Jump to content

Baptistina family: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Fixed bodged merge undo.
m clean up, replaced: lanl.arxiv.org → www.arxiv.org (4)
 
(12 intermediate revisions by 5 users not shown)
Line 3: Line 3:
[[File:298Bap-LB1-mag15.jpg|thumb|298 Baptistina (center), one of the largest presumed remnants of the Baptistina family. Here it is shown flanked on either side by two bright stars in the background.]]
[[File:298Bap-LB1-mag15.jpg|thumb|298 Baptistina (center), one of the largest presumed remnants of the Baptistina family. Here it is shown flanked on either side by two bright stars in the background.]]


The '''Baptistina family''' ([[Family identification number|FIN]]: [[FIN tbl#403|403]]) is an [[asteroid family]] of more than 2500 members that was probably produced by the breakup of an [[asteroid]] {{convert|170|km|mi|abbr=on}} across 80 million years ago following an impact with a smaller body. The two largest presumed remnants of the parent asteroid are [[Asteroid belt|main-belt]] asteroids [[298 Baptistina]] and [[1696 Nurmela]]. The Baptistina family is part of the larger [[Flora family|Flora clan]].<ref name="Alvarez-Candal-2006" /><ref name="Nesvorny-2014" /> It was briefly speculated that the [[Chicxulub impactor]] was part of the Baptistina family of asteroids, but this was disproven in 2011 using data from the [[Wide-field Infrared Survey Explorer]] (WISE).
The '''Baptistina family''' ([[Family identification number|FIN]]: [[FIN tbl#403|403]]) is an [[asteroid family]] of more than 2500 members that was probably produced by the breakup of an [[asteroid]] {{convert|170|km|mi|abbr=on}} across 80 million years ago following an impact with a smaller body. The two largest presumed remnants of the parent asteroid are [[Asteroid belt|main-belt]] asteroids '''298 Baptistina''' and [[1696 Nurmela]]. The Baptistina family is part of the larger [[Flora family|Flora clan]].<ref name="Alvarez-Candal-2006" /><ref name="Nesvorny-2014" /> It was briefly speculated that the [[Chicxulub impactor]] was part of the Baptistina family of asteroids, but this was disproven in 2011 using data from the [[Wide-field Infrared Survey Explorer]] (WISE).


The Baptistina family consists of darkly colored asteroids and [[meteoroid]]s in similar orbits. Many mountain-sized fragments from its initial collision would have leaked into the inner solar system through [[orbital resonance]]s with [[Mars]] and [[Jupiter]], causing a prolonged series of asteroid impacts. Previously, this collision was believed to have occurred about 160 million years ago, and many impacts between 100 and 50 million years ago were attributed to it. However, in 2011, data from WISE revised the date of the proposed collision which broke up the parent asteroid to about 80 million years ago.<ref name="Universe Today">{{cite news | first=Tammy | last=Plotner | title=Did Asteroid Baptistina Kill the Dinosaurs? Think other WISE... | url=http://www.universetoday.com/89050/did-asteroid-baptistina-kill-the-dinosaurs-think-other-wise/#more-89050 | work=Universe Today |year=2011| accessdate=2011-09-19}}</ref>
The Baptistina family consists of darkly colored asteroids and [[meteoroid]]s in similar orbits. Baptistina broke up into thousands of fragments about 80 million years ago.<ref name="Universe Today">{{cite news | first=Tammy | last=Plotner | title=Did Asteroid Baptistina Kill the Dinosaurs? Think other WISE... | url=http://www.universetoday.com/89050/did-asteroid-baptistina-kill-the-dinosaurs-think-other-wise/#more-89050 | work=Universe Today |year=2011| accessdate=2011-09-19}}</ref>

