Anesthesia awareness: Difference between revisions
Citation bot (talk | contribs) Alter: volume. Add: issue, bibcode. | Use this bot. Report bugs. | Suggested by MedGME | Category:Anesthesia | #UCB_Category 97/115 |
Citation bot (talk | contribs) Add: pmid, pages, issue, volume, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Articles requiring reliable medical sources | #UCB_Category 935/938 |
||
(20 intermediate revisions by 12 users not shown) | |||
Line 2: | Line 2: | ||
{{More medical citations needed|date=April 2014}} |
{{More medical citations needed|date=April 2014}} |
||
'''Awareness under anesthesia''', also referred to as '''intraoperative awareness''' or '''accidental awareness during general anesthesia''' ('''AAGA'''), is a rare complication of [[General anaesthesia|general anesthesia]] where patients regain varying levels of [[consciousness]] during their surgical procedures. While anesthesia awareness is possible without resulting in any long-term memory, it is also possible for |
'''Awareness under anesthesia''', also referred to as '''intraoperative awareness''' or '''accidental awareness during general anesthesia''' ('''AAGA'''), is a rare complication of [[General anaesthesia|general anesthesia]] where patients regain varying levels of [[consciousness]] during their surgical procedures. While anesthesia awareness is possible without resulting in any long-term memory of the experience, it is also possible for victims to have awareness with explicit [[Recall (memory)|recall]], where they can remember the events related to their surgery ('''intraoperative awareness with explicit recall''').<ref>{{cite journal | vauthors = Mashour GA, Avidan MS | title = Intraoperative awareness: controversies and non-controversies | journal = British Journal of Anaesthesia | volume = 115 | pages = i20–i26 | date = July 2015 | issue = Suppl 1 | pmid = 25735710 | doi = 10.1093/bja/aev034 | doi-access = free }}</ref><ref>{{Cite journal |last1=Schnurr |first1=Paula P. |last2=Sall |first2=James A. |last3=Riggs |first3=David |date=2024-05-29 |title=VA/Department of Defense Clinical Practice Guideline for PTSD and ASD: A Tool to Optimize Patient Care for Trauma Survivors |url=https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2818943 |journal=JAMA Psychiatry |volume=81 |issue=8 |pages=743–744 |language=en |doi=10.1001/jamapsychiatry.2024.1238 |pmid=38809541 |issn=2168-622X}}</ref> |
||
Intraoperative awareness with explicit recall is an infrequent condition with potentially devastating psychological consequences.<ref name=":2">{{cite journal | vauthors = Almeida D | title = Awake and unable to move: what can perioperative practitioners do to avoid accidental awareness under general anaesthesia? | journal = Journal of Perioperative Practice | volume = 25 | issue = 12 | pages = 257–61 | date = December 2015 | pmid = 26845787 | doi = 10.1177/175045891502501202 | s2cid = 2682608 }}</ref> While it has gained popular recognition in media, research shows that it only occurs at an incidence rate of 0. |
Intraoperative awareness with explicit recall is an infrequent condition with potentially devastating psychological consequences.<ref name=":2">{{cite journal | vauthors = Almeida D | title = Awake and unable to move: what can perioperative practitioners do to avoid accidental awareness under general anaesthesia? | journal = Journal of Perioperative Practice | volume = 25 | issue = 12 | pages = 257–61 | date = December 2015 | pmid = 26845787 | doi = 10.1177/175045891502501202 | s2cid = 2682608 }}</ref> While it has gained popular recognition in media, research shows that it only occurs at an incidence rate of 0.1–0.2%. Patients report a variety of experiences, ranging from vague, dreamlike states to being fully awake, immobilized, and in pain from the surgery. Intraoperative awareness is usually caused by the delivery of inadequate [[anesthetic]]s relative to the patient's requirements. Risk factors can be anesthetic (e.g., use of [[Neuromuscular-blocking drug|neuromuscular blockade drugs]], use of intravenous anesthetics, technical/mechanical errors), surgical (e.g., [[cardiac surgery]], trauma/emergency, [[Caesarean section|C-sections]]), or patient-related (e.g., reduced cardiovascular reserve, history of [[Substance abuse|substance use]], history of awareness under anesthesia).<ref>{{Cite journal |date=2013-01-01 |title=Essentials of Trauma Anesthesia |url=https://doi.org/10.1108/ijhcqa.2013.06226caa.015 |journal=International Journal of Health Care Quality Assurance |volume=26 |issue=3 |doi=10.1108/ijhcqa.2013.06226caa.015 |issn=0952-6862}}</ref> |
||
Currently, the mechanism behind consciousness and [[memory]] |
Currently, the mechanism behind consciousness and [[memory]] under anesthesia is unknown, although there are many working hypotheses. However, intraoperative monitoring of anesthetic level with [[Bispectral index|bispectral index (BIS)]] or end-tidal anesthetic concentration (ETAC) may help to reduce the incidence of intraoperative awareness, although clinical trials have yet to show a decreased incidence of AAGA with the BIS monitor.<ref>{{Cite book |last1=Butterworth |first1=John F. |title=Morgan & Mikhail's Clinical Anesthesiology |last2=Mackey |first2=David C. |last3=Wasnick |first3=John D. |publisher=McGraw Hill |year=2022 |isbn=978-1-260-47379-7 |edition=7th |pages=1268}}</ref> |
