Jump to content

Alexander Silberman Institute of Life Sciences: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
 
(31 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Short description|Research & teaching institute in the Hebrew University}}
{{Short description|Research & teaching institute in the Hebrew University}}
{{Draft topics|stem}}
{{AfC topic|org}}
{{AfC submission|||ts=20240630120850|u=Biochen123|ns=118}}
{{AFC submission|d|adv|u=Biochen123|ns=118|decliner=Theroadislong|declinets=20230713163411|ts=20230713155709}} <!-- Do not remove this line! -->
{{AFC submission|d|reason|This is part of a series of articles created by a UPE/COI editor. Please see [[WP:COI]] and [[WP:UPE]]. Article should not be moved into mainspace until this concern is addressed.|u=Biochen123|ns=118|decliner=Onel5969|declinets=20230119130250|small=yes|ts=20221218092114}} <!-- Do not remove this line! -->

{{AFC comment|1=Undisclosed paid editing has not been addressed. [[User:Theroadislong|Theroadislong]] ([[User talk:Theroadislong|talk]]) 16:34, 13 July 2023 (UTC)}}

{{AFC comment|1=we have very little interest in what their own website says, articles are based on what independent sources have reported. [[User:Theroadislong|Theroadislong]] ([[User talk:Theroadislong|talk]]) 16:05, 6 December 2022 (UTC)}}

{{AFC comment|1=At is stands this is blatant, unsourced advertising and totally inappropriate for an encyclopaedia. [[User:Theroadislong|Theroadislong]] ([[User talk:Theroadislong|talk]]) 10:14, 30 November 2022 (UTC)}}

----

{{Multiple issues|
{{unreferenced|date=November 2022}}
{{Undisclosed paid|date=July 2023}}
}}


{{Infobox university
{{Infobox university
Line 35: Line 17:
}}<!-- Do not remove this line! -->
}}<!-- Do not remove this line! -->


The '''Alexander Silberman Institute of Life Sciences (AS-ILS)''' at the [[Hebrew University of Jerusalem]] is the oldest life sciences [[research institute]] in [[Israel]]. It is part of the Faculty of Sciences.<ref name=":2">{{Cite web|url=https://en-science.huji.ac.il/home|title=Faculty of Sciences|website=en-science.huji.ac.il}}</ref>, and is located in the Edmond J. Safra Campus ([[Givat Ram]]) in [[Jerusalem]].
The '''Alexander Silberman Institute of Life Sciences (AS-ILS)''' at the [[Hebrew University of Jerusalem]] is the oldest life sciences [[research institute]] in [[Israel]]. It is part of the Faculty of Sciences, and is located in the Edmond J. Safra Campus ([[Givat Ram]]) in [[Jerusalem]].


== History ==
== History ==
The origins of the institute date back to 1925, the year that the Hebrew University was founded,<ref>{{Cite web|url=https://www.jewishvirtuallibrary.org/the-hebrew-university-of-jerusalem|title=The Hebrew University of Jerusalem|website=www.jewishvirtuallibrary.org}}</ref> when the Department of Botany was formed as part of a research unit called "The Institute for Studying the Natural History of the Land of Israel". Among the founding researchers were Profs. [[Otto Warburg (botanist)|Otto Warburg]]<ref>{{Cite web |work=JSTOR Global Plants |title=Otto Warburg (botanist) |url=https://plants.jstor.org/stable/10.5555/al.ap.person.bm000009091}}</ref>, [[Alexander Eig]],<ref>{{Cite web |work=JSTOR Global Plants |title=Alexander Eig |url=https://plants.jstor.org/stable/10.5555/al.ap.person.bm000002351}}</ref> [[Michael Zohary]]<ref>{{Cite web |work=JSTOR Global Plants |title=Michael Zohary |url=https://plants.jstor.org/stable/10.5555/al.ap.person.bm000154757}}</ref> and [[Naomi Feinbrun-Dothan]].<ref>{{Cite web|url=https://jwa.org/encyclopedia/article/feinbrun-dotan-naomi|title=Naomi Feinbrun-Dothan|website=Jewish Women's Archive}}</ref> During the first years of the department, several large-scale projects that continue to this day have been started off, including the establishment of the Herbarium Collection,<ref>{{Cite web|url=https://en-nnhc.huji.ac.il/plants-collections|title=Something went wrong...|website=en-nnhc.huji.ac.il}}</ref> today part of Israel's Natural History Collections,<ref>{{Cite web|url=https://en-nnhc.huji.ac.il/home|title=The National Natural History Collections|website=en-nnhc.huji.ac.il}}</ref> and the establishment of the [[National Botanic Garden of Israel]] at Mount Scopus, which was the first of its kind in the [[Middle East]].
The origins of the institute date back to 1925, the year that the Hebrew University was founded,<ref name="auto">{{Cite web|url=https://www.jewishvirtuallibrary.org/the-hebrew-university-of-jerusalem|title=The Hebrew University of Jerusalem|website=www.jewishvirtuallibrary.org}}</ref> when the Department of Botany was formed as part of a research unit called "The Institute for Studying the Natural History of the Land of Israel". Among the founding researchers were Profs. [[Otto Warburg (botanist)|Otto Warburg]],<ref>{{Cite web |work=JSTOR Global Plants |title=Otto Warburg (botanist) |url=https://plants.jstor.org/stable/10.5555/al.ap.person.bm000009091}}</ref> [[Alexander Eig]],<ref>{{Cite web |work=JSTOR Global Plants |title=Alexander Eig |url=https://plants.jstor.org/stable/10.5555/al.ap.person.bm000002351}}</ref> [[Michael Zohary]]<ref>{{Cite web |work=JSTOR Global Plants |title=Michael Zohary |url=https://plants.jstor.org/stable/10.5555/al.ap.person.bm000154757}}</ref> and [[Naomi Feinbrun-Dothan]].<ref>{{Cite web|url=https://jwa.org/encyclopedia/article/feinbrun-dotan-naomi|title=Naomi Feinbrun-Dothan|website=Jewish Women's Archive}}</ref> During the first years of the department, several large-scale projects that continue to this day have been started off, including the establishment of the Herbarium Collection,<ref>{{Cite web|url=https://en-nnhc.huji.ac.il/plants-collections|title=Something went wrong...|website=en-nnhc.huji.ac.il}}</ref> today part of Israel's Natural History Collections,<ref>{{Cite web|url=https://en-nnhc.huji.ac.il/home|title=The National Natural History Collections|website=en-nnhc.huji.ac.il}}</ref> and the establishment of the [[National Botanic Garden of Israel]] at Mount Scopus, which was the first of its kind in the [[Middle East]].

In 1928, Prof. [[Friedrich Simon Bodenheimer|Simon Bodenheimer]] joined the nascent institute and established the Department of Zoology, leading the institute to probe into new scientific fields.<ref>{{Cite journal |doi=10.1146/annurev.en.29.010184.000245 |s2cid=86230193 |title=Frederick Simon Bodenheimer (1897-1959): Idealist, Scholar, Scientist |year=1984 |last1=Harpaz |first1=I. |journal=Annual Review of Entomology |volume=29 |pages=1–24 }}</ref>


In 1928, Prof. [[Friedrich Simon Bodenheimer|Simon Bodenheimer]] joined the nascent institute and established the Department of Zoology, leading the institute to probe into new scientific fields.<ref>{{Cite journal |doi=10.1146/annurev.en.29.010184.000245 |s2cid=86230193 |title=Frederick Simon Bodenheimer (1897–1959): Idealist, Scholar, Scientist |year=1984 |last1=Harpaz |first1=I. |journal=Annual Review of Entomology |volume=29 |pages=1–24 }}</ref>
Research activities at both departments (and at the Hebrew University in general) were diminished in 1948 during the [[1947–1949 Palestine war|War of Independence]], and were brought to a complete stop following the [[Hadassah medical convoy massacre]]. Activity in both departments was renewed after the war, in April 1949.<ref>{{Cite web|url=https://www.jewishvirtuallibrary.org/the-hebrew-university-of-jerusalem|title=The Hebrew University of Jerusalem|website=www.jewishvirtuallibrary.org}}</ref>


