Jump to content

Time-translation symmetry: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Overview: Changed tau to delta t in the symmetry chart, so as to make it more symmetric.
Changing short description from "mathematical transformation in physics" to "Mathematical transformation in physics"
 
(29 intermediate revisions by 22 users not shown)
Line 1: Line 1:
{{Short description|Mathematical transformation in physics}}
{{about|time translation symmetry (TTS)|time reversal symmetry|T-symmetry}}
{{About|time-translation symmetry (TTS)|time reversal symmetry|T-symmetry}}
{{Time sidebar |science}}
{{Time sidebar |science}}
'''Time translation symmetry''' or '''temporal translation symmetry''' ('''TTS''') is a [[mathematical transformation]] in [[physics]] that moves the times of events through a common interval. Time translation symmetry is the hypothesis that the [[laws of physics]] are unchanged, (i.e. invariant) under such a transformation. Time translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time translation symmetry is closely connected via the [[Noether theorem]], to [[conservation of energy]].<ref name=Wilczek>{{cite book|last1=Wilczek|first1=Frank|title=A Beautiful Question: Finding Nature's Deep Design|url=https://books.google.com/books?id=Oh3ICAAAQBAJ&printsec=frontcover#v=onepage&q&f=false|date=16 July 2015|publisher=Penguin Books Limited|isbn=978-1-84614-702-9|chapter=3}}</ref> In mathematics, the set of all time translations on a given system form a [[Lie group]].
'''Time-translation symmetry''' or '''temporal translation symmetry''' ('''TTS''') is a [[mathematical transformation]] in [[physics]] that moves the times of events through a common interval. Time-translation symmetry is the law that the [[laws of physics]] are unchanged (i.e. invariant) under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via [[Noether's theorem]], to [[conservation of energy]].<ref name=Wilczek>{{cite book|last1=Wilczek|first1=Frank|title=A Beautiful Question: Finding Nature's Deep Design|url=https://books.google.com/books?id=Oh3ICAAAQBAJ|date=16 July 2015|publisher=Penguin Books Limited|isbn=978-1-84614-702-9|chapter=3}}</ref> In mathematics, the set of all time translations on a given system form a [[Lie group]].


There are many symmetries in nature besides time translation, such as [[Translational symmetry|spacial translation]] or [[rotational symmetries]]. These symmetries can be broken and explain diverse phenomena such as [[crystals]], [[superconductivity]], and the [[Higgs mechanism]].<ref>{{cite web|last1=Richerme|first1=Phil|title=Viewpoint: How to Create a Time Crystal|url=http://physics.aps.org/articles/v10/5|website=physics.aps.org|publisher=APS Physics|archiveurl=https://archive.is/eXKGV|archivedate=2 Feb 2017|date=18 January 2017 }}</ref> However, it was thought until very recently that time translation symmetry could not be broken.<ref>{{cite journal|last1=Else|first1=Dominic V.|last2=Bauer|first2=Bela|last3=Nayak|first3=Chetan|title=Floquet Time Crystals|journal=Physical Review Letters|volume=117|issue=9|year=2016|issn=0031-9007|doi=10.1103/PhysRevLett.117.090402|arxiv=1603.08001v4|bibcode=2016PhRvL.117i0402E|url=https://arxiv.org/pdf/1603.08001v4.pdf|pmid=27610834|page=090402}}</ref> [[Time crystals]], a state of matter first observed in 2017, break time translation symmetry.<ref name=Gibney/>
There are many symmetries in nature besides time translation, such as [[translational symmetry|spatial translation]] or [[rotational symmetries]]. These symmetries can be broken and explain diverse phenomena such as [[crystals]], [[superconductivity]], and the [[Higgs mechanism]].<ref>{{cite journal|last1=Richerme|first1=Phil|title=Viewpoint: How to Create a Time Crystal|url=http://physics.aps.org/articles/v10/5|journal=Physics|publisher=APS Physics|archive-url=https://archive.today/20170202115727/http://physics.aps.org/articles/v10/5|archive-date=2 February 2017|date=18 January 2017 |volume=10|page=5 |doi=10.1103/Physics.10.5|bibcode=2017PhyOJ..10....5R |doi-access=free}}</ref> However, it was thought until very recently that time-translation symmetry could not be broken.<ref>{{cite journal|last1=Else|first1=Dominic V.|last2=Bauer|first2=Bela|last3=Nayak|first3=Chetan|title=Floquet Time Crystals|journal=Physical Review Letters|volume=117|issue=9|year=2016|issn=0031-9007|doi=10.1103/PhysRevLett.117.090402|arxiv=1603.08001|bibcode=2016PhRvL.117i0402E|pmid=27610834|page=090402|s2cid=1652633}}</ref> [[Time crystals]], a state of matter first observed in 2017, break time-translation symmetry.<ref name=Gibney/>


