |first=Sandra |url=https://spacenews.com/astra-wins-11-5-million-contract-to-launch-military-experimental-payloads/ |title=Astra wins $11.5 million contract to launch military experimental payloads |date=22 April 2023 |access-date=30 April 2023 |work=SpaceNews.com}}</ref> |
|||
|Minotaur IV |
|||
| |
| |
||
|? |
|||
|[[Low Earth orbit|LEO]] |
|||
|STP-S29A mission |
|||
|- |
|||
|May 2025<ref>{{cite web |url=https://www.ssc.spaceforce.mil/LinkClick.aspx?fileticket=-vdVwK15vfM%3d&portalid=3 |title=Space Systems Command Awards $45.5M Launch Service Order to Northrop Grumman Systems Corporation for Prototype EWS Mission |date=25 May 2023 |access-date=25 May 2023 |work=NASASpaceFlight}}</ref> |
|||
|Minotaur IV |
|||
|[[Vandenberg Space Force Base|Vandenberg]], [[SLC-8]] |
|||
|EWS-I 1 |
|||
|[[Low Earth Orbit|LEO]] |
|||
|USSF-261S-A mission |
|||
|- |
|- |
||
|TBD |
|||
|4th Q 2011 |
|||
|Minotaur IV Lite |
|Minotaur IV Lite |
||
|[[Vandenberg Space Force Base|Vandenberg]], [[Vandenberg Space Launch Complex 8|SLC-8]] |
|||
|Vandenberg SLC-8 |
|||
|[[CSM]] |
|[[Conventional Strike Missile|CSM]] |
||
|Suborbital |
|Suborbital|Suborbital |
||
|- |
|||
|TBD |
|||
|Minotaur IV |
|||
| |
| |
||
|? |
|||
| |
| |
||
[[Low Earth orbit|LEO]] |
|||
|ORS mission |
|||
|- |
|- |
||
|TBD |
|||
|3rd Q 2012 |
|||
|Minotaur IV |
|Minotaur IV |
||
|Vandenberg SLC-8 |
|||
|[[TacSat-5]] |
|||
|LEO |
|||
| |
| |
||
|? |
|||
|Might launch on a [[Minotaur I]] |
|||
| |
| |
||
[[Low Earth orbit|LEO]] |
|||
|ORS mission |
|||
|} |
|} |
||
== |
== STP-S26 == |
||
The third Minotaur IV launch, which was also known as STP-S26, deployed eight payloads. It was the 29th small launch vehicle mission in STP's 49-year history of flying DoD space experiments,<ref name="spacenews">{{cite web|last1=Brinton|first1=Turner|title=Air Force's STP-S26 Mission Loaded with New Technologies|url=http://spacenews.com/air-forces-stp-s26-mission-loaded-new-technologies/ |website=SPACENEWS|access-date=8 December 2016}}</ref> STP-S26 was intended to extend previous standard interface development efforts, implementing a number of capabilities aimed at enabling responsive access to space for small experimental satellites and payloads. STP-S96 launched at 01:25 UTC on 20 November 2019 from the [[Kodiak Launch Complex]]. The launch facility contractor was [[Pacific Spaceport Complex – Alaska|Alaska Aerospace Corporation]] (AAC). The payloads were released in a {{convert|650|km}} orbit, before the HAPS upper stage was demonstrated by deploying two ballast payloads into a {{convert|1200|km}} orbit. |
|||
The primary objective of the STP-S26 launch was to deploy STPSAT-2 (USA-287), whilst demonstrating the ability of the Minotaur IV to carry additional payloads, by deploying [[FASTSAT]], [[FASTRAC]], [[RAX]], [[O/OREOS]] and [[USA-221|FalconSat-5]]. A Hydrazine Auxiliary Propulsion System upper stage was flown aboard the Minotaur to demonstrate its ability to deploy payloads to multiple orbits, however only mass simulators were deployed after the HAPS burn. |
|||