||
There are also many preventative techniques considered for high-risk patients, such as pre-medicating with [[benzodiazepine]]s, avoiding complete muscle paralysis, and managing patients' expectations. Diagnosis is made postoperatively by asking patients about potential awareness episodes and can be aided by the modified Brice interview questionnaire. A common but devastating complication of intraoperative awareness with recall is the development of [[post-traumatic stress disorder]] (PTSD) from the events experienced during surgery. Prompt diagnosis and referral to counseling and psychiatric treatment are crucial to the treatment of intraoperative awareness and the prevention of PTSD.<ref>{{Cite journal |last1=Schnurr |first1=Paula P. |last2=Sall |first2=James A. |last3=Riggs |first3=David |date=2024-05-29 |title=VA/Department of Defense Clinical Practice Guideline for PTSD and ASD: A Tool to Optimize Patient Care for Trauma Survivors |url=https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2818943 |journal=JAMA Psychiatry |volume=81 |issue=8 |pages=743–744 |language=en |doi=10.1001/jamapsychiatry.2024.1238 |pmid=38809541 |issn=2168-622X}}</ref> |
|||
==Signs and symptoms== |
==Signs and symptoms== |
||
Line 23: | Line 25: | ||
* intravenous anesthesia line infiltrated or occluded<ref name=":3" /> |
* intravenous anesthesia line infiltrated or occluded<ref name=":3" /> |
||
Patients under anesthesia are paralyzed if a [[Neuromuscular-blocking drug|neuromuscular blockade drug]], a type of [[muscle relaxant]], has been given as part of general anesthesia. When paralyzed, patients may not be able to communicate their distress or alert the operating room staff of their consciousness until the paralytic wears off. After surgery, recognition of the symptoms of an awareness event may be delayed.<ref>{{cite journal | vauthors = Sandin RH, Enlund G, Samuelsson P, Lennmarken C | title = Awareness during anaesthesia: a prospective case study | language = en | journal = Lancet | volume = 355 | issue = 9205 | pages = 707–11 | date = February 2000 | pmid = 10703802 | doi = 10.1016/S0140-6736(99)11010-9 | s2cid = 11170260 }}</ref> One review showed that only about 35% of patients are able to report an awareness event immediately after the surgery, with the rest remembering the experience weeks to months afterward.<ref>{{cite journal | vauthors = Ghoneim MM, Block RI, Haffarnan M, Mathews MJ | title = Awareness during anesthesia: risk factors, causes and sequelae: a review of reported cases in the literature | journal = Anesthesia and Analgesia | volume = 108 | issue = 2 | pages = 527–35 | date = February 2009 | pmid = 19151283 | doi = 10.1213/ane.0b013e318193c634 | s2cid = 25593237 }}</ref> Depending on the awareness experience, patients may have postoperative psychological problems that range from mild [[anxiety]] to [[Posttraumatic stress disorder|post-traumatic stress disorder (PTSD)]].<ref name=":0" /><ref>{{Cite book|title=Morgan & Mikhail's Clinical Anesthesiology | vauthors = Butterworth JF, Mackey DC, Wasnick JD, Morgan G, Edward M,Maged S, Morgan GE |year=2018|isbn=9781259834424|edition=6th|location=New York|chapter=Chapter 54: Anesthetic Complications|oclc=1039081701}}</ref> PTSD is characterized by recurrent anxiety, irritability, flashbacks or nightmares, avoidance of triggers related to the trauma, and sleep disturbances.<ref>{{cite journal | vauthors = Osterman JE, van der Kolk BA | title = Awareness during anesthesia and posttraumatic stress disorder | journal = General Hospital Psychiatry | volume = 20 | issue = 5 | pages = 274–81 | date = September 1998 | pmid = 9788027 | doi = 10.1016/S0163-8343(98)00035-8 }}</ref> |
Patients under anesthesia are paralyzed if a [[Neuromuscular-blocking drug|neuromuscular blockade drug]], a type of [[muscle relaxant]], has been given as part of general anesthesia. When paralyzed, patients may not be able to communicate their distress or alert the operating room staff of their consciousness until the paralytic wears off. After surgery, recognition of the symptoms of an awareness event may be delayed.<ref>{{cite journal | vauthors = Sandin RH, Enlund G, Samuelsson P, Lennmarken C | title = Awareness during anaesthesia: a prospective case study | language = en | journal = Lancet | volume = 355 | issue = 9205 | pages = 707–11 | date = February 2000 | pmid = 10703802 | doi = 10.1016/S0140-6736(99)11010-9 | s2cid = 11170260 }}</ref> One review showed that only about 35% of patients are able to report an awareness event immediately after the surgery, with the rest remembering the experience weeks to months afterward.