==Overview==
==Overview==
{{Lie groups}}
{{Lie groups}}
[[Symmetry (physics)|Symmetries]] are of prime importance in physics and are closely related to the hypothesis that certain physical quantities are only relative and [[unobservable]].<ref name=feng>{{cite book|last1=Feng|first1=Duan|last2=Jin|first2=Guojun|title=Introduction to Condensed Matter Physics|url=https://books.google.com/books?id=-iuYN5arHwoC&printsec=frontcover#v=onepage&q&f=false|year=2005|publisher=[[World Scientific]]|location=singapore|isbn=978-981-238-711-0|page=18}}</ref> Symmetries apply to the equations that govern the physical laws (e.g. to a [[Hamiltonian mechanics|Hamiltonian]] or [[Lagrangian mechanics|Lagrangian]]) rather than the initial conditions, values or magnitudes of the equations themselves and state that the laws remain unchanged under a transformation.<ref name=Wilczek/> If a symmetry is preserved under a transformation it is said to be ''invariant''. Symmetries in nature lead directly to conservation laws, something which is precisely formulated by the [[Noether theorem]].<ref name=Cao>{{cite book|last1=Cao|first1=Tian Yu|title=Conceptual Foundations of Quantum Field Theory|url=https://books.google.com/books?id=d0wS0EJHZ3MC&printsec=frontcover#v=onepage&q&f=falseC|date=25 March 2004|publisher=[[Cambridge University Press]]|isbn=978-0-521-60272-3|location=Cambridge}}</ref>
[[Symmetry (physics)|Symmetries]] are of prime importance in physics and are closely related to the hypothesis that certain physical quantities are only relative and [[unobservable]].<ref name=feng>{{cite book|last1=Feng|first1=Duan|last2=Jin|first2=Guojun|title=Introduction to Condensed Matter Physics|url=https://books.google.com/books?id=-iuYN5arHwoC|year=2005|publisher=[[World Scientific]]|location=Singapore|isbn=978-981-238-711-0|page=18}}</ref> Symmetries apply to the equations that govern the physical laws (e.g. to a [[Hamiltonian mechanics|Hamiltonian]] or [[Lagrangian mechanics|Lagrangian]]) rather than the initial conditions, values or magnitudes of the equations themselves and state that the laws remain unchanged under a transformation.<ref name=Wilczek/> If a symmetry is preserved under a transformation it is said to be ''invariant''. Symmetries in nature lead directly to conservation laws, something which is precisely formulated by [[Noether's theorem]].<ref name=Cao>{{cite book|last1=Cao|first1=Tian Yu|title=Conceptual Foundations of Quantum Field Theory|url=https://books.google.com/books?id=d0wS0EJHZ3MC|date=25 March 2004|publisher=[[Cambridge University Press]]|isbn=978-0-521-60272-3|location=Cambridge}}</ref>
{| class="wikitable" style="text-align: center;
{| class="wikitable" style="text-align: center;
|+ [[Symmetry (physics)|Symmetries in physics]]<ref name=feng/>
|+ [[Symmetry (physics)|Symmetries in physics]]<ref name=feng/>
Line 22: Line 23:
|-
|-
! [[Rotational symmetry|Rotation]]
! [[Rotational symmetry|Rotation]]
|| <math>\mathbf{r} \rightarrow \mathbf{r}'</math> || absolute direction in space || [[Conservation of angular momentum|angular momentum]]
|| <math>\mathbf{r} \rightarrow \mathbf{r}'</math> || absolute direction in space || [[Conservation of angular momentum|angular momentum]]
|-
|-
! [[Parity (physics)|Space inversion]]
! [[Parity (physics)|Space inversion]]
|| <math>\mathbf{r} \rightarrow - \mathbf{r}</math> || absolute left or right || [[Conservation of parity|parity]]
|| <math>\mathbf{r} \rightarrow - \mathbf{r}</math> || absolute left or right || [[Conservation of parity|parity]]
|-
|-
! [[T-symmetry|Time-reversal]]
! [[T-symmetry|Time-reversal]]
Line 41: Line 42:


