Black hole complementarity: Difference between revisions
m Task 18 (cosmetic): eval 5 templates: del empty params (4×); hyphenate params (1×); |
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
||
(23 intermediate revisions by 15 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Conjectured solution to the black hole information paradox}} |
|||
{{ |
{{more citations needed|date=October 2017}} |
||
'''Black hole complementarity''' is a conjectured solution to the [[black hole information paradox]], proposed by [[Leonard Susskind]], |
'''Black hole complementarity''' is a conjectured solution to the [[black hole information paradox]], proposed by [[Leonard Susskind]], Lárus Thorlacius, John Uglum,<ref name=":0">{{Cite journal|arxiv=hep-th/9306069 |author1=Susskind |author2=Thorlacius |author3=Uglum |title=The Stretched Horizon and Black Hole Complementarity |journal=Physical Review D |volume=48 |issue=8 |pages=3743–3761 |year=1993|doi=10.1103/PhysRevD.48.3743 |pmid=10016649 |bibcode = 1993PhRvD..48.3743S |s2cid=16146148 }}</ref> and [[Gerard 't Hooft]].<ref>{{cite journal |last1='t Hooft |first1=G. |doi=10.1016/0550-3213(85)90418-3 |title=On the quantum structure of a black hole |journal=Nuclear Physics B |volume=256 |pages=727–745 |year=1985 |bibcode=1985NuPhB.256..727T}}</ref><ref>{{cite journal |last1='t Hooft |first1=G. |doi=10.1016/0550-3213(90)90174-C |title=The black hole interpretation of string theory |journal=Nuclear Physics B |volume=335 |issue=1 |pages= 138–154|year=1990 |bibcode=1990NuPhB.335..138T}}</ref> |
||
==Overview== |
==Overview== |
||
Ever since [[Stephen Hawking]] suggested information is lost in an evaporating [[black hole]] once it passes through the [[event horizon]] and is inevitably destroyed at the [[Gravitational singularity|singularity]], and that this can turn [[pure state|pure quantum state]]s into [[mixed state (physics)|mixed state]]s, some physicists have wondered if a complete theory of [[quantum gravity]] might be able to conserve information with a unitary [[time evolution]]. But how can this be possible if information cannot escape the event horizon without traveling faster than light? This seems to rule out [[Hawking radiation]] as the carrier of the missing information. It also appears as if information cannot be "reflected" at the event horizon as there is nothing special about |
Ever since [[Stephen Hawking]] suggested information is lost in an evaporating [[black hole]] once it passes through the [[event horizon]] and is inevitably destroyed at the [[Gravitational singularity|singularity]], and that this can turn [[pure state|pure quantum state]]s into [[mixed state (physics)|mixed state]]s, some physicists have wondered if a complete theory of [[quantum gravity]] might be able to conserve information with a unitary [[time evolution]]. But how can this be possible if information cannot escape the event horizon without traveling faster than light? This seems to rule out [[Hawking radiation]] as the carrier of the missing information. It also appears as if information cannot be "reflected" at the event horizon as there is nothing special about the horizon locally. |
||
⚫ | [[Leonard Susskind]], Lárus Thorlacius, and John Uglum<ref name=":0" /> proposed a radical resolution to this problem by claiming that the information is both reflected at the event horizon ''and'' passes through the event horizon and cannot escape, with the catch being no observer can confirm both stories simultaneously. According to an external observer, the infinite time dilation at the horizon itself makes it appear as if it takes an infinite amount of time to reach the horizon. They also postulated a '''stretched horizon''', which is a [[membrane paradigm|membrane]] hovering about a [[Planck length]] outside the event horizon and which is both physical and hot. According to the external observer, infalling information heats up the stretched horizon, which then reradiates it as Hawking radiation, with the entire evolution being unitary. However, according to an infalling observer, nothing special happens at the event horizon itself, and both the observer and the information will hit the singularity. This isn't to say there are two copies of the information lying about — one at or just outside the horizon, and the other inside the black hole — as that would violate the [[no-cloning theorem]]. Instead, an observer can only detect the information at the horizon itself, or inside, but never both simultaneously. Complementarity is a feature of the [[quantum mechanics]] of noncommuting observables, and both stories are complementary in the quantum sense, that there is no contradiction which also means no violation of linearity in quantum mechanics. |
||
[[Leonard Susskind]]<ref> |
|||
{{cite book |
|||
| last = Susskind |
|||
| first = Leonard |
|||
| author-link = Leonard Susskind |
|||
| first2 = James | last2 = Lindesay |
|||
| title = An introduction to black holes, information and the string theory revolution: The holographic universe |
|||
| date = 31 December 2004 |
|||
| publisher = World Scientific Publishing Company |
|||
| isbn = 978-981-256-083-4 |
|||
}} |
|||
⚫ | < |
||
An infalling observer will see the point of entry of the information as being localized on the event horizon, while an external observer will notice the information being spread out uniformly over the entire stretched horizon before being re-radiated. |
An infalling observer will see the point of entry of the information as being localized on the event horizon, while an external observer will notice the information being spread out uniformly over the entire stretched horizon before being re-radiated, and perceives the event horizon as a dynamical membrane. |
||
⚫ | To an infalling observer, information and [[entropy]] pass through the horizon with nothing |