The launch marked the first flight of an STP-SIV (Standard Interface Vehicle) satellite, the first use of the ''Multi Mission Satellite Operations Center Ground System Architecture'' (MMSOC GSA), the first flight of the Minotaur IV's Multi-payload Adapter (MPA), the first use of a HAPS to obtain multiple orbits on a Minotaur IV flight, the first Minotaur launch from [[Pacific Spaceport Complex – Alaska|Kodiak Launch Complex]] (KLC), and the first deployment of CubeSats from a Minotaur IV via Poly-PicoSatellite Orbital Deployers (P-Pods).<ref name="spacenews"/> |
|||
== See also == |
|||
{{Portal|Spaceflight}} |
|||
* [[Comparison of orbital launchers families]] |
|||
* [[Comparison of orbital launch systems]] |
|||
== References == |
|||
{{reflist}} |
{{reflist}} |
||
== External links == |
|||
* [https://web.archive.org/web/20111004150859/http://fastrac.ae.utexas.edu/news/archive.php?news_id=29%2F FASTRAC Ready To Go Into Space] |
|||
* [http://www.akaerospace.com/ Alaskan Aerospace Corp official website] |
|||
{{Expendable launch systems}} |
{{Expendable launch systems}} |
||
{{US launch systems}} |
{{US launch systems}} |
||
{{rocket-stub}} |
|||
[[Category:2009 in spaceflight]] |
[[Category:2009 in spaceflight]] |
||
[[Category:Minotaur |
[[Category:Minotaur (rocket family)]] |
||
[[hu:Minotaur IV]] |
|||
[[sv:Minotaur IV]] |
Latest revision as of 19:53, 2 September 2024
Function | Expendable launch system |
---|---|
Manufacturer |
|
Cost per launch | $50 million[1] |
Size | |
Height | 23.88 m (78.3 ft) |
Diameter | 2.34 m (7 ft 8 in) |
Mass | 86,300 kg (190,300 lb) |
Stages | 4 |
Capacity | |
Payload to LEO | |
Altitude | 200 km (120 mi) |
Orbital inclination | 28.5° |
Mass | IV: 1,591 kg (3,508 lb) IV+: 1,837 kg (4,050 lb)[2] |
Payload to 6600km S/O trajectory | |
Mass | IV Lite: 3,000 kg (6,600 lb)[2] |
Associated rockets | |
Family | Minotaur |
Derivative work | Minotaur V |
Launch history | |
Status | Active |
Launch sites | |
Total launches | 7 |
Success(es) | 7 |
First flight | 22 April 2010 |
Last flight | 15 July 2020 |
First stage – SR-118 | |
Maximum thrust | 2,224 kN (500,000 lbf)[2] |
Specific impulse | 229 s (2.25 km/s)[3] |
Burn time | 56.6 seconds |
Propellant | HTPB |
Second stage – SR-119 | |
Maximum thrust | 1,223 kN (275,000 lbf)[2] |
Specific impulse | 308 s (3.02 km/s)[3] |
Burn time | 61 seconds |
Propellant | HTPB |
Third stage – SR-120 | |
Maximum thrust | 289 kN (65,000 lbf)[2] |
Specific impulse | 300 s (2.9 km/s)[3] |
Burn time | 72 seconds |
Propellant | NEPE |
Fourth stage (Minotaur IV) – Orion 38 | |
Maximum thrust | 32.2 kN (7,200 lbf) |
Specific impulse | 288 s (2.82 km/s) |
Burn time | 67.7 seconds |
Propellant | HTPB |
Fourth stage (Minotaur IV+) – Star 48BV | |
Maximum thrust | 68.6 kN (15,400 lbf) |
Specific impulse | 288 s (2.82 km/s) |
Burn time | 84.1 seconds |
Propellant | HTPB |
Minotaur IV, also known as Peacekeeper SLV and OSP-2 PK is an active expendable launch system derived from the LGM-118 Peacekeeper ICBM. It is operated by Northrop Grumman Space Systems, and made its maiden flight on 22 April 2010, carrying the HTV-2a Hypersonic Test Vehicle.[4][5][6] The first orbital launch occurred on 26 September 2010 with the SBSS satellite for the United States Air Force.