==Members==
{{Infobox planet
| minorplanet=yes
| background=#D6D6D6
| name=298 Baptistina
| image=
| image_size =
| caption=
| discoverer=[[Auguste Charlois]]
| discovered=9 September 1890
| mpc_name=(298) Baptistina
| alt_names=A890 RB
| mp_category={{Ubl
| [[Asteroid belt|Main belt]]
| Baptistina family
}}
| epoch=31 July 2019 ([[Julian day|JD]]&nbsp;2457600.5)
| semimajor={{Convert|2.2640|AU|Gm|abbr=on}}
| perihelion={{Convert|2.0475|AU|Gm|abbr=on}}
| aphelion={{Convert|2.4805|AU|Gm|abbr=on|lk=on}}
| eccentricity=0.095630
| period=3.41&nbsp;[[Julian year (astronomy)|yr]] (1244.3&nbsp;[[Julian year (astronomy)|d]])
| inclination=6.2884°
| asc_node=8.2161°
| arg_peri=135.004°
| mean_anomaly=209.69[[Degree (angle)|°]]
| dimensions=13–30&nbsp;km<ref name=reddy2008 /><ref name=majaess2008>Majaess D., Higgins D., Molnar L., Haegert M., Lane D., Turner D., Nielsen I. (2008). [http://www.arxiv.org/abs/0811.0171 ''New Constraints on the Asteroid 298 Baptistina, the Alleged Family Member of the K/T Impactor''] {{Webarchive|url=https://web.archive.org/web/20170614190703/http://www.arxiv.org/abs/0811.0171 |date=14 June 2017 }}, accepted for publication in the JRASC</ref>
| mass=
| density=
| rotation={{Ubl
| {{Convert|16.23|h|d|abbr=on|lk=on}}<ref name="jpldata"/>
| {{Val|16.23|0.02|u=hours}}<ref name=majaess2008/>
}}
| spectral_type=X-type
| abs_magnitude=11.2
| albedo=
| mean_motion={{Deg2DMS|0.28933|sup=ms}}&nbsp;/ day
| orbit_ref=<ref name="jpldata">{{Cite web |url=https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=298;cad=1 |title=298 Baptistina |work=[[JPL Small-Body Database]] |publisher=[[NASA]]/[[Jet Propulsion Laboratory]] |access-date=11 May 2016}}</ref>
| observation_arc=123.99&nbsp;yr (45289&nbsp;d)
| uncertainty=0
}}

298 Baptistina is the namesake asteroid and largest presumed remnant of the Baptistina family. It was discovered on 9 September 1890 by [[Auguste Charlois]] at the [[Nice Observatory]]. The source of its name is unknown.<ref>{{cite book|last=Schmadel|first=Lutz D.|title=Dictionary of Minor Planet Names|url=https://books.google.com/books?id=KWrB1jPCa8AC&pg=PA41|year=2003|publisher=Springer Science & Business Media|isbn=978-3-540-00238-3|page=41}}</ref> It measures about {{convert|13|to|30|km|mi|0}} in diameter. Although it has an orbit similar to the [[Flora family]] asteroids, Baptistina is an unrelated interloper.<ref>M. Florczak et al. ''A Visible Spectroscopic Survey of the Flora Clan'', Icarus Vol. 133, p. 233 (1998)</ref>{{verify source|date=October 2022}}

Other members of the Baptistina family include [[1696 Nurmela]], [[2858 Carlosporter]], and [[List of minor planets: 7001–8000#7255|(7255) 1993 VY1]].<ref name=Alvarez-Candal-2006 />

[[File:Орбита астероидов 298.png|thumb|center|Orbit of 298 Baptistina]]


==Composition==
==Composition==
Line 12: Line 60:
Following the impact of the [[Chelyabinsk meteor]] in 2013, a paper published in the journal ''[[Icarus (journal)|Icarus]]'' showed that shock produced during impact of a large asteroid can darken otherwise bright silicate material. Spectral analysis of the darkly-colored portions of the non-carbonaceous [[Chelyabinsk meteorite]] closely matched the color of members of the Baptistina family, showing that a low albedo does not necessarily indicate the composition of the family.<ref>{{cite web|url=https://phys.org/news/2014-07-russian-meteorite-dinosaur-extinction-mystery.html|work=[[phys.org]]|title=Russian meteorite sheds light on dinosaur extinction mystery|date=2014-07-17}}</ref>
Following the impact of the [[Chelyabinsk meteor]] in 2013, a paper published in the journal ''[[Icarus (journal)|Icarus]]'' showed that shock produced during impact of a large asteroid can darken otherwise bright silicate material. Spectral analysis of the darkly-colored portions of the non-carbonaceous [[Chelyabinsk meteorite]] closely matched the color of members of the Baptistina family, showing that a low albedo does not necessarily indicate the composition of the family.<ref>{{cite web|url=https://phys.org/news/2014-07-russian-meteorite-dinosaur-extinction-mystery.html|work=[[phys.org]]|title=Russian meteorite sheds light on dinosaur extinction mystery|date=2014-07-17}}</ref>