<ref>{{cite journal | vauthors = Ghoneim MM, Block RI, Haffarnan M, Mathews MJ | title = Awareness during anesthesia: risk factors, causes and sequelae: a review of reported cases in the literature | journal = Anesthesia and Analgesia | volume = 108 | issue = 2 | pages = 527–35 | date = February 2009 | pmid = 19151283 | doi = 10.1213/ane.0b013e318193c634 | s2cid = 25593237 | doi-access = free }}</ref> Depending on the awareness experience, patients may have postoperative psychological problems that range from mild [[anxiety]] to [[Posttraumatic stress disorder|post-traumatic stress disorder (PTSD)]].<ref name=":0" /><ref>{{Cite book|title=Morgan & Mikhail's Clinical Anesthesiology | vauthors = Butterworth JF, Mackey DC, Wasnick JD, Morgan G, Edward M, Maged S, Morgan GE |year=2018|isbn=9781259834424|edition=6th|location=New York|chapter=Chapter 54: Anesthetic Complications|oclc=1039081701}}</ref> PTSD is characterized by recurrent anxiety, irritability, flashbacks or nightmares, avoidance of triggers related to the trauma, and sleep disturbances.<ref>{{cite journal | vauthors = Osterman JE, van der Kolk BA | title = Awareness during anesthesia and posttraumatic stress disorder | journal = General Hospital Psychiatry | volume = 20 | issue = 5 | pages = 274–81 | date = September 1998 | pmid = 9788027 | doi = 10.1016/S0163-8343(98)00035-8 | doi-access = free }}</ref> |
||
==Causes == |
==Causes == |
||
Line 29: | Line 31: | ||
===Paralytic and muscle relaxant use=== |
===Paralytic and muscle relaxant use=== |
||
The biggest risk factor is anesthesia performed by unsupervised trainees and the use of a medication that induces muscle paralysis, such as [[Suxamethonium chloride|suxamethonium]] ([[Suxamethonium chloride|succinylcholine]]) or non- |
The biggest risk factor is anesthesia performed by unsupervised trainees and the use of a medication that induces muscle paralysis, such as [[Suxamethonium chloride|suxamethonium]] ([[Suxamethonium chloride|succinylcholine]]) or non-depolarizing neuromuscular blocking drugs (muscle relaxants). During [[general anesthesia]], the patient's muscles may be paralyzed in order to facilitate tracheal intubation or surgical exposure (abdominal and thoracic surgery can be performed only with adequate muscle relaxation). Because the patient cannot breathe for themselves, [[mechanical ventilation]] must be used. The paralyzing agent does not cause unconsciousness or take away the patient's ability to feel pain, but does prevent the patient from breathing, so the airway (trachea) must be protected and the lungs ventilated to ensure adequate oxygenation of the blood and removal of carbon dioxide. |
||
A fully paralyzed patient is unable to move, speak, blink the eyes, or otherwise respond to the pain. If neuromuscular blocking drugs are used this causes skeletal muscle paralysis but does not interfere with cardiac or smooth muscle or the functioning of the [[autonomic nervous system]] so heart rate, blood pressure, intestinal peristalsis, sweating and lacrimation are unaffected. The patient cannot signal |
A fully paralyzed patient is unable to move, speak, blink the eyes, or otherwise respond to the pain. If neuromuscular blocking drugs are used, this causes skeletal muscle paralysis but does not interfere with cardiac or smooth muscle or the functioning of the [[autonomic nervous system]], so heart rate, blood pressure, intestinal peristalsis, sweating and [[Tears|lacrimation]] are unaffected. The patient cannot signal distress and may not exhibit the signs of awareness that would be expected to be detectable by clinical vigilance, because other drugs used during anaesthesia may block or obtund these. |
||
Many types of surgery do not require the patient to be paralyzed. A patient who is anesthetized but not paralyzed can move in response to a painful stimulus if the analgesia is inadequate. This may serve as a warning sign that the anesthetic depth is inadequate. Movement under general anesthesia does not imply full awareness but is a sign that the anesthesia is light. Even without the use of neuromuscular blocking drugs the absence of movement does not necessarily imply amnesia. |
Many types of surgery do not require the patient to be paralyzed. A patient who is anesthetized but not paralyzed can move in response to a painful stimulus if the analgesia is inadequate. This may serve as a warning sign that the anesthetic depth is inadequate. Movement under general anesthesia does not imply full awareness but is a sign that the anesthesia is light. Even without the use of neuromuscular blocking drugs the absence of movement does not necessarily imply amnesia. |
||
Line 37: | Line 39: | ||
===Light anesthesia=== |
===Light anesthesia=== |
||
For certain operations, such as [[ |