The Minotaur IV vehicle consists of four stages and is capable of placing 1,591 kilograms (3,508 lb) of payload into a low Earth orbit (LEO).[2][7] It uses the first three stages of the Peacekeeper missile, combined with a new upper stage. On the baseline version, the fourth stage is an Orion 38. However a higher performance variant, designated Minotaur IV+, uses a Star 48BV instead. A three-stage configuration (no Orion 38), designated the Minotaur IV Lite, is available for suborbital trajectories. The Minotaur IV has also been flown with multiple upper stages. A five-stage derivative, the Minotaur V, made its maiden flight on 7 September 2013.
Minotaur IV launches are conducted from SLC-8 at Vandenberg Space Force Base, LP-0B at the Mid-Atlantic Regional Spaceport, SLC-46 at Cape Canaveral Space Force Station and Pacific Spaceport Complex – Alaska Pad 1 of the Pacific Spaceport Complex – Alaska (PSCA).
Description
[edit]The Minotaur IV (and the overall Minotaur rocket family) was developed by Orbital Sciences (now owned by Northrop Grumman) as part of the United States Air Force's Orbital Suborbital Program.[7] There are three variants available: Minotaur IV, IV+, and IV Lite. Minotaur IV and IV+ are used for low Earth orbit missions, while Minotaur IV Lite is intended for suborbital launches, such as testing prototype hypersonic vehicles. The separate Minotaur V is also available, consisting of a Minotaur IV+ with an added fifth stage for high-energy trajectories such as geostationary transfer orbit or trans-lunar injection.
The Minotaur IV family is derived from the LGM-118 Peacekeeper intercontinental ballistic missile (ICBM), deployed from 1985 until 2005. The Minotaur IV family utilizes decommissioned Peacekeeper solid rocket motors, which compose the first three stages in all Minotaur IV rockets and derivatives. This relatively simple architecture allows Minotaur to be launched from essentially anywhere in the US through the use of mobile launch facilities - although this capability has never been needed.[2] Because of its use of decommissioned ICBM components, Minotaur IV can only be used to launch US government missions.
Minotaur IV
[edit]The standard Minotaur IV rocket is composed of four stages. The first stage SR118 motor provides 2,224 kilonewtons (500,000 lbf) of thrust during its 56.6-second burn, followed immediately after by stage separation and second-stage ignition. The second stage, powered by an SR119 motor, burns for 61 seconds and provides an average thrust of 1,223 kilonewtons (275,000 lbf). The third stage then burns for 72 seconds, with an average thrust of 289 kilonewtons (65,000 lbf). The initial three stages all have thrust vector control, allowing them to steer the rocket downrange by gimballing the motor nozzles. The second and third stages also feature extendable nozzles, allowing for improved performance in the upper portions of Earth's atmosphere as well as the vacuum of space.
The fourth stage of the Minotaur IV is the Orion 38 motor, which is also used in the Minotaur-C, Minotaur I, Pegasus, and Ground-Based Interceptor rockets. This motor performs the final orbital insertion burn for the payload. Like the first three stages, the Orion 38 also features thrust vectoring, with a 5-degree range of motion.[2]
On one occasion, for the ORS-5 mission, Minotaur IV was outfitted with a second Orion 38 motor to allow the payload to be inserted into an equatorial orbit. In addition, another Minotaur IV mission featured a Hydrazine Auxiliary Propulsion System (HAPS) for additional orbital maneuvering capability. The HAPS was developed for the Pegasus rocket to fine-tune the payload's orbit since solid motors are not capable of fine adjustments.
Minotaur IV+
[edit]The Minotaur IV+ is a higher-performance variant of the Minotaur IV. The first three stages are identical, but the Orion 38 fourth stage is replaced with a Star 48BV motor. The Star motor features more propellant than the Orion motor, allowing the rocket to carry roughly 200 kg (440 lb) of extra payload to low-Earth orbit, or can allow for payloads to be sent to elliptical orbits. The Star 48BV burns for 85.2 seconds with an average thrust of 68.63 kilonewtons (15,430 lbf) and also features thrust vectoring, which is uncommon for Star 48 motors.[2] The Star 48 motor has also seen use on the Atlas V, Delta IV, and Space Shuttle, alongside over 70 missions on the Delta II.