== Suspected impacts ==
== Formerly proposed impacts ==
In 2007, it was proposed that [[chromium]] concentrations in 66-million-year-old sediment layers at the [[Cretaceous–Paleogene boundary]] (K–T boundary) on Earth suggested that the [[impact event|impactor]] that gouged out [[Chicxulub Crater]] and caused the [[Cretaceous–Paleogene extinction event]] belonged to the Baptistina family.<ref>{{cite journal| last=Bottke|first= WF|author2=Vokrouhlický D.|author3=Nesvorný D.|year=2007|title=An asteroid breakup 160 Myr ago as the probable source of the K/T impactor|journal=Nature| volume= 449|pages=48–53|doi=10.1038/nature06070| pmid=17805288| issue=7158|bibcode = 2007Natur.449...48B |s2cid= 4322622}}</ref><ref name=SaT>{{cite web| url=http://www.skyandtelescope.com/news/home/9588922.html| archive-url=https://archive.today/20070927203501/http://www.skyandtelescope.com/news/home/9588922.html| url-status=dead| archive-date=27 September 2007| title=Asteroids Smash, Dinosaurs Duck| author=Govert Schilling| author-link=Sky & Telescope| accessdate=5 September 2007}}</ref> Concerns were raised regarding the reputed link, in part because very few solid observational constraints existed of the asteroid or family.<ref name=majaess2008>Majaess D., Higgins D., Molnar L., Haegert M., Lane D., Turner D., Nielsen I. (2008). [http://lanl.arxiv.org/abs/0811.0171 ''New Constraints on the Asteroid 298 Baptistina, the Alleged Family Member of the K/T Impactor''] {{Webarchive|url=https://web.archive.org/web/20170614190703/http://lanl.arxiv.org/abs/0811.0171 |date=14 June 2017 }}, accepted for publication in the JRASC</ref> One year later, it was discovered that 298 Baptistina does not share the same chemical signature as the source of the [[Cretaceous–Paleogene boundary]].<ref name=reddy2008>Reddy V., et al. (2008). [http://www.lpi.usra.edu/meetings/acm2008/pdf/8243.pdf ''Composition of 298 Baptistina: Implications for K–T Impactor Link''], Asteroids, Comets, Meteors conference.</ref> Because of the timeframe, it had also been suggested that the impactor that produced the lunar crater [[Tycho (crater)|Tycho]] 108 million years ago was also a member of the group,<ref>{{cite web|url=https://phys.org/news/2007-09-breakup-event-main-asteroid-belt.html|work=[[phys.org]]|title=Breakup event in the main asteroid belt likely caused dinosaur extinction 65 million years ago|date=2007-09-05}}</ref> as well as the [[Venusian crater]]s [[Mead (crater)|Mead]], [[Isabella (crater)|Isabella]], [[Meitner (Venusian crater)|Meitner]], and Klenova.<ref name=SaT />
In 2007, it was proposed that [[chromium]] concentrations in 66-million-year-old sediment layers at the [[Cretaceous–Paleogene boundary]] (K–T boundary) on Earth suggested that the [[impact event|impactor]] that gouged out [[Chicxulub Crater]] and caused the [[Cretaceous–Paleogene extinction event]] belonged to the Baptistina family.<ref>{{cite journal| last=Bottke|first= WF|author2=Vokrouhlický D.|author3=Nesvorný D.|year=2007|title=An asteroid breakup 160 Myr ago as the probable source of the K/T impactor|journal=Nature| volume= 449|pages=48–53|doi=10.1038/nature06070| pmid=17805288| issue=7158|bibcode = 2007Natur.449...48B |s2cid= 4322622}}</ref><ref name=SaT>{{cite web| url=http://www.skyandtelescope.com/news/home/9588922.html| archive-url=https://archive.today/20070927203501/http://www.skyandtelescope.com/news/home/9588922.html| url-status=dead| archive-date=27 September 2007| title=Asteroids Smash, Dinosaurs Duck| author=Govert Schilling| author-link=Sky & Telescope| accessdate=5 September 2007}}</ref> Concerns were raised regarding the reputed link, in part because very few solid observational constraints existed of the asteroid or family.<ref name=majaess2008>Majaess D., Higgins D., Molnar L., Haegert M., Lane D., Turner D., Nielsen I. (2008). [http://www.arxiv.org/abs/0811.0171 ''New Constraints on the Asteroid 298 Baptistina, the Alleged Family Member of the K/T Impactor''] {{Webarchive|url=https://web.archive.org/web/20170614190703/http://www.arxiv.org/abs/0811.0171 |date=14 June 2017 }}, accepted for publication in the JRASC</ref> One year later, it was discovered that 298 Baptistina does not share the same chemical signature as the source of the [[Cretaceous–Paleogene boundary]].<ref name=reddy2008>Reddy V., et al. (2008). [http://www.lpi.usra.edu/meetings/acm2008/pdf/8243.pdf ''Composition of 298 Baptistina: Implications for K–T Impactor Link''], Asteroids, Comets, Meteors conference.</ref> Because of the timeframe, it had also been suggested that the impactor that produced the lunar crater [[Tycho (crater)|Tycho]] 108 million years ago was also a member of the group,<ref>{{cite web|url=https://phys.org/news/2007-09-breakup-event-main-asteroid-belt.html|work=[[phys.org]]|title=Breakup event in the main asteroid belt likely caused dinosaur extinction 65 million years ago|date=2007-09-05}}</ref> as well as the [[Venusian crater]]s [[Mead (crater)|Mead]], [[Isabella (crater)|Isabella]], [[Meitner (Venusian crater)|Meitner]], and Klenova.<ref name=SaT />