===Newtonian mechanics===
===Newtonian mechanics===
To formally describe time-translation symmetry we say the equations, or laws, that describe a system at times <math>t</math> and <math> t + \tau</math> are the same for any value of <math>t</math> and <math>\tau</math>.

To formally describe time translation symmetry we say the equations, or laws, that describe a system at times <math>t</math> and <math> t + \tau</math> are the same for any value of <math>t</math> and <math>\tau</math>.


For example, considering Newton's equation:
For example, considering Newton's equation:
Line 52: Line 52:
: <math>\frac{1}{2}m\dot{x}(t)^2 + V(x(t))</math>
: <math>\frac{1}{2}m\dot{x}(t)^2 + V(x(t))</math>


does not depend on the variable <math>t</math>. Of course, this quantity describes the total energy whose conservation is due to the time translation invariance of the equation of motion. By studying the composition of symmetry transformations, e.g. of geometric objects, one reaches the conclusion that they form a group and, more specifically, a [[Lie algebra|Lie transformation group]] if one considers continuous, finite symmetry transformations. Different symmetries form different groups with different geometries. Time independent Hamiltonian systems form a group of time translations that is described by the non-compact, [[Abelian group|abelian]], [[Lie group]] <math>\mathbb R</math>. TTS is therefore a dynamical or Hamiltonian dependent symmetry rather than a kinematical symmetry which would be the same for the entire set of Hamiltonians at issue. Other examples can be seen in the study of [[time evolution]] equations of classical and quantum physics.
does not depend on the variable <math>t</math>. Of course, this quantity describes the total energy whose conservation is due to the time-translation invariance of the equation of motion. By studying the composition of symmetry transformations, e.g. of geometric objects, one reaches the conclusion that they form a group and, more specifically, a [[Lie algebra|Lie transformation group]] if one considers continuous, finite symmetry transformations. Different symmetries form different groups with different geometries. Time independent Hamiltonian systems form a group of time translations that is described by the non-compact, [[Abelian group|abelian]], [[Lie group]] <math>\mathbb R</math>. TTS is therefore a dynamical or Hamiltonian dependent symmetry rather than a kinematical symmetry which would be the same for the entire set of Hamiltonians at issue. Other examples can be seen in the study of [[time evolution]] equations of classical and quantum physics.