For certain operations, such as [[caesarean section]], or in [[Hypovolemia|hypovolemic]] patients or patients with minimal [[cardiac reserve]], the anesthesia provider may aim to provide "light anesthesia" and should discuss this with patients to warn them. During such circumstances, consciousness and recall may occur because judgments of depth of anesthesia are not precise. The anesthesia provider must weigh the need to keep the patient safe and stable with the goal of preventing awareness. Sometimes, it is necessary to provide lighter anesthesia in order to preserve the life of the patient. "Light" anesthesia means less drugs by the intravenous route or via inhalational means, leading to less cardiovascular depression ([[hypotension]]) but permitting "awareness" in the anesthetized subject.<ref>{{cite book|url=https://books.google.com/books?id=VVStHTKzCFkC&q=anesthesia%20awareness%2Bcost-cutting&pg=PA57|title=Complications in anesthesiology|last1=Lobato|first1=Emilio B.| first2 = Nikolaus | last2 = Gravenstein| first3 = Robert R. | last3 = Kirby | name-list-style = vanc |publisher=Lippincott Williams & Wilkins|year=2007|isbn=978-0-7817-8263-0|edition=3rd|page=57}}</ref> |
||
===Anesthesiologist error=== |
===Anesthesiologist error=== |
||
Human errors include repeated attempts at intubation during which the short-acting anesthetic may wear off but the |
Human errors include repeated attempts at intubation during which the short-acting anesthetic may wear off but the paralyzing drug does not; esophageal intubation; inadequate drug dose; a drug given by the wrong route or a wrong drug given; drugs given in the wrong sequence; inadequate monitoring; patient abandonment; disconnections and kinks in tubes from the ventilator; and failure to refill the [[anesthetic machine]]'s [[anaesthetic vaporiser|vaporizers]] with [[volatile anesthetic]]. Other causes include unfamiliarity with techniques used, e.g. intravenous anesthetic regimes, and inexperience. Most cases of awareness are caused by inexperience and poor anesthetic technique, which can be any of the above, but also includes techniques that could be described as outside the boundaries of "normal" practice. The [[American Society of Anesthesiologists]] in 2007 released a Practice Advisory outlining the steps that anesthesia professionals and hospitals should take to minimize these risks. Other societies have released their own versions of these guidelines, including the [[Australian and New Zealand College of Anaesthetists]].<ref name="titleANZCA — ANZCA">{{cite web|url=http://www.anzca.edu.au/publications/profdocs/profstandards/index.htm|title=ANZCA – ANZCA|archive-url=https://web.archive.org/web/20071014063200/http://anzca.edu.au/publications/profdocs/profstandards/index.htm|archive-date=2007-10-14|access-date=2007-11-26}}</ref> |
||
To reduce the likelihood of awareness, anesthetists must be adequately trained and supervised while still in training. Equipment that monitors depth of anesthesia, such as [[bispectral index]] monitoring, should not be used in isolation. |
To reduce the likelihood of awareness, anesthetists must be adequately trained, and supervised while still in training. Equipment that monitors depth of anesthesia, such as [[bispectral index]] monitoring, should not be used in isolation. |
||
Current research attributes the incidence of AAGA to a combination of the risks mentioned above, together with ineffective practice from ODPs, anesthetic nurses, HCAs and anesthetists.<ref name=":2"/> The main failures include: |
Current research attributes the incidence of AAGA to a combination of the risks mentioned above, together with ineffective practice from ODPs, anesthetic nurses, HCAs and anesthetists.<ref name=":2"/> The main failures include: |
||
* Inattention or |
* Inattention or judgment errors related to drugs and volatile agents |
||
* Termination of anesthesia too soon before surgery has finished due to poor communication |
* Termination of anesthesia too soon before surgery has finished, due to poor communication |
||
* Lack of understanding of offset times of volatile agents |
* Lack of understanding of offset times of volatile agents |
||
* Backflow of induction agent up a giving set |
* Backflow of induction agent up a giving set |
||
* Failure to fill vaporizers (which is the cause of 19% of the cases of AAGA) |
* Failure to fill vaporizers (which is the cause of 19% of the cases of AAGA) |
||
* Under-dosing of induction agent during difficult intubation |
* Under-dosing of induction agent during difficult intubation |
||
* Failure to monitor MAC (minimum alveolar concentration of inhaled anaesthetic required to prevent movement in 50% of patients in response to surgical incision) |
* Failure to monitor MAC ([[minimum alveolar concentration]] of inhaled anaesthetic required to prevent movement in 50% of patients in response to surgical incision) |
||
* Syringe swaps |
* Syringe swaps |
||
* Rushing caused by organizational or individual circumstances ( |
* Rushing caused by organizational or individual circumstances (often associated with staff shortage and stressful work environment) |
||
* Distractions caused by another member of staff |
* Distractions caused by another member of staff |
||
===Equipment failure=== |
===Equipment failure=== |
||
Machine malfunction or misuse may result in an inadequate delivery of anesthetic. Many Boyle's machines |