In 2011, data from the [[Wide-field Infrared Survey Explorer]] (WISE) revised the date of the proposed collision which broke up the Baptistina parent asteroid to about 80 million years ago. If correct, this data means it is very unlikely that the [[Chicxulub crater|K–T impactor]] was part of this family of asteroids, as it typically takes many tens of millions of years for an asteroid to reach a resonance with Earth and then collide, much more than the 15 million between this breakup and the collision of the K–T impactor.<ref name="Universe Today" /> "As a result of the WISE science team's investigation, the demise of the dinosaurs remains in the cold case files," said Lindley Johnson, program executive for the [[Near Earth Object]] Observation Program.<ref name="News.Com.Au / Fox">{{cite news | title=Asteroid didn't do it – so who killed the dinosaurs? NASA rules out Baptistina theory | url=http://www.news.com.au/technology/sci-tech/asteroid-didnt-do-it-so-who-killed-the-dinosaurs-nasa-rules-out-baptistina-theory/story-fn5fsgyc-1226141757315#ixzz1YT5BCVOm | work=News.com.au / Fox | year= 2011 | accessdate=2012-02-29}}</ref>
In 2011, data from the [[Wide-field Infrared Survey Explorer]] (WISE) revised the date of the proposed collision which broke up the Baptistina parent asteroid to about 80 million years ago. If correct, this data means it is very unlikely that the [[Chicxulub crater|K–T impactor]] was part of this family of asteroids, as it typically takes many tens of millions of years for an asteroid to reach a resonance with Earth and then collide, much more than the 15 million between this breakup and the collision of the K–T impactor.<ref name="Universe Today" /> "As a result of the WISE science team's investigation, the demise of the dinosaurs remains in the cold case files," said Lindley Johnson, program executive for the [[Near Earth Object]] Observation Program.<ref name="News.Com.Au / Fox">{{cite news | title=Asteroid didn't do it – so who killed the dinosaurs? NASA rules out Baptistina theory | url=http://www.news.com.au/technology/sci-tech/asteroid-didnt-do-it-so-who-killed-the-dinosaurs-nasa-rules-out-baptistina-theory/story-fn5fsgyc-1226141757315#ixzz1YT5BCVOm | work=News.com.au / Fox | year= 2011 | accessdate=2012-02-29}}</ref>
Line 25: Line 73:
|first3 = V. |last3 = Carruba
|first3 = V. |last3 = Carruba
|date = December 2014
|date = December 2014
|title = Identification and Dynamical Properties of Asteroid Families
|chapter = Identification and Dynamical Properties of Asteroid Families
|journal = Asteroids IV
|title = Asteroids IV
|page = 23
|page = 23
|bibcode = 2015aste.book..297N
|bibcode = 2015aste.book..297N
Line 55: Line 103:


== External links ==
== External links ==
* {{cite journal|url=http://astro.mff.cuni.cz/davok/papers/BAF_2007_Supp_Mat.pdf|journal=[[Nature (journal)|Nature]]|title=An Asteroid Breakup 160 My Ago as the Probable Source of the K–T Impactor|last1=Bottke|first1=W. F.|last2=Vokrouhlický|first2=D|last3=Nesvorný|first3=D.|date=2007-07-06|volume=449|issue=7158|pages=48–53|doi=10.1038/nature06070|pmid=17805288|bibcode=2007Natur.449...48B|s2cid=4322622}}
* {{cite journal|url=http://astro.mff.cuni.cz/davok/papers/BAF_2007_Supp_Mat.pdf|journal=[[Nature (journal)|Nature]]|title=An Asteroid Breakup 160 My Ago as the Probable Source of the K–T Impactor|last1=Bottke|first1=W. F.|last2=Vokrouhlický|first2=D|last3=Nesvorný|first3=D.|date=2007-07-06|volume=449|issue=7158|pages=48–53|doi=10.1038/nature06070|pmid=17805288|bibcode=2007Natur.449...48B|s2cid=4322622}}
* {{JPL small body|name=298 Baptistina}}


[[Category:Asteroid groups and families]]
[[Category:Asteroid groups and families]]

Latest revision as of 15:03, 5 September 2024

298 Baptistina (center), one of the largest presumed remnants of the Baptistina family. Here it is shown flanked on either side by two bright stars in the background.

The Baptistina family (FIN: 403) is an asteroid family of more than 2500 members that was probably produced by the breakup of an asteroid 170 km (110 mi) across 80 million years ago following an impact with a smaller body. The two largest presumed remnants of the parent asteroid are main-belt asteroids 298 Baptistina and 1696 Nurmela. The Baptistina family is part of the larger Flora clan.[1][2] It was briefly speculated that the Chicxulub impactor was part of the Baptistina family of asteroids, but this was disproven in 2011 using data from the Wide-field Infrared Survey Explorer (WISE).

The Baptistina family consists of darkly colored asteroids and meteoroids in similar orbits. Baptistina broke up into thousands of fragments about 80 million years ago.[3]

Members

[edit]
298 Baptistina
Discovery
Discovered byAuguste Charlois
Discovery date9 September 1890
Designations
(298) Baptistina
A890 RB
Orbital characteristics[4]
Epoch 31 July 2019 (JD 2457600.5)
Uncertainty parameter 0
Observation arc123.99 yr (45289 d)
Aphelion2.4805 AU (371.08 Gm)
Perihelion2.0475 AU (306.30 Gm)
2.2640 AU (338.69 Gm)
Eccentricity0.095630
3.41 yr (1244.3 d)
209.69°
0° 17m 21.588s / day
Inclination6.2884°
8.2161°
135.004°
Physical characteristics
Dimensions13–30 km[5][6]
X-type
11.2

298 Baptistina is the namesake asteroid and largest presumed remnant of the Baptistina family. It was discovered on 9 September 1890 by Auguste Charlois at the Nice Observatory. The source of its name is unknown.[7] It measures about 13 to 30 kilometres (8 to 19 mi) in diameter. Although it has an orbit similar to the Flora family asteroids, Baptistina is an unrelated interloper.[8][verification needed]

Other members of the Baptistina family include 1696 Nurmela, 2858 Carlosporter, and (7255) 1993 VY1.[1]

Orbit of 298 Baptistina

Composition

[edit]

It was originally thought that the Baptistina family may consist of uncommon carbonaceous chondrite. In 2006, nine asteroids within the Baptistina family were given known classifications: three are S-type asteroids, two are X-type asteroids, another two are A/R-type asteroids, one is C-type and one is V-type. However, any conclusions taken from this were highly speculative, as very few members in the family were classified, and not even the albedo of the meteors was known at the time.[1]

Following the impact of the Chelyabinsk meteor in 2013, a paper published in the journal Icarus showed that shock produced during impact of a large asteroid can darken otherwise bright silicate material. Spectral analysis of the darkly-colored portions of the non-carbonaceous Chelyabinsk meteorite closely matched the color of members of the Baptistina family, showing that a low albedo does not necessarily indicate the composition of the family.[9]