Many [[differential equations]] describing time evolution equations are expressions of invariants associated to some [[Lie group]] and the theory of these groups provides a unifying viewpoint for the study of all special functions and all their properties. In fact, [[Sophus Lie]] invented the theory of Lie groups when studying the symmetries of differential equations. The integration of a (partial) differential equation by the method of separation of variables or by Lie algebraic methods is intimately connected with the existence of symmetries. For example, the exact solubility of the [[Schrodinger equation]] in quantum mechanics can be traced back to the underlying invariances. In the latter case, the investigation of symmetries allows for an interpretation of the [[Quantum degeneracy|degeneracies]], where different configurations to have the same energy, which generally occur in the energy spectrum of quantum systems. Continuous symmetries in physics are often formulated in terms of infinitesimal rather than finite transformations, i.e. one considers the [[Lie algebra]] rather than the Lie group of transformations
Many [[differential equations]] describing time evolution equations are expressions of invariants associated to some [[Lie group]] and the theory of these groups provides a unifying viewpoint for the study of all special functions and all their properties. In fact, [[Sophus Lie]] invented the theory of Lie groups when studying the symmetries of differential equations. The integration of a (partial) differential equation by the method of separation of variables or by Lie algebraic methods is intimately connected with the existence of symmetries. For example, the exact solubility of the [[Schrödinger equation]] in quantum mechanics can be traced back to the underlying invariances. In the latter case, the investigation of symmetries allows for an interpretation of the [[Quantum degeneracy|degeneracies]], where different configurations to have the same energy, which generally occur in the energy spectrum of quantum systems. Continuous symmetries in physics are often formulated in terms of infinitesimal rather than finite transformations, i.e. one considers the [[Lie algebra]] rather than the Lie group of transformations


===Quantum mechanics===
===Quantum mechanics===
{{main article|Operator (physics)|Translation operator (quantum mechanics)|Energy operator|Symmetry in quantum mechanics}}
{{main|Operator (physics)|Translation operator (quantum mechanics)|Energy operator|Symmetry in quantum mechanics}}
The invariance of a Hamiltonian <math>\hat{H}</math> of an isolated system under time translation implies its energy does not change with the passage of time. Conservation of energy implies, according to the Heisenberg equations of motion, that <math>[ \hat{H}, \hat{H} ]=0</math>.
The invariance of a Hamiltonian <math>\hat{H}</math> of an isolated system under time translation implies its energy does not change with the passage of time. Conservation of energy implies, according to the Heisenberg equations of motion, that <math>[ \hat{H}, \hat{H} ]=0</math>.


Line 66: Line 66:
: <math>[ \hat{T}(t), \hat{H} ]=0</math>
: <math>[ \hat{T}(t), \hat{H} ]=0</math>


Where <math>\hat{T}(t)=e^{i\hat{H}t/\hbar}</math> is the time translation operator which implies invariance of the Hamiltonian under the time translation operation and leads to the conservation of energy.
Where <math>\hat{T}(t)=e^{i\hat{H}t/\hbar}</math> is the time-translation operator which implies invariance of the Hamiltonian under the time-translation operation and leads to the conservation of energy.


===Nonlinear systems===
===Nonlinear systems===
In many nonlinear field theories like [[general relativity]] or [[Yang-Mills theory|Yang-Mills theories]], the basic field equations are highly nonlinear and exact solutions are only known for ‘sufficiently symmetric’ distributions of matter (e.g. rotationally or axially symmetric configurations). Time translation symmetry is guaranteed only in [[spacetimes]] where the [[Metric tensor (general relativity)|metric]] is static: that is, where there is a coordinate system in which the metric coefficients contain no time variable. Many [[general relativity]] systems are not static in any frame of reference so no conserved energy can be defined.
In many nonlinear field theories like [[general relativity]] or [[Yang–Mills theory|Yang–Mills theories]], the basic field equations are highly nonlinear and exact solutions are only known for ‘sufficiently symmetric’ distributions of matter (e.g. rotationally or axially symmetric configurations). Time-translation symmetry is guaranteed only in [[spacetimes]] where the [[Metric tensor (general relativity)|metric]] is static: that is, where there is a coordinate system in which the metric coefficients contain no time variable. Many [[general relativity]] systems are not static in any frame of reference so no conserved energy can be defined.