Minotaur IV+ was further evolved to create the Minotaur V rocket, which adds an extra Star 37FM stage to the vehicle for improved high-energy performance. This configuration has only flown once as of 2024 and is not scheduled for any further launches. In addition, the more powerful Minotaur VI and Minotaur VI+ concepts were based on the Minotaur IV+, featuring an additional SR118 motor as the first stage to improve vehicle performance. However, neither Minotaur VI variant has flown and no flights are scheduled.
Minotaur IV Lite
[edit]The Minotaur IV Lite is a suborbital configuration of Minotaur IV. It features the same first three stages as the standard variant but lacks a fourth stage. The IV Lite is intended for suborbital missions, allowing government customers to test new technologies like hypersonic aircraft or missile interception. As of May 2024, the Minotaur IV Lite has only flown twice, both times in support of the HTV-2 program.
This variant is almost identical to the unflown Minotaur III rocket, which was also intended to perform suborbital missions.
Launch history
[edit]Flight No. | Date/Time (UTC) | Variant | Launch Site | Payload | Trajectory | Outcome | Remarks |
---|---|---|---|---|---|---|---|
1 | 22 April 2010 23:00 |
Minotaur IV Lite | Vandenberg, SLC-8 | HTV-2a | Suborbital | Success | Successful launch, but payload failed |
2 | 26 September 2010[8] 04:41 |
Minotaur IV | Vandenberg, SLC-8 | SBSS | SSO | Success | |
3 | 20 November 2010 01:25[8] |
Minotaur IV HAPS | Kodiak, LP-1 |
STPSAT-2 FASTRAC-A FASTRAC-B FalconSat-5 FASTSAT O/OREOS RAX NanoSail-D2 |
LEO | Success | STP-S26 launch. Included a Hydrazine Auxiliary Propulsion System (HAPS) to take the vehicle to a secondary orbit after placing payloads into the primary orbit. |
4 | 11 August 2011 14:45[9] |
Minotaur IV Lite | Vandenberg, SLC-8 | HTV-2b | Suborbital | Success | Successful launch, but payload failed |
5 | 27 September 2011 15:49 |
Minotaur IV+ | Kodiak, LP-1 |
TacSat-4 | LEO | Success | First Minotaur IV+ launch |
6 | 26 August 2017 06:04 |
Minotaur IV / Orion 38 | CCAFS, SLC-46 | ORS-5 | LEO[10] | Success | Ran in a 5-stage configuration, using an extra Orion 38 motor to put ORS-5 in to an equatorial orbit. |
7 | 15 July 2020 13:46[11] |
Minotaur IV / Orion 38 | MARS, LP-0B |
NROL-129 | LEO[10] | Success | Carried four payloads (USA-305 to USA-308). First NRO launch on a Minotaur IV and first from Virginia's Space Coast.[12] |
Planned launches
[edit]Date/Time (UTC) | Variant | Launch Site | Payload | Trajectory | Remarks |
---|---|---|---|---|---|
2024[13] | Minotaur IV | Vandenberg, SLC-8 | NROL-174 | LEO | |
September 2024[14] | Minotaur IV | ? | LEO | STP-S29A mission | |
May 2025[15] | Minotaur IV | Vandenberg, SLC-8 | EWS-I 1 | LEO | USSF-261S-A mission |
TBD | Minotaur IV Lite | Vandenberg, SLC-8 | CSM | Suborbital | |
TBD | Minotaur IV | ? | ORS mission | ||
TBD | Minotaur IV | ? | ORS mission |
STP-S26
[edit]The third Minotaur IV launch, which was also known as STP-S26, deployed eight payloads. It was the 29th small launch vehicle mission in STP's 49-year history of flying DoD space experiments,[16] STP-S26 was intended to extend previous standard interface development efforts, implementing a number of capabilities aimed at enabling responsive access to space for small experimental satellites and payloads. STP-S96 launched at 01:25 UTC on 20 November 2019 from the Kodiak Launch Complex. The launch facility contractor was Alaska Aerospace Corporation (AAC). The payloads were released in a 650 kilometres (400 mi) orbit, before the HAPS upper stage was demonstrated by deploying two ballast payloads into a 1,200 kilometres (750 mi) orbit.