After years that the different departments were scattered throughout the city of Jerusalem, the 1960s saw a structural reorganization, with the different departments grouped together to form the Institute of Life Sciences, which in itself was grouped with other (non-Life Sciences) departments to form the Faculty of Mathematics and Sciences.<ref name=":2" />
Research activities at both departments (and at the Hebrew University in general) were diminished in 1948 during the [[1947–1949 Palestine war|War of Independence]], and were brought to a complete stop following the [[Hadassah medical convoy massacre]]. Activity in both departments was renewed after the war, in April 1949.<ref name="auto"/>


== Notable achievements ==
== Notable achievements ==
Throughout the years AS-ILS members have conducted [[basic research]] as well as [[applied science]] in the fields of [[biomedicine]], [[biotechnology]] and [[agriculture]] at multiple [[Biological organisation|levels of organization]], from molecular mechanism in cells, through processes within the whole [[organism]], and to studies at the population level. AS-ILS members have been associated with several discoveries:
Throughout the years AS-ILS members have conducted [[basic research]] as well as [[applied science]] in the fields of [[biomedicine]], [[biotechnology]] and [[agriculture]] at multiple [[Biological organisation|levels of organization]], from molecular mechanism in cells, through processes within the whole [[organism]], and to studies at the population level. AS-ILS members have been associated with several discoveries:
* The first description of the flora of Palestine.<ref>{{Cite book |last=Eig |first=Alexander |title=A contribution to the knowledge of the flora of Palestine |publisher=The Zionist organisation and the Hebrew Univ, Tel-Aviv |year=1926 |edition=1st}}</ref>
* The first description of the [[flora]] of [[Mandatory Palestine|Palestine]].<ref>{{Cite book |last=Eig |first=Alexander |title=A contribution to the knowledge of the flora of Palestine |publisher=The Zionist organisation and the Hebrew Univ, Tel-Aviv |year=1926 |edition=1st}}</ref>
* Studies of various genetic traits amongst different Jewish ethnic groups in Israel.<ref>{{Cite journal |last=KALMUS |first=H. |last2=AMIR |first2=A. |last3=LEVINE |first3=ONA |last4=BARAK |first4=ELISHEVA |last5=GOLDSCHMIDT |first5=ELIZABETH |date=1961-09 |title=The frequency of inherited defects of colour vision in some Israeli populations* |url=http://dx.doi.org/10.1111/j.1469-1809.1961.tb01496.x |journal=Annals of Human Genetics |volume=25 |issue=1 |pages=51–55 |doi=10.1111/j.1469-1809.1961.tb01496.x |issn=0003-4800}}</ref><ref>{{Cite journal |last=GOLDSCHMIDT |first=ELISABETH |last2=RONEN |first2=AMIRAM |last3=RONEN |first3=ILANA |date=1960-03 |title=Changing marriage systems in the Jewish communities of Israel* |url=http://dx.doi.org/10.1111/j.1469-1809.1960.tb01732.x |journal=Annals of Human Genetics |volume=24 |issue=3 |pages=191–204 |doi=10.1111/j.1469-1809.1960.tb01732.x |issn=0003-4800}}</ref><ref>{{Cite journal |last=Goldschmidt |first=E. |last2=Cohen |first2=T. |date=1964-01-01 |title=Inter-ethnic Mixture among the Communities of Israel |url=http://dx.doi.org/10.1101/sqb.1964.029.01.016 |journal=Cold Spring Harbor Symposia on Quantitative Biology |volume=29 |issue=0 |pages=115–120 |doi=10.1101/sqb.1964.029.01.016 |issn=0091-7451}}</ref><ref>{{Cite journal |last=Horowitz |first=A. |last2=Cohen |first2=T. |last3=Goldschmidt |first3=E. |last4=Levene |first4=C. |date=1966-09 |title=Thalassaemia Types among Kurdish Jews in Israel |url=http://dx.doi.org/10.1111/j.1365-2141.1966.tb00138.x |journal=British Journal of Haematology |volume=12 |issue=5 |pages=555–568 |doi=10.1111/j.1365-2141.1966.tb00138.x |issn=0007-1048}}</ref> These studies served as the basis of genetic counseling in Israel.
* Studies of various [[genetic traits]] amongst different Jewish ethnic groups in Israel.<ref>{{Cite journal |last1=GOLDSCHMIDT |first1=ELISABETH |last2=RONEN |first2=AMIRAM |last3=RONEN |first3=ILANA |date=1960|title=Changing marriage systems in the Jewish communities of Israel* |url=http://dx.doi.org/10.1111/j.1469-1809.1960.tb01732.x |journal=Annals of Human Genetics |volume=24 |issue=3 |pages=191–204 |doi=10.1111/j.1469-1809.1960.tb01732.x |pmid=13850739 |issn=0003-4800}}</ref><ref>{{Cite journal |last1=Goldschmidt |first1=E. |last2=Cohen |first2=T. |date=1964-01-01 |title=Inter-ethnic Mixture among the Communities of Israel |url=http://dx.doi.org/10.1101/sqb.1964.029.01.016 |journal=Cold Spring Harbor Symposia on Quantitative Biology |volume=29 |pages=115–120 |doi=10.1101/sqb.1964.029.01.016 |pmid=14278459 |issn=0091-7451}}</ref><ref>{{Cite journal |last1=Horowitz |first1=A. |last2=Cohen |first2=T. |last3=Goldschmidt |first3=E. |last4=Levene |first4=C. |date=1966 |title=Thalassaemia Types among Kurdish Jews in Israel |url=http://dx.doi.org/10.1111/j.1365-2141.1966.tb00138.x |journal=British Journal of Haematology |volume=12 |issue=5 |pages=555–568 |doi=10.1111/j.1365-2141.1966.tb00138.x |pmid=5915052 |issn=0007-1048}}</ref> These studies served as the basis of [[genetic counseling]] in Israel.
* Plant anatomy - anatomical and histological structure of vegetative and reproductive plant organs, first published in 1962.<ref>{{Cite book |last=Fahn |first=A. |title=Plant anatomy |date=1990 |publisher=Pergamon Press |isbn=978-0-08-037490-1 |edition=4th ed |location=Oxford [England] ; New York}}</ref>
* Description of 2,470 plant species found in Israel and surrounding areas, which serve as the meeting point of four [[phytogeographical region]]s, first published in 1966.<ref>{{Cite book |title=Flora Palaestina. Text: 1. Equisetaceae to moringaceae / by Michael Zohary |date=1981 |publisher=Israel Acad. of Sciences and Human |isbn=978-965-208-001-1 |editor-last=Zohary |editor-first=Michael |edition=2. print |location=Jerusalem}}</ref>
* [[Allosteric regulation|Allosteric control]] of [[enzymes]] and [[cooperativity]] and the mathematical equations that describe these phenomena.<ref>{{Cite journal |last1=Levitzki |first1=Alexander |last2=Koshland |first2=D. E. |date=1969 |title=Negative Cooperativity in Regulatory Enzymes |journal=Proceedings of the National Academy of Sciences |language=en |volume=62 |issue=4 |pages=1121–1128 |doi=10.1073/pnas.62.4.1121 |doi-access=free |pmid=5256410 |pmc=223623 |bibcode=1969PNAS...62.1121L |issn=0027-8424}}</ref>
* Description of 2,470 plant species found in Israel and surrounding areas, which serve as the meeting point of four phytogeographical regions, first published in 1966.<ref>{{Cite book |title=Flora Palaestina. Text: 1. Equisetaceae to moringaceae / by Michael Zohary |date=1981 |publisher=Israel Acad. of Sciences and Human |isbn=978-965-208-001-1 |editor-last=Zohary |editor-first=Michael |edition=2. print |location=Jerusalem}}</ref>