==Time translation symmetry breaking (TTSB)==
==Time-translation symmetry breaking (TTSB)==
{{main article|Time crystal}}
{{Main|Time crystal}}
[[Time crystals]], a state of matter first observed in 2017, break time translation symmetry.<ref name="Gibney">{{cite journal|year=2017|title=The quest to crystallize time|url=http://www.nature.com/news/the-quest-to-crystallize-time-1.21595|journal=Nature|volume=543|issue=7644|pages=164–166|doi=10.1038/543164a|issn=0028-0836|last1=Gibney|first1=Elizabeth|archiveurl=https://archive.is/WRq8v|archivedate=13 Mar 2017|bibcode=2017Natur.543..164G}}</ref>
[[Time crystals]], a state of matter first observed in 2017, break discrete time-translation symmetry.<ref name="Gibney">{{cite journal|year=2017|title=The quest to crystallize time|journal=Nature|volume=543|issue=7644|pages=164–166|doi=10.1038/543164a|issn=0028-0836|last1=Gibney|first1=Elizabeth|bibcode=2017Natur.543..164G|pmid=28277535|s2cid=4460265}}</ref>


==See also==
==See also==
{{div col|4}}
{{div col|colwidth=18em}}
* [[Absolute time and space]]
* [[Absolute time and space]]
* [[Mach's principle]]
* [[Mach's principle]]
Line 82: Line 82:
* [[Time reversal symmetry]]
* [[Time reversal symmetry]]
{{div col end}}
{{div col end}}
{{Portal bar|Astronomy|Mathematics|Physics|Time}}
{{Portal bar|Astronomy|Mathematics|Physics}}

== References ==


==References==
{{Reflist|30em}}
{{Reflist|30em}}


==External links==
==External links==
* [http://www.feynmanlectures.caltech.edu/I_52.html The Feynman Lectures on Physics - Time Translation]
* [https://feynmanlectures.caltech.edu/I_52.html The Feynman Lectures on Physics Time Translation]


{{Time Topics}}
{{Time Topics}}
Line 100: Line 99:
[[Category:Energy (physics)]]
[[Category:Energy (physics)]]
[[Category:Laws of thermodynamics]]
[[Category:Laws of thermodynamics]]
[[Category:Particle physics]]
[[Category:Quantum field theory]]
[[Category:Quantum field theory]]
[[Category:Quantum mechanics]]
[[Category:Spacetime]]
[[Category:Spacetime]]
[[Category:Symmetry]]
[[Category:Symmetry]]

Latest revision as of 08:50, 14 September 2024

Time-translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time-translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy.[1] In mathematics, the set of all time translations on a given system form a Lie group.

There are many symmetries in nature besides time translation, such as spatial translation or rotational symmetries. These symmetries can be broken and explain diverse phenomena such as crystals, superconductivity, and the Higgs mechanism.[2] However, it was thought until very recently that time-translation symmetry could not be broken.[3] Time crystals, a state of matter first observed in 2017, break time-translation symmetry.[4]

Overview

[edit]

Symmetries are of prime importance in physics and are closely related to the hypothesis that certain physical quantities are only relative and unobservable.[5] Symmetries apply to the equations that govern the physical laws (e.g. to a Hamiltonian or Lagrangian) rather than the initial conditions, values or magnitudes of the equations themselves and state that the laws remain unchanged under a transformation.[1] If a symmetry is preserved under a transformation it is said to be invariant. Symmetries in nature lead directly to conservation laws, something which is precisely formulated by Noether's theorem.[6]

Symmetries in physics[5]
Symmetry Transformation Unobservable Conservation law
Space-translation absolute position in space momentum
Time-translation absolute time energy
Rotation absolute direction in space angular momentum
Space inversion absolute left or right parity
Time-reversal absolute sign of time Kramers degeneracy
Sign reversion of charge absolute sign of electric charge charge conjugation
Particle substitution distinguishability of identical particles Bose or Fermi statistics
Gauge transformation relative phase between different normal states particle number

Newtonian mechanics

[edit]

To formally describe time-translation symmetry we say the equations, or laws, that describe a system at times and are the same for any value of and .