Machine malfunction or misuse may result in an inadequate delivery of anesthetic. Many [[Anaesthetic machine|Boyle's machines]] in hospitals have the oxygen regulator serving as a slave to the pressure in the nitrous oxide regulator, to enable the nitrous oxide cut-off safety feature. If nitrous oxide delivery suffers due to a leak in its regulator or tubing, an 'inadequate' mixture can be delivered to the patient, causing awareness. Many World War II-vintage Boyle 'F' models are still functional and used in UK hospitals. Their emergency oxygen flush valves have a tendency to release oxygen into the breathing system, which, when added to the mixture set by the anesthesiologist, can lead to awareness. This may also be caused by an empty vaporizer (or [[nitrous oxide]] [[gas cylinder|cylinder]]) or a malfunctioning intravenous pump or disconnection of its delivery tubing. Patient abandonment (when the anesthesiologist is no longer present) causes some cases of awareness and death. |
||
===Patient physiology=== |
===Patient physiology=== |
||
Very rare causes of awareness include drug tolerance, or a tolerance induced by the interaction of other [[medication|drugs]]. Some patients may be more resistant to the effects of anesthetics than others; factors such as younger age, obesity, tobacco smoking, or long-term use of certain drugs ([[alcohol (drug)|alcohol]], [[opiate]]s, or [[amphetamine]]s) may increase the anesthetic dose needed to produce unconsciousness. There may be genetic variations that cause differences in how quickly patients clear anesthetics, and there may be differences in how the sexes react to anesthetics as well. In addition, anesthetic requirement is increased in persons with naturally [[red hair]].<ref>{{cite journal | vauthors = Liem EB, Lin CM, Suleman MI, Doufas AG, Gregg RG, Veauthier JM, Loyd G, Sessler DI | display-authors = 6 | title = Anesthetic requirement is increased in redheads | journal = Anesthesiology | volume = 101 | issue = 2 | pages = 279–83 | date = August 2004 | pmid = 15277908 | pmc = 1362956 | doi = 10.1097/00000542-200408000-00006 }}</ref> Marked anxiety prior to the surgery can increase the amount of anesthesia required to prevent recall. |
Very rare causes of awareness include [[drug tolerance]], or a tolerance induced by the interaction of other [[medication|drugs]]. Some patients may be more resistant to the effects of anesthetics than others; factors such as younger age, obesity, tobacco smoking, or long-term use of certain drugs ([[alcohol (drug)|alcohol]], [[opiate]]s, or [[amphetamine]]s) may increase the anesthetic dose needed to produce unconsciousness. There may be genetic variations that cause differences in how quickly patients clear anesthetics, and there may be differences in how the sexes react to anesthetics as well. In addition, anesthetic requirement is increased in persons with naturally [[red hair]].<ref>{{cite journal | vauthors = Liem EB, Lin CM, Suleman MI, Doufas AG, Gregg RG, Veauthier JM, Loyd G, Sessler DI | display-authors = 6 | title = Anesthetic requirement is increased in redheads | journal = Anesthesiology | volume = 101 | issue = 2 | pages = 279–83 | date = August 2004 | pmid = 15277908 | pmc = 1362956 | doi = 10.1097/00000542-200408000-00006 }}</ref> Marked anxiety prior to the surgery can increase the amount of anesthesia required to prevent recall. |
||
== Conscious sedation == |
== Conscious sedation == |
||
{{See also| |
{{See also|Procedural sedation and analgesia}} |
||
There are various levels of consciousness. |
There are various levels of consciousness. Full wakefulness and general anesthesia are the two extremes of the spectrum. [[Procedural sedation and analgesia|Conscious sedation]] and monitored anesthesia care (MAC) refer to an awareness somewhere in the middle of the spectrum, depending on the degree to which a patient is sedated. Monitored anesthesia care involves [[drug titration|titration]] of local anesthesia along with sedation and analgesia.<ref name="pmid25788769">{{cite journal | vauthors = Das S, Ghosh S | title = Monitored anesthesia care: An overview | journal = Journal of Anaesthesiology Clinical Pharmacology| volume = 31 | issue = 1 | pages = 27–9 | date = 2015 | pmid = 25788769 | pmc = 4353148 | doi = 10.4103/0970-9185.150525 | doi-access = free }}</ref> Awareness/wakefulness does not necessarily imply pain or discomfort. The aim of conscious sedation or MAC is to provide a safe and comfortable anesthetic while maintaining the patient's ability to follow commands. |
||
Under certain circumstances, a general anesthetic, whereby the patient is completely unconscious, may be unnecessary or undesirable. For instance, with a |
Under certain circumstances, a general anesthetic, whereby the patient is completely unconscious, may be unnecessary or undesirable. For instance, with a [[Caesarean section|caesarean delivery]], the goal is to provide comfort with neuraxial anesthetic yet maintain consciousness<ref>{{Cite book|title=Clinical Anesthesiology| first1 = G Edward | last1 = Morgan | first2 = Maged S | last2 = Mikhail | first3 = Michael J | last3 = Murray | first4 = Wayne | last4 = Kleinman | first5 = Gary J | last5 = Nitti | first6 = Joseph T | last6 = Nitti | name-list-style = vanc |display-authors=etal |publisher=Mc Graw Hill|isbn=978-0-07-142358-8|pages=291|date=2005-08-26}}</ref> so that the mother can participate in the birth of the child. Other circumstances may include, but are not limited to, procedures that are minimally invasive or purely diagnostic (and thus not uncomfortable). Sometimes, the patient's health may not tolerate the stress of general anesthesia. The decision to provide MAC versus general anesthesia can be complex, involving careful consideration of individual circumstances and discussion with the patient about their preferences. |