Formerly proposed impacts

[edit]

In 2007, it was proposed that chromium concentrations in 66-million-year-old sediment layers at the Cretaceous–Paleogene boundary (K–T boundary) on Earth suggested that the impactor that gouged out Chicxulub Crater and caused the Cretaceous–Paleogene extinction event belonged to the Baptistina family.[10][11] Concerns were raised regarding the reputed link, in part because very few solid observational constraints existed of the asteroid or family.[6] One year later, it was discovered that 298 Baptistina does not share the same chemical signature as the source of the Cretaceous–Paleogene boundary.[5] Because of the timeframe, it had also been suggested that the impactor that produced the lunar crater Tycho 108 million years ago was also a member of the group,[12] as well as the Venusian craters Mead, Isabella, Meitner, and Klenova.[11]

In 2011, data from the Wide-field Infrared Survey Explorer (WISE) revised the date of the proposed collision which broke up the Baptistina parent asteroid to about 80 million years ago. If correct, this data means it is very unlikely that the K–T impactor was part of this family of asteroids, as it typically takes many tens of millions of years for an asteroid to reach a resonance with Earth and then collide, much more than the 15 million between this breakup and the collision of the K–T impactor.[3] "As a result of the WISE science team's investigation, the demise of the dinosaurs remains in the cold case files," said Lindley Johnson, program executive for the Near Earth Object Observation Program.[13]

References

[edit]
  1. ^ a b c Alvarez-Candal, A.; Duffard, R.; Lazzaro, D.; Michtchenko, T. (December 2006). "The inner region of the asteroid Main Belt: a spectroscopic and dynamic analysis" (PDF). Astronomy & Astrophysics. 459 (3): 969–976. Bibcode:2006A&A...459..969A. doi:10.1051/0004-6361:20065518. Retrieved 21 April 2018.
  2. ^ Nesvorný, D.; Broz, M.; Carruba, V. (December 2014). "Identification and Dynamical Properties of Asteroid Families". Asteroids IV. p. 23. arXiv:1502.01628. Bibcode:2015aste.book..297N. doi:10.2458/azu_uapress_9780816532131-ch016. ISBN 9780816532131. S2CID 119280014.
  3. ^ a b Plotner, Tammy (2011). "Did Asteroid Baptistina Kill the Dinosaurs? Think other WISE..." Universe Today. Retrieved 19 September 2011.
  4. ^ a b "298 Baptistina". JPL Small-Body Database. NASA/Jet Propulsion Laboratory. Retrieved 11 May 2016.
  5. ^ a b Reddy V., et al. (2008). Composition of 298 Baptistina: Implications for K–T Impactor Link, Asteroids, Comets, Meteors conference.
  6. ^ a b c Majaess D., Higgins D., Molnar L., Haegert M., Lane D., Turner D., Nielsen I. (2008). New Constraints on the Asteroid 298 Baptistina, the Alleged Family Member of the K/T Impactor Archived 14 June 2017 at the Wayback Machine, accepted for publication in the JRASC
  7. ^ Schmadel, Lutz D. (2003). Dictionary of Minor Planet Names. Springer Science & Business Media. p. 41. ISBN 978-3-540-00238-3.
  8. ^ M. Florczak et al. A Visible Spectroscopic Survey of the Flora Clan, Icarus Vol. 133, p. 233 (1998)
  9. ^ "Russian meteorite sheds light on dinosaur extinction mystery". phys.org. 17 July 2014.
  10. ^ Bottke, WF; Vokrouhlický D.; Nesvorný D. (2007). "An asteroid breakup 160 Myr ago as the probable source of the K/T impactor". Nature. 449 (7158): 48–53. Bibcode:2007Natur.449...48B. doi:10.1038/nature06070. PMID 17805288. S2CID 4322622.
  11. ^ a b Govert Schilling. "Asteroids Smash, Dinosaurs Duck". Archived from the original on 27 September 2007. Retrieved 5 September 2007.
  12. ^ "Breakup event in the main asteroid belt likely caused dinosaur extinction 65 million years ago". phys.org. 5 September 2007.
  13. ^ "Asteroid didn't do it – so who killed the dinosaurs? NASA rules out Baptistina theory". News.com.au / Fox. 2011. Retrieved 29 February 2012.
[edit]