The primary objective of the STP-S26 launch was to deploy STPSAT-2 (USA-287), whilst demonstrating the ability of the Minotaur IV to carry additional payloads, by deploying FASTSAT, FASTRAC, RAX, O/OREOS and FalconSat-5. A Hydrazine Auxiliary Propulsion System upper stage was flown aboard the Minotaur to demonstrate its ability to deploy payloads to multiple orbits, however only mass simulators were deployed after the HAPS burn.
The launch marked the first flight of an STP-SIV (Standard Interface Vehicle) satellite, the first use of the Multi Mission Satellite Operations Center Ground System Architecture (MMSOC GSA), the first flight of the Minotaur IV's Multi-payload Adapter (MPA), the first use of a HAPS to obtain multiple orbits on a Minotaur IV flight, the first Minotaur launch from Kodiak Launch Complex (KLC), and the first deployment of CubeSats from a Minotaur IV via Poly-PicoSatellite Orbital Deployers (P-Pods).[16]
See also
[edit]References
[edit]- ^ Stephen Clark (18 November 2010). "Minotaur rocket poised to send research to new heights". Spaceflight Now.
- ^ a b c d e f g h i Northrop Grumman (10 September 2020). "Minotaur IV, V, VI User's Guide" (PDF). northropgrumman.com. Retrieved 14 May 2024.
- ^ a b c Blau, Patrick (2 February 2017). "Minotaur V Launch Vehicle" (PDF). spaceflight101.com. Retrieved 15 May 2024.
- ^ "Orbital Successfully Launches First Minotaur IV Rocket for U.S. Air Force" (Press release). Orbital Sciences Corporation. 27 April 2010.
- ^ "Air Force Space Officials Prepare To Launch First Minotaur IV". Air Force News Service. 16 April 2010. Archived from the original on 29 July 2012.
- ^ Graham, William (22 April 2010). "First Minotaur IV launches with Hypersonic Test Vehicle". NASAspaceflight.com.
- ^ a b Krebs, Gunter. "Minotaur-3/-4/-5 (OSP-2 Peacekeeper SLV)". Gunter's Space Page. Retrieved 4 March 2009.
- ^ a b Schaub, Michael B.; Schwartz, Patrick C. "Launches". Mission Set Database. NASA/Honeywell-TSI. Archived from the original on 20 March 2009. Retrieved 23 April 2010. This article incorporates text from this source, which is in the public domain.
- ^ Hope, Dan (10 August 2011). "DARPA Readies Hypersonic Aircraft for Mach 20 Launch Test". Space.com. Retrieved 10 August 2011.
- ^ a b Clark, Stephen. "Minotaur rocket selected to launch military satellite in 2017". Spaceflight Now.
- ^ Clark, Stephen. "Launch Schedule". Spaceflight Now. Retrieved 4 July 2020.
- ^ "NROL-129 Launch Press Kit" (PDF). NRO. Retrieved 9 July 2020. This article incorporates text from this source, which is in the public domain.
- ^ "Minotaur IV - NROL-174". Next Spaceflight. Retrieved 4 April 2024.
- ^ Erwin, Sandra (22 April 2023). "Astra wins $11.5 million contract to launch military experimental payloads". SpaceNews.com. Retrieved 30 April 2023.
- ^ "Space Systems Command Awards $45.5M Launch Service Order to Northrop Grumman Systems Corporation for Prototype EWS Mission". NASASpaceFlight. 25 May 2023. Retrieved 25 May 2023.
- ^ a b Brinton, Turner. "Air Force's STP-S26 Mission Loaded with New Technologies". SPACENEWS. Retrieved 8 December 2016.