* Allosteric control of enzymes and cooperativity and the mathematical equations that describe these phenomena.<ref>{{Cite journal |last=Levitzki |first=Alexander |last2=Koshland |first2=D. E. |date=1969-04 |title=NEGATIVE COOPERATIVITY IN REGULATORY ENZYMES |url=https://pnas.org/doi/full/10.1073/pnas.62.4.1121 |journal=Proceedings of the National Academy of Sciences |language=en |volume=62 |issue=4 |pages=1121–1128 |doi=10.1073/pnas.62.4.1121 |issn=0027-8424}}</ref>
* Discovery that [[cholera]] toxin activates [[adenylyl cyclase]] by inhibiting the catecholamine-stimulated GTPase.<ref>{{Cite journal |last1=Cassel |first1=Dan |last2=Selinger |first2=Zvi |date=August 1977 |title=Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site |journal=Proceedings of the National Academy of Sciences |language=en |volume=74 |issue=8 |pages=3307–3311 |doi=10.1073/pnas.74.8.3307 |doi-access=free |issn=0027-8424 |pmc=431542 |pmid=198781|bibcode=1977PNAS...74.3307C }}</ref>
* Discovery that cholera toxin activates adenylyl cyclase by inhibiting the catecholamine-stimulated GTPase.<ref>{{Cite journal |last1=Cassel |first1=Dan |last2=Selinger |first2=Zvi |date=August 1977 |title=Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site |journal=Proceedings of the National Academy of Sciences |language=en |volume=74 |issue=8 |pages=3307–3311 |doi=10.1073/pnas.74.8.3307 |doi-access=free |issn=0027-8424 |pmc=431542 |pmid=198781|bibcode=1977PNAS...74.3307C }}</ref>
* Revealing the stabilizing role of [[poly(A) tail]] on [[mRNA]].<ref>{{Cite journal |last1=Huez |first1=G. |last2=Marbaix |first2=G. |last3=Burny |first3=A. |last4=Hubert |first4=E. |last5=Leclercq |first5=M. |last6=Cleuter |first6=Y. |last7=Chantrenne |first7=H. |last8=Soreq |first8=H. |last9=Littauer |first9=U. Z. |date=March 1977 |title=Degradation of deadenylated rabbit α-globin mRNA in Xenopus oocytes is associated with its translation |url=https://www.nature.com/articles/266473a0 |journal=Nature |language=en |volume=266 |issue=5601 |pages=473–474 |doi=10.1038/266473a0 |pmid=558522 |bibcode=1977Natur.266..473H |issn=0028-0836}}</ref>
* Revealing the stabilizing role of poly(A) tail on mRNA.<ref>{{Cite journal |last1=Huez |first1=G. |last2=Marbaix |first2=G. |last3=Burny |first3=A. |last4=Hubert |first4=E. |last5=Leclercq |first5=M. |last6=Cleuter |first6=Y. |last7=Chantrenne |first7=H. |last8=Soreq |first8=H. |last9=Littauer |first9=U. Z. |date=March 1977 |title=Degradation of deadenylated rabbit α-globin mRNA in Xenopus oocytes is associated with its translation |url=https://www.nature.com/articles/266473a0 |journal=Nature |language=en |volume=266 |issue=5601 |pages=473–474 |doi=10.1038/266473a0 |pmid=558522 |bibcode=1977Natur.266..473H |issn=0028-0836}}</ref>
* [[Signal transduction]] mechanisms - [[beta-adrenergic receptors]] and their mode of coupling to adenylate cyclase.<ref>{{Cite journal |last1=Atlas |first1=Daphne |last2=Levitzki |first2=Alexander |date=1978 |title=Tentative identification of β-adrenoreceptor subunits |url=https://www.nature.com/articles/272370a0 |journal=Nature |language=en |volume=272 |issue=5651 |pages=370–371 |doi=10.1038/272370a0 |pmid=204872 |bibcode=1978Natur.272..370A |issn=0028-0836}}</ref>
* Signal transduction mechanisms - beta-adrenergic receptors and their mode of coupling to adenylate cyclase.<ref>{{Cite journal |last=Atlas |first=Daphne |last2=Levitzki |first2=Alexander |date=1978-03 |title=Tentative identification of β-adrenoreceptor subunits |url=https://www.nature.com/articles/272370a0 |journal=Nature |language=en |volume=272 |issue=5651 |pages=370–371 |doi=10.1038/272370a0 |issn=0028-0836}}</ref>
* Demonstrating that the [[β-adrenergic receptor]] acts as a guanine nucleotide exchange factor facilitating GDP/GTP exchange to activate adenylyl cyclase.<ref>{{Cite journal |last1=Cassel |first1=D |last2=Selinger |first2=Z |date=September 1978 |title=Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. |journal=Proceedings of the National Academy of Sciences |language=en |volume=75 |issue=9 |pages=4155–4159 |doi=10.1073/pnas.75.9.4155 |doi-access=free |pmid=212737 |pmc=336070 |bibcode=1978PNAS...75.4155C |issn=0027-8424}}</ref>
* [[Plant domestication]] in the [[Middle East]], especially crops such as cereals, pulses and fruit trees (first published in 1987).<ref>{{Cite book |last1=Zohary |first1=Daniel |title=Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin |last2=Hopf |first2=Maria |last3=Weiss |first3=Ehud |date=2012 |publisher=Oxford University Press |isbn=978-0-19-954906-1 |edition=Fourth |location=Oxford}}</ref>
* Demonstrating that the β-adrenergic receptor acts as a guanine nucleotide exchange factor facilitating GDP/GTP exchange to activate adenylyl cyclase.<ref>{{Cite journal |last1=Cassel |first1=D |last2=Selinger |first2=Z |date=September 1978 |title=Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. |journal=Proceedings of the National Academy of Sciences |language=en |volume=75 |issue=9 |pages=4155–4159 |doi=10.1073/pnas.75.9.4155 |doi-access=free |pmid=212737 |pmc=336070 |bibcode=1978PNAS...75.4155C |issn=0027-8424}}</ref>
* Plant domestication in the Middle East, especially crops such as cereals, pulses and fruit trees (first published in 1987).<ref>{{Cite book |last1=Zohary |first1=Daniel |title=Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin |last2=Hopf |first2=Maria |last3=Weiss |first3=Ehud |date=2012 |publisher=Oxford University Press |isbn=978-0-19-954906-1 |edition=Fourth |location=Oxford}}</ref>
* Understanding how microbes adapt to changing environments.<ref>{{Cite journal |last1=Goldberg |first1=E B |last2=Arbel |first2=T |last3=Chen |first3=J |last4=Karpel |first4=R |last5=Mackie |first5=G A |last6=Schuldiner |first6=S |last7=Padan |first7=E |date=May 1987 |title=Characterization of a Na+/H+ antiporter gene of Escherichia coli. |journal=Proceedings of the National Academy of Sciences |language=en |volume=84 |issue=9 |pages=2615–2619 |doi=10.1073/pnas.84.9.2615 |doi-access=free |issn=0027-8424 |pmc=304708 |pmid=3033655}}</ref>
* Understanding how microbes adapt to changing environments.<ref>{{Cite journal |last1=Goldberg |first1=E B |last2=Arbel |first2=T |last3=Chen |first3=J |last4=Karpel |first4=R |last5=Mackie |first5=G A |last6=Schuldiner |first6=S |last7=Padan |first7=E |date=May 1987 |title=Characterization of a Na+/H+ antiporter gene of Escherichia coli. |journal=Proceedings of the National Academy of Sciences |language=en |volume=84 |issue=9 |pages=2615–2619 |doi=10.1073/pnas.84.9.2615 |doi-access=free |issn=0027-8424 |pmc=304708 |pmid=3033655}}</ref>
* Developing pharmacological inhibitors of tyrosine kinases that can serve as anti-cancer drugs.<ref>{{Cite journal |last=Yaish |first=Pnina |last2=Gazit |first2=Aviv |last3=Gilon |first3=Chaim |last4=Levitzki |first4=Alexander |date=1988-11-11 |title=Blocking of EGF-Dependent Cell Proliferation by EGF Receptor Kinase Inhibitors |url=https://www.science.org/doi/10.1126/science.3263702 |journal=Science |language=en |volume=242 |issue=4880 |pages=933–935 |doi=10.1126/science.3263702 |issn=0036-8075}}</ref>