||
⚫ | To an infalling observer, information and [[entropy]] pass through the horizon with nothing of interest happening. To an external observer, the information and entropy is absorbed into the stretched horizon which acts like a dissipative fluid with entropy, viscosity and electrical conductivity. See the [[membrane paradigm]] for more details. The stretched horizon is conducting with surface charges which rapidly spread out logarithmically over the horizon. |
||
⚫ | |||
⚫ | It has been suggested that validity of effective field theory near the horizon combined with the [[monogamy of entanglement]] implies the existence of an AMPS "[[firewall (physics)|firewall]]",<ref>{{Cite journal|last1=Almheiri|first1=Ahmed|last2=Marolf|first2=Donald|last3=Polchinski|first3=Joseph|last4=Sully|first4=James|date=February 2013|title=Black holes: complementarity or firewalls?|journal=Journal of High Energy Physics|volume=2013|issue=2|pages=62|doi=10.1007/jhep02(2013)062|issn=1029-8479|bibcode=2013JHEP...02..062A|arxiv=1207.3123|s2cid=256008049 }}</ref> where high energy, short wavelength photons are present in the horizon. |
||
== References == |
== References == |
||
Line 31: | Line 22: | ||
{{DEFAULTSORT:Black Hole Complementarity}} |
{{DEFAULTSORT:Black Hole Complementarity}} |
||
[[Category:Quantum gravity]] |
[[Category:Quantum gravity]] |
||
[[Category:Black holes]] |
Latest revision as of 06:32, 9 October 2024
This article needs additional citations for verification. (October 2017) |
Black hole complementarity is a conjectured solution to the black hole information paradox, proposed by Leonard Susskind, Lárus Thorlacius, John Uglum,[1] and Gerard 't Hooft.[2][3]
Overview
[edit]Ever since Stephen Hawking suggested information is lost in an evaporating black hole once it passes through the event horizon and is inevitably destroyed at the singularity, and that this can turn pure quantum states into mixed states, some physicists have wondered if a complete theory of quantum gravity might be able to conserve information with a unitary time evolution. But how can this be possible if information cannot escape the event horizon without traveling faster than light? This seems to rule out Hawking radiation as the carrier of the missing information. It also appears as if information cannot be "reflected" at the event horizon as there is nothing special about the horizon locally.
Leonard Susskind, Lárus Thorlacius, and John Uglum[1] proposed a radical resolution to this problem by claiming that the information is both reflected at the event horizon and passes through the event horizon and cannot escape, with the catch being no observer can confirm both stories simultaneously. According to an external observer, the infinite time dilation at the horizon itself makes it appear as if it takes an infinite amount of time to reach the horizon. They also postulated a stretched horizon, which is a membrane hovering about a Planck length outside the event horizon and which is both physical and hot. According to the external observer, infalling information heats up the stretched horizon, which then reradiates it as Hawking radiation, with the entire evolution being unitary. However, according to an infalling observer, nothing special happens at the event horizon itself, and both the observer and the information will hit the singularity. This isn't to say there are two copies of the information lying about — one at or just outside the horizon, and the other inside the black hole — as that would violate the no-cloning theorem. Instead, an observer can only detect the information at the horizon itself, or inside, but never both simultaneously. Complementarity is a feature of the quantum mechanics of noncommuting observables, and both stories are complementary in the quantum sense, that there is no contradiction which also means no violation of linearity in quantum mechanics.
An infalling observer will see the point of entry of the information as being localized on the event horizon, while an external observer will notice the information being spread out uniformly over the entire stretched horizon before being re-radiated, and perceives the event horizon as a dynamical membrane.
To an infalling observer, information and entropy pass through the horizon with nothing of interest happening. To an external observer, the information and entropy is absorbed into the stretched horizon which acts like a dissipative fluid with entropy, viscosity and electrical conductivity. See the membrane paradigm for more details. The stretched horizon is conducting with surface charges which rapidly spread out logarithmically over the horizon.
It has been suggested that validity of effective field theory near the horizon combined with the monogamy of entanglement implies the existence of an AMPS "firewall",[4] where high energy, short wavelength photons are present in the horizon.
References
[edit]- ^ a b Susskind; Thorlacius; Uglum (1993). "The Stretched Horizon and Black Hole Complementarity". Physical Review D. 48 (8): 3743–3761. arXiv:hep-th/9306069. Bibcode:1993PhRvD..48.3743S. doi:10.1103/PhysRevD.48.3743. PMID 10016649. S2CID 16146148.
- ^ 't Hooft, G. (1985). "On the quantum structure of a black hole". Nuclear Physics B. 256: 727–745. Bibcode:1985NuPhB.256..727T. doi:10.1016/0550-3213(85)90418-3.
- ^ 't Hooft, G. (1990). "The black hole interpretation of string theory". Nuclear Physics B. 335 (1): 138–154. Bibcode:1990NuPhB.335..138T. doi:10.1016/0550-3213(90)90174-C.
- ^ Almheiri, Ahmed; Marolf, Donald; Polchinski, Joseph; Sully, James (February 2013). "Black holes: complementarity or firewalls?". Journal of High Energy Physics. 2013 (2): 62. arXiv:1207.3123. Bibcode:2013JHEP...02..062A. doi:10.1007/jhep02(2013)062. ISSN 1029-8479. S2CID 256008049.