For example, considering Newton's equation:

One finds for its solutions the combination:

does not depend on the variable . Of course, this quantity describes the total energy whose conservation is due to the time-translation invariance of the equation of motion. By studying the composition of symmetry transformations, e.g. of geometric objects, one reaches the conclusion that they form a group and, more specifically, a Lie transformation group if one considers continuous, finite symmetry transformations. Different symmetries form different groups with different geometries. Time independent Hamiltonian systems form a group of time translations that is described by the non-compact, abelian, Lie group . TTS is therefore a dynamical or Hamiltonian dependent symmetry rather than a kinematical symmetry which would be the same for the entire set of Hamiltonians at issue. Other examples can be seen in the study of time evolution equations of classical and quantum physics.

Many differential equations describing time evolution equations are expressions of invariants associated to some Lie group and the theory of these groups provides a unifying viewpoint for the study of all special functions and all their properties. In fact, Sophus Lie invented the theory of Lie groups when studying the symmetries of differential equations. The integration of a (partial) differential equation by the method of separation of variables or by Lie algebraic methods is intimately connected with the existence of symmetries. For example, the exact solubility of the Schrödinger equation in quantum mechanics can be traced back to the underlying invariances. In the latter case, the investigation of symmetries allows for an interpretation of the degeneracies, where different configurations to have the same energy, which generally occur in the energy spectrum of quantum systems. Continuous symmetries in physics are often formulated in terms of infinitesimal rather than finite transformations, i.e. one considers the Lie algebra rather than the Lie group of transformations

Quantum mechanics

[edit]

The invariance of a Hamiltonian of an isolated system under time translation implies its energy does not change with the passage of time. Conservation of energy implies, according to the Heisenberg equations of motion, that .

or:

Where is the time-translation operator which implies invariance of the Hamiltonian under the time-translation operation and leads to the conservation of energy.

Nonlinear systems

[edit]

In many nonlinear field theories like general relativity or Yang–Mills theories, the basic field equations are highly nonlinear and exact solutions are only known for ‘sufficiently symmetric’ distributions of matter (e.g. rotationally or axially symmetric configurations). Time-translation symmetry is guaranteed only in spacetimes where the metric is static: that is, where there is a coordinate system in which the metric coefficients contain no time variable. Many general relativity systems are not static in any frame of reference so no conserved energy can be defined.

Time-translation symmetry breaking (TTSB)

[edit]

Time crystals, a state of matter first observed in 2017, break discrete time-translation symmetry.[4]

See also

[edit]

References

[edit]
  1. ^ a b Wilczek, Frank (16 July 2015). "3". A Beautiful Question: Finding Nature's Deep Design. Penguin Books Limited. ISBN 978-1-84614-702-9.
  2. ^ Richerme, Phil (18 January 2017). "Viewpoint: How to Create a Time Crystal". Physics. 10. APS Physics: 5. Bibcode:2017PhyOJ..10....5R. doi:10.1103/Physics.10.5. Archived from the original on 2 February 2017.
  3. ^ Else, Dominic V.; Bauer, Bela; Nayak, Chetan (2016). "Floquet Time Crystals". Physical Review Letters. 117 (9): 090402. arXiv:1603.08001. Bibcode:2016PhRvL.117i0402E. doi:10.1103/PhysRevLett.117.090402. ISSN 0031-9007. PMID 27610834. S2CID 1652633.
  4. ^ a b Gibney, Elizabeth (2017). "The quest to crystallize time". Nature. 543 (7644): 164–166. Bibcode:2017Natur.543..164G. doi:10.1038/543164a. ISSN 0028-0836. PMID 28277535. S2CID 4460265.
  5. ^ a b Feng, Duan; Jin, Guojun (2005). Introduction to Condensed Matter Physics. Singapore: World Scientific. p. 18. ISBN 978-981-238-711-0.
  6. ^ Cao, Tian Yu (25 March 2004). Conceptual Foundations of Quantum Field Theory. Cambridge: Cambridge University Press. ISBN 978-0-521-60272-3.
[edit]