* Developing pharmacological inhibitors of [[tyrosine kinase]]s that can serve as anti-cancer drugs.<ref>{{Cite journal |last1=Yaish |first1=Pnina |last2=Gazit |first2=Aviv |last3=Gilon |first3=Chaim |last4=Levitzki |first4=Alexander |date=1988-11-11 |title=Blocking of EGF-Dependent Cell Proliferation by EGF Receptor Kinase Inhibitors |url=https://www.science.org/doi/10.1126/science.3263702 |journal=Science |language=en |volume=242 |issue=4880 |pages=933–935 |doi=10.1126/science.3263702 |pmid=3263702 |bibcode=1988Sci...242..933Y |issn=0036-8075}}</ref>
* Identification and isolation of the major positive regulator of meiosis.<ref>{{Cite journal |last1=Kassir |first1=Yona |last2=Granot |first2=David |last3=Simchen |first3=Giora |date=March 1988 |title=IME1, a positive regulator gene of meiosis in S. cerevisiae |url=https://linkinghub.elsevier.com/retrieve/pii/0092867488904278 |journal=Cell |language=en |volume=52 |issue=6 |pages=853–862 |doi=10.1016/0092-8674(88)90427-8|pmid=3280136 }}</ref>
* Identification and isolation of the major positive regulator of [[meiosis]].<ref>{{Cite journal |last1=Kassir |first1=Yona |last2=Granot |first2=David |last3=Simchen |first3=Giora |date=March 1988 |title=IME1, a positive regulator gene of meiosis in S. cerevisiae |url=https://linkinghub.elsevier.com/retrieve/pii/0092867488904278 |journal=Cell |language=en |volume=52 |issue=6 |pages=853–862 |doi=10.1016/0092-8674(88)90427-8|pmid=3280136 }}</ref>
* Identification and characterization of the gene mutated in cystic fibrosis disease and uncovering genetic mechanisms contributing to the disease severity.<ref>{{Cite journal |last1=Kerem |first1=Bat-Sheva |last2=Rommens |first2=Johanna M. |last3=Buchanan |first3=Janet A. |last4=Markiewicz |first4=Danuta |last5=Cox |first5=Tara K. |last6=Chakravarti |first6=Aravinda |last7=Buchwald |first7=Manuel |last8=Tsui |first8=Lap-Chee |date=1989-09-08 |title=Identification of the Cystic Fibrosis Gene: Genetic Analysis |url=https://www.science.org/doi/10.1126/science.2570460 |journal=Science |language=en |volume=245 |issue=4922 |pages=1073–1080 |doi=10.1126/science.2570460 |pmid=2570460 |bibcode=1989Sci...245.1073K |issn=0036-8075}}</ref>
* Identification and characterization of the gene mutated in [[cystic fibrosis]] disease and uncovering genetic mechanisms contributing to the disease severity.<ref>{{Cite journal |last1=Kerem |first1=Bat-Sheva |last2=Rommens |first2=Johanna M. |last3=Buchanan |first3=Janet A. |last4=Markiewicz |first4=Danuta |last5=Cox |first5=Tara K. |last6=Chakravarti |first6=Aravinda |last7=Buchwald |first7=Manuel |last8=Tsui |first8=Lap-Chee |date=1989-09-08 |title=Identification of the Cystic Fibrosis Gene: Genetic Analysis |url=https://www.science.org/doi/10.1126/science.2570460 |journal=Science |language=en |volume=245 |issue=4922 |pages=1073–1080 |doi=10.1126/science.2570460 |pmid=2570460 |bibcode=1989Sci...245.1073K |issn=0036-8075}}</ref>
* Mapping of meiotic DNA double-strand breaks on whole yeast chromosomes.<ref>{{Cite journal |last1=Zenvirth |first1=D. |last2=Arbel |first2=T. |last3=Sherman |first3=A. |last4=Goldway |first4=M. |last5=Klein |first5=S. |last6=Simchen |first6=G. |date=September 1992 |title=Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. |url=https://onlinelibrary.wiley.com/doi/10.1002/j.1460-2075.1992.tb05423.x |journal=The EMBO Journal |language=en |volume=11 |issue=9 |pages=3441–3447 |doi=10.1002/j.1460-2075.1992.tb05423.x|pmid=1324174 }}</ref>
* Mapping of meiotic DNA double-strand breaks on whole yeast chromosomes.<ref>{{Cite journal |last1=Zenvirth |first1=D. |last2=Arbel |first2=T. |last3=Sherman |first3=A. |last4=Goldway |first4=M. |last5=Klein |first5=S. |last6=Simchen |first6=G. |date=September 1992 |title=Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. |journal=The EMBO Journal |language=en |volume=11 |issue=9 |pages=3441–3447 |doi=10.1002/j.1460-2075.1992.tb05423.x|pmid=1324174 |pmc=556879 }}</ref>
* First report of the impact of stress on gene expression.<ref>{{Cite journal |last1=Kaufer |first1=Daniela |last2=Friedman |first2=Alon |last3=Seidman |first3=Shlomo |last4=Soreq |first4=Hermona |date=1998-05-28 |title=Acute stress facilitates long-lasting changes in cholinergic gene expression |url=https://www.nature.com/articles/30741 |journal=Nature |language=en |volume=393 |issue=6683 |pages=373–377 |doi=10.1038/30741 |pmid=9620801 |bibcode=1998Natur.393..373K |issn=0028-0836}}</ref>
* First report of the impact of stress on gene expression.<ref>{{Cite journal |last1=Kaufer |first1=Daniela |last2=Friedman |first2=Alon |last3=Seidman |first3=Shlomo |last4=Soreq |first4=Hermona |date=1998-05-28 |title=Acute stress facilitates long-lasting changes in cholinergic gene expression |url=https://www.nature.com/articles/30741 |journal=Nature |language=en |volume=393 |issue=6683 |pages=373–377 |doi=10.1038/30741 |pmid=9620801 |bibcode=1998Natur.393..373K |issn=0028-0836}}{{Erratum|doi=10.1038/nature16180|pmid=26605528}}</ref>
* Genetic manipulation and disease modeling using human pluripotent stem cells.<ref>{{Cite journal |last1=Eiges |first1=Rachel |last2=Schuldiner |first2=Maya |last3=Drukker |first3=Micha |last4=Yanuka |first4=Ofra |last5=Itskovitz-Eldor |first5=Joseph |last6=Benvenisty |first6=Nissim |date=April 2001 |title=Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells |url=https://linkinghub.elsevier.com/retrieve/pii/S0960982201001440 |journal=Current Biology |language=en |volume=11 |issue=7 |pages=514–518 |bibcode=2001CBio...11..514E |doi=10.1016/S0960-9822(01)00144-0 |pmid=11413002}}</ref><ref>{{Cite journal |last1=Avior |first1=Yishai |last2=Sagi |first2=Ido |last3=Benvenisty |first3=Nissim |date=March 2016 |title=Pluripotent stem cells in disease modelling and drug discovery |url=https://www.nature.com/articles/nrm.2015.27 |journal=Nature Reviews Molecular Cell Biology |language=en |volume=17 |issue=3 |pages=170–182 |doi=10.1038/nrm.2015.27 |issn=1471-0072 |pmid=26818440}}</ref>
* Genetic manipulation and disease modeling using human pluripotent stem cells.<ref>{{Cite journal |last1=Eiges |first1=Rachel |last2=Schuldiner |first2=Maya |last3=Drukker |first3=Micha |last4=Yanuka |first4=Ofra |last5=Itskovitz-Eldor |first5=Joseph |last6=Benvenisty |first6=Nissim |date=April 2001 |title=Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells |url=https://linkinghub.elsevier.com/retrieve/pii/S0960982201001440 |journal=Current Biology |language=en |volume=11 |issue=7 |pages=514–518 |bibcode=2001CBio...11..514E |doi=10.1016/S0960-9822(01)00144-0 |pmid=11413002}}</ref><ref>{{Cite journal |last1=Avior |first1=Yishai |last2=Sagi |first2=Ido |last3=Benvenisty |first3=Nissim |date=March 2016 |title=Pluripotent stem cells in disease modelling and drug discovery |url=https://www.nature.com/articles/nrm.2015.27 |journal=Nature Reviews Molecular Cell Biology |language=en |volume=17 |issue=3 |pages=170–182 |doi=10.1038/nrm.2015.27 |issn=1471-0072 |pmid=26818440}}</ref>