||
Patients who undergo conscious sedation or monitored anesthesia care are never meant to be without recall.<ref>{{cite journal | last = Lekprasert | first = Varinee | name-list-style = vanc | title = PreAnesthetic Assessment of the Patient Who Reports Previous Intraoperative Awareness | journal = Anesthesiology News | date = June 2008 | pages = 35–38 | publisher = www.AnesthesiologyNews.com }}</ref> Whether |
Patients who undergo conscious sedation or monitored anesthesia care are never meant to be without recall.<ref>{{cite journal | last = Lekprasert | first = Varinee | name-list-style = vanc | title = PreAnesthetic Assessment of the Patient Who Reports Previous Intraoperative Awareness | journal = Anesthesiology News | date = June 2008 | pages = 35–38 | publisher = www.AnesthesiologyNews.com }}</ref> Whether a patient remembers the procedure depends on the type of anesthetic, dosages, patient physiology, and other factors. Many patients undergoing monitored anesthesia may go through profound amnesia, depending on the amount of anesthetic used.<ref>{{cite journal | vauthors = Alkire MT, Hudetz AG, Tononi G | title = Consciousness and anesthesia | journal = Science | volume = 322 | issue = 5903 | pages = 876–80 | date = November 2008 | pmid = 18988836 | pmc = 2743249 | doi = 10.1126/science.1149213 | bibcode = 2008Sci...322..876A }}</ref> |
||
Some patients undergo sedation for smaller procedures such as biopsies and colonoscopies and are told they will be asleep, although in fact they are getting a sedation that may allow some level of awareness as opposed to a general anesthetic. |
Some patients undergo sedation for smaller procedures such as [[biopsy|biopsies]] and [[colonoscopy|colonoscopies]] and are told they will be asleep, although in fact they are getting a sedation that may allow some level of awareness as opposed to a general anesthetic. |
||
== Memory == |
== Memory == |
||
New research has been carried out to test what people can remember after a general anesthetic in an effort to |
New research has been carried out to test what people can remember after a general anesthetic, in an effort to understand anesthesia awareness more clearly and help to protect patients from experiencing it. A [[memory]] is not one simple entity; it is a system of many intricate details and networks. |
||
Memory is currently classified under two main subsections. |
Memory is currently classified under two main subsections. |
||
* |
* '''Explicit''' or conscious memory,<ref name="pmid17236646">{{cite journal | vauthors = Sandin R | title = Outcome after awareness with explicit recall | journal = Acta Anaesthesiologica Belgica | volume = 57 | issue = 4 | pages = 429–32 | year = 2006 | pmid = 17236646 }}</ref> which refers to the conscious recollection of previous experiences. An example of explicit memory is remembering what you did last weekend. When it comes to an anesthetized patient, a doctor may ask the patient after undergoing general anesthesia if he or she could remember hearing any distinct sounds or words while under anesthesia. This approach is called a "recall test" because patients are asked to recall any memories they had during surgery. |
||
* |
* '''Implicit''' memory or unconscious memory, which refers to the changes in performance or behavior that are produced by previous experiences but without any conscious recollection of those experiences. An example of this is a recognition test, where patients are asked to determine, after surgery, which of a selection of words could be heard during the surgery. The following scenario is an example. Patients were exposed during anesthesia to a list of words containing the word "pension". Postoperatively, when presented with the three-letter word stem PEN___ and asked to supply the first word that came to their minds beginning with those letters, they gave the word "pension" more often than "pencil" or "peninsula" or others.<ref name="pmid10691248">{{cite journal | vauthors = Ghoneim MM | title = Awareness during anesthesia | journal = Anesthesiology | volume = 92 | issue = 2 | pages = 597–602 | date = February 2000 | pmid = 10691248 | doi = 10.1097/00000542-200002000-00043 | doi-access = free }}</ref> |
||