* Immunogenicity and the basis of tumorigenicity of human embryonic stem cells.<ref>{{Cite journal |last1=Drukker |first1=Micha |last2=Katz |first2=Gil |last3=Urbach |first3=Achia |last4=Schuldiner |first4=Maya |last5=Markel |first5=Gal |last6=Itskovitz-Eldor |first6=Joseph |last7=Reubinoff |first7=Benjamin |last8=Mandelboim |first8=Ofer |last9=Benvenisty |first9=Nissim |date=2002-07-23 |title=Characterization of the expression of MHC proteins in human embryonic stem cells |journal=Proceedings of the National Academy of Sciences |language=en |volume=99 |issue=15 |pages=9864–9869 |bibcode=2002PNAS...99.9864D |doi=10.1073/pnas.142298299 |issn=0027-8424 |pmc=125045 |pmid=12114532 |doi-access=free}}</ref><ref>{{Cite journal |last1=Blum |first1=Barak |last2=Bar-Nur |first2=Ori |last3=Golan-Lev |first3=Tamar |last4=Benvenisty |first4=Nissim |date=March 2009 |title=The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells |url=https://www.nature.com/articles/nbt.1527 |journal=Nature Biotechnology |language=en |volume=27 |issue=3 |pages=281–287 |doi=10.1038/nbt.1527 |issn=1087-0156 |pmid=19252483}}</ref>
* [[Immunogenicity]] and the basis of [[tumorigenicity]] of human embryonic stem cells.<ref>{{Cite journal |last1=Drukker |first1=Micha |last2=Katz |first2=Gil |last3=Urbach |first3=Achia |last4=Schuldiner |first4=Maya |last5=Markel |first5=Gal |last6=Itskovitz-Eldor |first6=Joseph |last7=Reubinoff |first7=Benjamin |last8=Mandelboim |first8=Ofer |last9=Benvenisty |first9=Nissim |date=2002-07-23 |title=Characterization of the expression of MHC proteins in human embryonic stem cells |journal=Proceedings of the National Academy of Sciences |language=en |volume=99 |issue=15 |pages=9864–9869 |bibcode=2002PNAS...99.9864D |doi=10.1073/pnas.142298299 |issn=0027-8424 |pmc=125045 |pmid=12114532 |doi-access=free}}</ref><ref>{{Cite journal |last1=Blum |first1=Barak |last2=Bar-Nur |first2=Ori |last3=Golan-Lev |first3=Tamar |last4=Benvenisty |first4=Nissim |date=March 2009 |title=The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells |url=https://www.nature.com/articles/nbt.1527 |journal=Nature Biotechnology |language=en |volume=27 |issue=3 |pages=281–287 |doi=10.1038/nbt.1527 |issn=1087-0156 |pmid=19252483}}</ref>
* Studying how microbes develop resistance mechanisms against antibiotics.<ref>{{Cite journal |last1=Tal |first1=Nir |last2=Schuldiner |first2=Shimon |date=2009-06-02 |title=A coordinated network of transporters with overlapping specificities provides a robust survival strategy |journal=Proceedings of the National Academy of Sciences |language=en |volume=106 |issue=22 |pages=9051–9056 |doi=10.1073/pnas.0902400106 |doi-access=free |bibcode=2009PNAS..106.9051T |issn=0027-8424}}</ref>
* Studying how microbes develop resistance mechanisms against [[antibiotics]].<ref>{{Cite journal |last1=Tal |first1=Nir |last2=Schuldiner |first2=Shimon |date=2009-06-02 |title=A coordinated network of transporters with overlapping specificities provides a robust survival strategy |journal=Proceedings of the National Academy of Sciences |language=en |volume=106 |issue=22 |pages=9051–9056 |doi=10.1073/pnas.0902400106 |doi-access=free |pmid=19451626 |pmc=2690002 |bibcode=2009PNAS..106.9051T |issn=0027-8424}}</ref>
* Discovery that cancer development is promoted by uncoordinated regulation of nucleotide biosynthesis and cell proliferation.<ref>{{Cite journal |last1=Bester |first1=Assaf C. |last2=Roniger |first2=Maayan |last3=Oren |first3=Yifat S. |last4=Im |first4=Michael M. |last5=Sarni |first5=Dan |last6=Chaoat |first6=Malka |last7=Bensimon |first7=Aaron |last8=Zamir |first8=Gideon |last9=Shewach |first9=Donna S. |last10=Kerem |first10=Batsheva |date=April 2011 |title=Nucleotide Deficiency Promotes Genomic Instability in Early Stages of Cancer Development |journal=Cell |language=en |volume=145 |issue=3 |pages=435–446 |doi=10.1016/j.cell.2011.03.044 |pmc=3740329 |pmid=21529715}}</ref>
* Discovery that cancer development is promoted by uncoordinated regulation of [[nucleotide]] biosynthesis and cell proliferation.<ref>{{Cite journal |last1=Bester |first1=Assaf C. |last2=Roniger |first2=Maayan |last3=Oren |first3=Yifat S. |last4=Im |first4=Michael M. |last5=Sarni |first5=Dan |last6=Chaoat |first6=Malka |last7=Bensimon |first7=Aaron |last8=Zamir |first8=Gideon |last9=Shewach |first9=Donna S. |last10=Kerem |first10=Batsheva |date=April 2011 |title=Nucleotide Deficiency Promotes Genomic Instability in Early Stages of Cancer Development |journal=Cell |language=en |volume=145 |issue=3 |pages=435–446 |doi=10.1016/j.cell.2011.03.044 |pmc=3740329 |pmid=21529715}}</ref>
* First demonstration of spontaneous and direct differentiation of human embryonic stem cells.<ref>{{Cite journal |last1=Nakamura |first1=Kensuke |last2=Inokuchi |first2=Ryota |last3=Doi |first3=Kent |last4=Fukuda |first4=Tatsuma |last5=Tokunaga |first5=Kurato |last6=Nakajima |first6=Susumu |last7=Noiri |first7=Eisei |last8=Yahagi |first8=Naoki |date=2014 |title=Septic Ketoacidosis |url=http://dx.doi.org/10.2169/internalmedicine.53.1791 |journal=Internal Medicine |volume=53 |issue=10 |pages=1071–1073 |doi=10.2169/internalmedicine.53.1791 |issn=0918-2918 |pmid=24827487}}</ref>
* First demonstration of spontaneous and direct differentiation of human embryonic [[stem cells]].<ref>{{Cite journal |last1=Nakamura |first1=Kensuke |last2=Inokuchi |first2=Ryota |last3=Doi |first3=Kent |last4=Fukuda |first4=Tatsuma |last5=Tokunaga |first5=Kurato |last6=Nakajima |first6=Susumu |last7=Noiri |first7=Eisei |last8=Yahagi |first8=Naoki |date=2014 |title=Septic Ketoacidosis |url=http://dx.doi.org/10.2169/internalmedicine.53.1791 |journal=Internal Medicine |volume=53 |issue=10 |pages=1071–1073 |doi=10.2169/internalmedicine.53.1791 |issn=0918-2918 |pmid=24827487|doi-access=free }}</ref>
* First DNA methylation maps of Neanderthals and Denisovans.<ref>{{Cite journal |last1=Gokhman |first1=David |last2=Lavi |first2=Eitan |last3=Prüfer |first3=Kay |last4=Fraga |first4=Mario F. |last5=Riancho |first5=José A. |last6=Kelso |first6=Janet |last7=Pääbo |first7=Svante |last8=Meshorer |first8=Eran |last9=Carmel |first9=Liran |date=2014-05-02 |title=Reconstructing the DNA Methylation Maps of the Neandertal and the Denisovan |url=https://www.science.org/doi/10.1126/science.1250368 |journal=Science |language=en |volume=344 |issue=6183 |pages=523–527 |bibcode=2014Sci...344..523G |doi=10.1126/science.1250368 |issn=0036-8075 |pmid=24786081}}</ref>