Some researchers are now formally interviewing patients postoperatively to calculate the incidence of anesthesia awareness. It is good practice for the anesthesiologist to visit the patient after the operation and check that the patient was not aware. Most patients who were not unduly disturbed by their experiences do not necessarily report cases of awareness unless directly asked. Many who are greatly disturbed report their awareness but anesthesiologists and hospitals deny it has happened. It has been found that some patients may not recall experiencing awareness until one to two weeks after undergoing surgery. It was also found that some patients require a more detailed interview to jog their memories for intraoperative experiences but these are only untraumatic cases. Some researchers have found that while anesthesia awareness does not commonly occur in minor surgeries, it may occur more frequently in more serious surgeries, and that it is good practice to warn of the possibility of awareness in those cases where it may be more likely. |
Some researchers are now formally interviewing patients postoperatively to calculate the incidence of anesthesia awareness. It is good practice for the anesthesiologist to visit the patient after the operation and check that the patient was not aware. Most patients who were not unduly disturbed by their experiences do not necessarily report cases of awareness unless directly asked. Many who are greatly disturbed report their awareness but anesthesiologists and hospitals deny that it has happened. It has been found that some patients may not recall experiencing awareness until one to two weeks after undergoing surgery. It was also found that some patients require a more detailed interview to jog their memories for intraoperative experiences but these are only untraumatic cases. Some researchers have found that while anesthesia awareness does not commonly occur in minor surgeries, it may occur more frequently in more serious surgeries, and that it is good practice to warn of the possibility of awareness in those cases where it may be more likely. |
||
==Prevention== |
==Prevention== |
||
The risk of awareness is reduced by avoidance of paralytics unless necessary; careful checking of drugs, doses and equipment; good monitoring, and careful vigilance during the case. The Isolated Forearm Technique (IFT) can be used to monitor consciousness; the technique involves applying a tourniquet to the patient's upper arm before the administration of muscle relaxants, so that the forearm can still be moved consciously.<ref>{{cite journal | vauthors = Tunstall ME | title = Detecting wakefulness during general anaesthesia for caesarean section | journal = British Medical Journal | volume = 1 | issue = 6072 | pages = 1321 | date = May 1977 | pmid = 861598 | pmc = 1607133 | doi = 10.1136/bmj.1.6072.1321-a }}</ref><ref>{{cite journal | vauthors = Russell IF | title = Comparison of wakefulness with two anaesthetic regimens. Total i.v. v. balanced anaesthesia | journal = British Journal of Anaesthesia | volume = 58 | issue = 9 | pages = 965–8 | date = September 1986 | pmid = 3756056 | doi = 10.1093/bja/58.9.965 | doi-access = free }}</ref> The technique is considered a reference standard by which other means of |
The risk of awareness is reduced by avoidance of paralytics unless necessary; careful checking of drugs, doses and equipment; good monitoring, and careful vigilance during the case. The Isolated Forearm Technique (IFT) can be used to monitor consciousness; the technique involves applying a tourniquet to the patient's upper arm before the administration of muscle relaxants, so that the forearm can still be moved consciously.<ref>{{cite journal | vauthors = Tunstall ME | title = Detecting wakefulness during general anaesthesia for caesarean section | journal = British Medical Journal | volume = 1 | issue = 6072 | pages = 1321 | date = May 1977 | pmid = 861598 | pmc = 1607133 | doi = 10.1136/bmj.1.6072.1321-a }}</ref><ref>{{cite journal | vauthors = Russell IF | title = Comparison of wakefulness with two anaesthetic regimens. Total i.v. v. balanced anaesthesia | journal = British Journal of Anaesthesia | volume = 58 | issue = 9 | pages = 965–8 | date = September 1986 | pmid = 3756056 | doi = 10.1093/bja/58.9.965 | doi-access = free }}</ref> The technique is considered a reference standard by which other means of monitoring consciousness can be assessed.<ref>{{cite journal | vauthors = Jessop J, Jones JG | title = Conscious awareness during general anaesthesia--what are we attempting to monitor? | journal = British Journal of Anaesthesia | volume = 66 | issue = 6 | pages = 635–7 | date = June 1991 | pmid = 2064875 | doi = 10.1093/bja/66.6.635 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Veselis RA | title = The remarkable memory effects of propofol | journal = British Journal of Anaesthesia | volume = 96 | issue = 3 | pages = 289–91 | date = March 2006 | pmid = 16467436 | doi = 10.1093/bja/ael016 | doi-access = free }}</ref> |
||
Because the medical staff may not know if a person is unconscious or not, it has been suggested that the staff maintain the professional conduct that would be appropriate for a conscious patient.<ref name="pmid16801837">{{cite journal | vauthors = Gajwani P, Muzina D, Gao K, Calabrese JR | title = Awareness under anesthesia during electroconvulsive therapy treatment | journal = The Journal of ECT | volume = 22 | issue = 2 | pages = 158–9 | date = June 2006 | pmid = 16801837 | doi = 10.1097/00124509-200606000-00018 }}</ref> |