* First DNA methylation maps of [[Neanderthals]] and [[Denisovan|Denisovans]].<ref>{{Cite journal |last1=Gokhman |first1=David |last2=Lavi |first2=Eitan |last3=Prüfer |first3=Kay |last4=Fraga |first4=Mario F. |last5=Riancho |first5=José A. |last6=Kelso |first6=Janet |last7=Pääbo |first7=Svante |last8=Meshorer |first8=Eran |last9=Carmel |first9=Liran |date=2014-05-02 |title=Reconstructing the DNA Methylation Maps of the Neandertal and the Denisovan |url=https://www.science.org/doi/10.1126/science.1250368 |journal=Science |language=en |volume=344 |issue=6183 |pages=523–527 |bibcode=2014Sci...344..523G |doi=10.1126/science.1250368 |issn=0036-8075 |pmid=24786081}}</ref>
* First generation of haploid human embryonic stem cells.<ref>{{Cite journal |last1=Sagi |first1=Ido |last2=Chia |first2=Gloryn |last3=Golan-Lev |first3=Tamar |last4=Peretz |first4=Mordecai |last5=Weissbein |first5=Uri |last6=Sui |first6=Lina |last7=Sauer |first7=Mark V. |last8=Yanuka |first8=Ofra |last9=Egli |first9=Dieter |last10=Benvenisty |first10=Nissim |date=2016-04-07 |title=Derivation and differentiation of haploid human embryonic stem cells |url=https://www.nature.com/articles/nature17408 |journal=Nature |language=en |volume=532 |issue=7597 |pages=107–111 |bibcode=2016Natur.532..107S |doi=10.1038/nature17408 |issn=0028-0836 |pmid=26982723}}</ref>
* First generation of [[haploid]] human embryonic stem cells.<ref>{{Cite journal |last1=Sagi |first1=Ido |last2=Chia |first2=Gloryn |last3=Golan-Lev |first3=Tamar |last4=Peretz |first4=Mordecai |last5=Weissbein |first5=Uri |last6=Sui |first6=Lina |last7=Sauer |first7=Mark V. |last8=Yanuka |first8=Ofra |last9=Egli |first9=Dieter |last10=Benvenisty |first10=Nissim |date=2016-04-07 |title=Derivation and differentiation of haploid human embryonic stem cells |url=https://www.nature.com/articles/nature17408 |journal=Nature |language=en |volume=532 |issue=7597 |pages=107–111 |bibcode=2016Natur.532..107S |doi=10.1038/nature17408 |issn=0028-0836 |pmid=26982723}}</ref>
* Genome-wide screenings in human development and disease.<ref>{{Cite journal |last1=Yilmaz |first1=Atilgan |last2=Peretz |first2=Mordecai |last3=Aharony |first3=Aviram |last4=Sagi |first4=Ido |last5=Benvenisty |first5=Nissim |date=May 2018 |title=Defining essential genes for human pluripotent stem cells by CRISPR–Cas9 screening in haploid cells |url=https://www.nature.com/articles/s41556-018-0088-1 |journal=Nature Cell Biology |language=en |volume=20 |issue=5 |pages=610–619 |doi=10.1038/s41556-018-0088-1 |issn=1465-7392 |pmid=29662178}}</ref><ref>{{Cite journal |last1=Bar |first1=Shiran |last2=Vershkov |first2=Dan |last3=Keshet |first3=Gal |last4=Lezmi |first4=Elyad |last5=Meller |first5=Naama |last6=Yilmaz |first6=Atilgan |last7=Yanuka |first7=Ofra |last8=Nissim-Rafinia |first8=Malka |last9=Meshorer |first9=Eran |last10=Eldar-Geva |first10=Talia |last11=Benvenisty |first11=Nissim |date=2021-11-18 |title=Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells |journal=Nature Communications |language=en |volume=12 |issue=1 |page=6718 |bibcode=2021NatCo..12.6718B |doi=10.1038/s41467-021-26949-7 |issn=2041-1723 |pmc=8602306 |pmid=34795250}}</ref>
* Genome-wide screenings in human development and disease.<ref>{{Cite journal |last1=Yilmaz |first1=Atilgan |last2=Peretz |first2=Mordecai |last3=Aharony |first3=Aviram |last4=Sagi |first4=Ido |last5=Benvenisty |first5=Nissim |date=May 2018 |title=Defining essential genes for human pluripotent stem cells by CRISPR–Cas9 screening in haploid cells |url=https://www.nature.com/articles/s41556-018-0088-1 |journal=Nature Cell Biology |language=en |volume=20 |issue=5 |pages=610–619 |doi=10.1038/s41556-018-0088-1 |issn=1465-7392 |pmid=29662178}}</ref><ref>{{Cite journal |last1=Bar |first1=Shiran |last2=Vershkov |first2=Dan |last3=Keshet |first3=Gal |last4=Lezmi |first4=Elyad |last5=Meller |first5=Naama |last6=Yilmaz |first6=Atilgan |last7=Yanuka |first7=Ofra |last8=Nissim-Rafinia |first8=Malka |last9=Meshorer |first9=Eran |last10=Eldar-Geva |first10=Talia |last11=Benvenisty |first11=Nissim |date=2021-11-18 |title=Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells |journal=Nature Communications |language=en |volume=12 |issue=1 |page=6718 |bibcode=2021NatCo..12.6718B |doi=10.1038/s41467-021-26949-7 |issn=2041-1723 |pmc=8602306 |pmid=34795250}}</ref>
* Anatomical profile of a Denisovan.<ref>{{Cite journal |last1=Gokhman |first1=David |last2=Mishol |first2=Nadav |last3=de Manuel |first3=Marc |last4=de Juan |first4=David |last5=Shuqrun |first5=Jonathan |last6=Meshorer |first6=Eran |last7=Marques-Bonet |first7=Tomas |last8=Rak |first8=Yoel |last9=Carmel |first9=Liran |date=September 2019 |title=Reconstructing Denisovan Anatomy Using DNA Methylation Maps |url=https://linkinghub.elsevier.com/retrieve/pii/S0092867419309547 |journal=Cell |language=en |volume=179 |issue=1 |pages=180–192.e10 |doi=10.1016/j.cell.2019.08.035 |pmid=31539495}}</ref>
* Anatomical profile of a Denisovan.<ref>{{Cite journal |last1=Gokhman |first1=David |last2=Mishol |first2=Nadav |last3=de Manuel |first3=Marc |last4=de Juan |first4=David |last5=Shuqrun |first5=Jonathan |last6=Meshorer |first6=Eran |last7=Marques-Bonet |first7=Tomas |last8=Rak |first8=Yoel |last9=Carmel |first9=Liran |date=September 2019 |title=Reconstructing Denisovan Anatomy Using DNA Methylation Maps |url=https://linkinghub.elsevier.com/retrieve/pii/S0092867419309547 |journal=Cell |language=en |volume=179 |issue=1 |pages=180–192.e10 |doi=10.1016/j.cell.2019.08.035 |pmid=31539495}}</ref>
* Re-discovery of transfer RNA fragments' functions.<ref>{{Cite journal |last1=Winek |first1=Katarzyna |last2=Lobentanzer |first2=Sebastian |last3=Nadorp |first3=Bettina |last4=Dubnov |first4=Serafima |last5=Dames |first5=Claudia |last6=Jagdmann |first6=Sandra |last7=Moshitzky |first7=Gilli |last8=Hotter |first8=Benjamin |last9=Meisel |first9=Christian |last10=Greenberg |first10=David S. |last11=Shifman |first11=Sagiv |last12=Klein |first12=Jochen |last13=Shenhar-Tsarfaty |first13=Shani |last14=Meisel |first14=Andreas |last15=Soreq |first15=Hermona |date=2020-12-22 |title=Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade |journal=Proceedings of the National Academy of Sciences |language=en |volume=117 |issue=51 |pages=32606–32616 |doi=10.1073/pnas.2013542117 |doi-access=free |issn=0027-8424 |pmc=7768686 |pmid=33288717|bibcode=2020PNAS..11732606W }}</ref>
* Re-discovery of [[transfer RNA]] fragments' functions.<ref>{{Cite journal |last1=Winek |first1=Katarzyna |last2=Lobentanzer |first2=Sebastian |last3=Nadorp |first3=Bettina |last4=Dubnov |first4=Serafima |last5=Dames |first5=Claudia |last6=Jagdmann |first6=Sandra |last7=Moshitzky |first7=Gilli |last8=Hotter |first8=Benjamin |last9=Meisel |first9=Christian |last10=Greenberg |first10=David S. |last11=Shifman |first11=Sagiv |last12=Klein |first12=Jochen |last13=Shenhar-Tsarfaty |first13=Shani |last14=Meisel |first14=Andreas |last15=Soreq |first15=Hermona |date=2020-12-22 |title=Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade |journal=Proceedings of the National Academy of Sciences |language=en |volume=117 |issue=51 |pages=32606–32616 |doi=10.1073/pnas.2013542117 |doi-access=free |issn=0027-8424 |pmc=7768686 |pmid=33288717|bibcode=2020PNAS..11732606W }}</ref>


== Study Programs ==
== Study Programs ==
Line 80: Line 59:


== References ==
== References ==
{{Reflist}}
{{Drafts moved from mainspace|date=November 2022}}
[[Category:Hebrew University of Jerusalem]]

Latest revision as of 17:50, 15 September 2024

Alexander Silberman Institute of Life Sciences
TypeResearch Institute
Established1925
Parent institution
The Hebrew University of Jerusalem
ChairpersonProf. Guy Bloch
Academic staff
75
Students900
Undergraduates600
Location
Jerusalem
,
Israel
LanguageHebrew & English
Websitehttps://www.bio.huji.ac.il/en

The Alexander Silberman Institute of Life Sciences (AS-ILS) at the Hebrew University of Jerusalem is the oldest life sciences research institute in Israel. It is part of the Faculty of Sciences, and is located in the Edmond J. Safra Campus (Givat Ram) in Jerusalem.

History

[edit]

The origins of the institute date back to 1925, the year that the Hebrew University was founded,[1] when the Department of Botany was formed as part of a research unit called "The Institute for Studying the Natural History of the Land of Israel". Among the founding researchers were Profs. Otto Warburg,[2] Alexander Eig,[3] Michael Zohary[4] and Naomi Feinbrun-Dothan.[5] During the first years of the department, several large-scale projects that continue to this day have been started off, including the establishment of the Herbarium Collection,[6] today part of Israel's Natural History Collections,[7] and the establishment of the National Botanic Garden of Israel at Mount Scopus, which was the first of its kind in the Middle East.

In 1928, Prof. Simon Bodenheimer joined the nascent institute and established the Department of Zoology, leading the institute to probe into new scientific fields.[8]

Research activities at both departments (and at the Hebrew University in general) were diminished in 1948 during the War of Independence, and were brought to a complete stop following the Hadassah medical convoy massacre. Activity in both departments was renewed after the war, in April 1949.[1]

Notable achievements

[edit]

Throughout the years AS-ILS members have conducted basic research as well as applied science in the fields of biomedicine, biotechnology and agriculture at multiple levels of organization, from molecular mechanism in cells, through processes within the whole organism, and to studies at the population level. AS-ILS members have been associated with several discoveries:

Study Programs

[edit]

The institute offers a number of undergraduate programs, including a single major program, joint dual major programs, supplementary units, and a number of excellence programs.[39][40]

References

[edit]
  1. ^ a b "The Hebrew University of Jerusalem". www.jewishvirtuallibrary.org.
  2. ^ "Otto Warburg (botanist)". JSTOR Global Plants.
  3. ^ "Alexander Eig". JSTOR Global Plants.
  4. ^ "Michael Zohary". JSTOR Global Plants.
  5. ^ "Naomi Feinbrun-Dothan". Jewish Women's Archive.
  6. ^ "Something went wrong..." en-nnhc.huji.ac.il.
  7. ^ "The National Natural History Collections". en-nnhc.huji.ac.il.
  8. ^ Harpaz, I. (1984). "Frederick Simon Bodenheimer (1897–1959): Idealist, Scholar, Scientist". Annual Review of Entomology. 29: 1–24. doi:10.1146/annurev.en.29.010184.000245. S2CID 86230193.
  9. ^ Eig, Alexander (1926). A contribution to the knowledge of the flora of Palestine (1st ed.). The Zionist organisation and the Hebrew Univ, Tel-Aviv.
  10. ^ GOLDSCHMIDT, ELISABETH; RONEN, AMIRAM; RONEN, ILANA (1960). "Changing marriage systems in the Jewish communities of Israel*". Annals of Human Genetics. 24 (3): 191–204. doi:10.1111/j.1469-1809.1960.tb01732.x. ISSN 0003-4800. PMID 13850739.
  11. ^ Goldschmidt, E.; Cohen, T. (1964-01-01). "Inter-ethnic Mixture among the Communities of Israel". Cold Spring Harbor Symposia on Quantitative Biology. 29: 115–120. doi:10.1101/sqb.1964.029.01.016. ISSN 0091-7451. PMID 14278459.
  12. ^ Horowitz, A.; Cohen, T.; Goldschmidt, E.; Levene, C. (1966). "Thalassaemia Types among Kurdish Jews in Israel". British Journal of Haematology. 12 (5): 555–568. doi:10.1111/j.1365-2141.1966.tb00138.x. ISSN 0007-1048. PMID 5915052.
  13. ^ Zohary, Michael, ed. (1981). Flora Palaestina. Text: 1. Equisetaceae to moringaceae / by Michael Zohary (2. print ed.). Jerusalem: Israel Acad. of Sciences and Human. ISBN 978-965-208-001-1.
  14. ^ Levitzki, Alexander; Koshland, D. E. (1969). "Negative Cooperativity in Regulatory Enzymes". Proceedings of the National Academy of Sciences. 62 (4): 1121–1128. Bibcode:1969PNAS...62.1121L. doi:10.1073/pnas.62.4.1121. ISSN 0027-8424. PMC 223623. PMID 5256410.
  15. ^ Cassel, Dan; Selinger, Zvi (August 1977). "Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site". Proceedings of the National Academy of Sciences. 74 (8): 3307–3311. Bibcode:1977PNAS...74.3307C. doi:10.1073/pnas.74.8.3307. ISSN 0027-8424. PMC 431542. PMID 198781.
  16. ^ Huez, G.; Marbaix, G.; Burny, A.; Hubert, E.; Leclercq, M.; Cleuter, Y.; Chantrenne, H.; Soreq, H.; Littauer, U. Z. (March 1977). "Degradation of deadenylated rabbit α-globin mRNA in Xenopus oocytes is associated with its translation". Nature. 266 (5601): 473–474. Bibcode:1977Natur.266..473H. doi:10.1038/266473a0. ISSN 0028-0836. PMID 558522.
  17. ^ Atlas, Daphne; Levitzki, Alexander (1978). "Tentative identification of β-adrenoreceptor subunits". Nature. 272 (5651): 370–371. Bibcode:1978Natur.272..370A. doi:10.1038/272370a0. ISSN 0028-0836. PMID 204872.
  18. ^ Cassel, D; Selinger, Z (September 1978). "Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP". Proceedings of the National Academy of Sciences. 75 (9): 4155–4159. Bibcode:1978PNAS...75.4155C. doi:10.1073/pnas.75.9.4155. ISSN 0027-8424. PMC 336070. PMID 212737.
  19. ^ Zohary, Daniel; Hopf, Maria; Weiss, Ehud (2012). Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin (Fourth ed.). Oxford: Oxford University Press. ISBN 978-0-19-954906-1.
  20. ^ Goldberg, E B; Arbel, T; Chen, J; Karpel, R; Mackie, G A; Schuldiner, S; Padan, E (May 1987). "Characterization of a Na+/H+ antiporter gene of Escherichia coli". Proceedings of the National Academy of Sciences. 84 (9): 2615–2619. doi:10.1073/pnas.84.9.2615. ISSN 0027-8424. PMC 304708. PMID 3033655.
  21. ^ Yaish, Pnina; Gazit, Aviv; Gilon, Chaim; Levitzki, Alexander (1988-11-11). "Blocking of EGF-Dependent Cell Proliferation by EGF Receptor Kinase Inhibitors". Science. 242 (4880): 933–935. Bibcode:1988Sci...242..933Y. doi:10.1126/science.3263702. ISSN 0036-8075. PMID 3263702.
  22. ^ Kassir, Yona; Granot, David; Simchen, Giora (March 1988). "IME1, a positive regulator gene of meiosis in S. cerevisiae". Cell. 52 (6): 853–862. doi:10.1016/0092-8674(88)90427-8. PMID 3280136.
  23. ^ Kerem, Bat-Sheva; Rommens, Johanna M.; Buchanan, Janet A.; Markiewicz, Danuta; Cox, Tara K.; Chakravarti, Aravinda; Buchwald, Manuel; Tsui, Lap-Chee (1989-09-08). "Identification of the Cystic Fibrosis Gene: Genetic Analysis". Science. 245 (4922): 1073–1080. Bibcode:1989Sci...245.1073K. doi:10.1126/science.2570460. ISSN 0036-8075. PMID 2570460.
  24. ^ Zenvirth, D.; Arbel, T.; Sherman, A.; Goldway, M.; Klein, S.; Simchen, G. (September 1992). "Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae". The EMBO Journal. 11 (9): 3441–3447. doi:10.1002/j.1460-2075.1992.tb05423.x. PMC 556879. PMID 1324174.
  25. ^ Kaufer, Daniela; Friedman, Alon; Seidman, Shlomo; Soreq, Hermona (1998-05-28). "Acute stress facilitates long-lasting changes in cholinergic gene expression". Nature. 393 (6683): 373–377. Bibcode:1998Natur.393..373K. doi:10.1038/30741. ISSN 0028-0836. PMID 9620801. (Erratum: doi:10.1038/nature16180, PMID 26605528. If the erratum has been checked and does not affect the cited material, please replace {{erratum|...}} with {{erratum|...|checked=yes}}.)
  26. ^ Eiges, Rachel; Schuldiner, Maya; Drukker, Micha; Yanuka, Ofra; Itskovitz-Eldor, Joseph; Benvenisty, Nissim (April 2001). "Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells". Current Biology. 11 (7): 514–518. Bibcode:2001CBio...11..514E. doi:10.1016/S0960-9822(01)00144-0. PMID 11413002.
  27. ^ Avior, Yishai; Sagi, Ido; Benvenisty, Nissim (March 2016). "Pluripotent stem cells in disease modelling and drug discovery". Nature Reviews Molecular Cell Biology. 17 (3): 170–182. doi:10.1038/nrm.2015.27. ISSN 1471-0072. PMID 26818440.
  28. ^ Drukker, Micha; Katz, Gil; Urbach, Achia; Schuldiner, Maya; Markel, Gal; Itskovitz-Eldor, Joseph; Reubinoff, Benjamin; Mandelboim, Ofer; Benvenisty, Nissim (2002-07-23). "Characterization of the expression of MHC proteins in human embryonic stem cells". Proceedings of the National Academy of Sciences. 99 (15): 9864–9869. Bibcode:2002PNAS...99.9864D. doi:10.1073/pnas.142298299. ISSN 0027-8424. PMC 125045. PMID 12114532.
  29. ^ Blum, Barak; Bar-Nur, Ori; Golan-Lev, Tamar; Benvenisty, Nissim (March 2009). "The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells". Nature Biotechnology. 27 (3): 281–287. doi:10.1038/nbt.1527. ISSN 1087-0156. PMID 19252483.
  30. ^ Tal, Nir; Schuldiner, Shimon (2009-06-02). "A coordinated network of transporters with overlapping specificities provides a robust survival strategy". Proceedings of the National Academy of Sciences. 106 (22): 9051–9056. Bibcode:2009PNAS..106.9051T. doi:10.1073/pnas.0902400106. ISSN 0027-8424. PMC 2690002. PMID 19451626.
  31. ^ Bester, Assaf C.; Roniger, Maayan; Oren, Yifat S.; Im, Michael M.; Sarni, Dan; Chaoat, Malka; Bensimon, Aaron; Zamir, Gideon; Shewach, Donna S.; Kerem, Batsheva (April 2011). "Nucleotide Deficiency Promotes Genomic Instability in Early Stages of Cancer Development". Cell. 145 (3): 435–446. doi:10.1016/j.cell.2011.03.044. PMC 3740329. PMID 21529715.
  32. ^ Nakamura, Kensuke; Inokuchi, Ryota; Doi, Kent; Fukuda, Tatsuma; Tokunaga, Kurato; Nakajima, Susumu; Noiri, Eisei; Yahagi, Naoki (2014). "Septic Ketoacidosis". Internal Medicine. 53 (10): 1071–1073. doi:10.2169/internalmedicine.53.1791. ISSN 0918-2918. PMID 24827487.
  33. ^ Gokhman, David; Lavi, Eitan; Prüfer, Kay; Fraga, Mario F.; Riancho, José A.; Kelso, Janet; Pääbo, Svante; Meshorer, Eran; Carmel, Liran (2014-05-02). "Reconstructing the DNA Methylation Maps of the Neandertal and the Denisovan". Science. 344 (6183): 523–527. Bibcode:2014Sci...344..523G. doi:10.1126/science.1250368. ISSN 0036-8075. PMID 24786081.
  34. ^ Sagi, Ido; Chia, Gloryn; Golan-Lev, Tamar; Peretz, Mordecai; Weissbein, Uri; Sui, Lina; Sauer, Mark V.; Yanuka, Ofra; Egli, Dieter; Benvenisty, Nissim (2016-04-07). "Derivation and differentiation of haploid human embryonic stem cells". Nature. 532 (7597): 107–111. Bibcode:2016Natur.532..107S. doi:10.1038/nature17408. ISSN 0028-0836. PMID 26982723.
  35. ^ Yilmaz, Atilgan; Peretz, Mordecai; Aharony, Aviram; Sagi, Ido; Benvenisty, Nissim (May 2018). "Defining essential genes for human pluripotent stem cells by CRISPR–Cas9 screening in haploid cells". Nature Cell Biology. 20 (5): 610–619. doi:10.1038/s41556-018-0088-1. ISSN 1465-7392. PMID 29662178.
  36. ^ Bar, Shiran; Vershkov, Dan; Keshet, Gal; Lezmi, Elyad; Meller, Naama; Yilmaz, Atilgan; Yanuka, Ofra; Nissim-Rafinia, Malka; Meshorer, Eran; Eldar-Geva, Talia; Benvenisty, Nissim (2021-11-18). "Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells". Nature Communications. 12 (1): 6718. Bibcode:2021NatCo..12.6718B. doi:10.1038/s41467-021-26949-7. ISSN 2041-1723. PMC 8602306. PMID 34795250.
  37. ^ Gokhman, David; Mishol, Nadav; de Manuel, Marc; de Juan, David; Shuqrun, Jonathan; Meshorer, Eran; Marques-Bonet, Tomas; Rak, Yoel; Carmel, Liran (September 2019). "Reconstructing Denisovan Anatomy Using DNA Methylation Maps". Cell. 179 (1): 180–192.e10. doi:10.1016/j.cell.2019.08.035. PMID 31539495.
  38. ^ Winek, Katarzyna; Lobentanzer, Sebastian; Nadorp, Bettina; Dubnov, Serafima; Dames, Claudia; Jagdmann, Sandra; Moshitzky, Gilli; Hotter, Benjamin; Meisel, Christian; Greenberg, David S.; Shifman, Sagiv; Klein, Jochen; Shenhar-Tsarfaty, Shani; Meisel, Andreas; Soreq, Hermona (2020-12-22). "Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade". Proceedings of the National Academy of Sciences. 117 (51): 32606–32616. Bibcode:2020PNAS..11732606W. doi:10.1073/pnas.2013542117. ISSN 0027-8424. PMC 7768686. PMID 33288717.
  39. ^ "מידע על החוג". catalog.huji.ac.il.
  40. ^ "מידע על החוג". catalog.huji.ac.il.