Because the medical staff may not know if a person is unconscious or not, it has been suggested that the staff maintain the professional conduct that would be appropriate for a conscious patient.<ref name="pmid16801837">{{cite journal | vauthors = Gajwani P, Muzina D, Gao K, Calabrese JR | title = Awareness under anesthesia during electroconvulsive therapy treatment | journal = The Journal of ECT | volume = 22 | issue = 2 | pages = 158–9 | date = June 2006 | pmid = 16801837 | doi = 10.1097/00124509-200606000-00018 }}</ref> |
||
Line 90: | Line 92: | ||
==Monitors== |
==Monitors== |
||
Recent advances have led to the manufacture of monitors of awareness. Typically these monitor the [[Electroencephalography|EEG]], which represents the electrical activity of the [[cerebral cortex]], which is active when awake but quiescent |
Recent advances have led to the manufacture of monitors of awareness. Typically these monitor the [[Electroencephalography|EEG]], which represents the electrical activity of the [[cerebral cortex]], which is active when awake but quiescent under anesthesia (or in natural [[sleep]]). The monitors usually process the EEG signal down to a single number, where 100 corresponds to a patient who is fully alert, and zero corresponds to electrical silence. General anesthesia is usually signified by a number between 60 and 40 (this varies with the specific system used). There are several monitors now commercially available. These newer technologies include the [[bispectral index]] (BIS),<ref>{{cite journal | vauthors = Myles PS, Leslie K, McNeil J, Forbes A, Chan MT | title = Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial | journal = Lancet | volume = 363 | issue = 9423 | pages = 1757–63 | date = May 2004 | pmid = 15172773 | doi = 10.1016/s0140-6736(04)16300-9 | s2cid = 2612639 | url = http://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(04)16300-9.pdf }}</ref> EEG [[entropy monitoring]], auditory [[evoked potentials]], and several other systems such as the SNAP monitor and the Narcotrend monitor. |
||
None of these systems are perfect. For example, they are unreliable at extremes of age (e.g. [[neonate]]s, infants or the very elderly). Secondly, certain agents, such as [[nitrous oxide]], may produce anesthesia without reducing the value of the depth monitor.<ref>{{cite journal | vauthors = Clapcich AJ, Emerson RG, Roye DP, Xie H, Gallo EJ, Dowling KC, Ramnath B, Heyer EJ | display-authors = 6 | title = The effects of propofol, small-dose isoflurane, and nitrous oxide on cortical somatosensory evoked potential and bispectral index monitoring in adolescents undergoing spinal fusion | journal = Anesthesia and Analgesia | volume = 99 | issue = 5 | pages = 1334–40; table of contents | date = November 2004 | pmid = 15502027 | pmc = 2435242 | doi = 10.1213/01.ANE.0000134807.73615.5C }}</ref> This is because the molecular action of these agents ([[NMDA]] receptor antagonists) differs from that of more conventional agents, and they suppress cortical EEG activity less. |
None of these systems are perfect. For example, they are unreliable at extremes of age (e.g., [[neonate]]s, infants or the very elderly). Secondly, certain agents, such as [[nitrous oxide]], may produce anesthesia without reducing the value of the depth monitor.<ref>{{cite journal | vauthors = Clapcich AJ, Emerson RG, Roye DP, Xie H, Gallo EJ, Dowling KC, Ramnath B, Heyer EJ | display-authors = 6 | title = The effects of propofol, small-dose isoflurane, and nitrous oxide on cortical somatosensory evoked potential and bispectral index monitoring in adolescents undergoing spinal fusion | journal = Anesthesia and Analgesia | volume = 99 | issue = 5 | pages = 1334–40; table of contents | date = November 2004 | pmid = 15502027 | pmc = 2435242 | doi = 10.1213/01.ANE.0000134807.73615.5C }}</ref> This is because the molecular action of these agents ([[NMDA]] receptor antagonists) differs from that of more conventional agents, and they suppress cortical EEG activity less. Third, they are prone to interference from other biological potentials (such as [[Electromyography|EMG]]), or external electrical signals (such as [[electrosurgery]]). This means that the technology that will reliably monitor depth of anesthesia for every patient and every anesthetic does not yet exist. This may in part explain why a 2016 systematic review and meta analysis concluded that depth-of-anesthesia monitors had a similar effect to standard clinical monitoring on the risk of awareness during surgery.<ref>{{cite journal | vauthors = Messina AG, Wang M, Ward MJ, Wilker CC, Smith BB, Vezina DP, Pace NL | title = Anaesthetic interventions for prevention of awareness during surgery | journal = The Cochrane Database of Systematic Reviews | volume = 2016 | pages = CD007272 | date = October 2016 | issue = 10 | pmid = 27755648 | pmc = 6461159 | doi = 10.1002/14651858.cd007272.pub2 }}</ref> |
||
== Incidence == |
== Incidence == |
||
The incidence of |
The incidence of anesthesia awareness is variable; it seems to affect 0.2% to 0.4% of patients. This variation reflects the surgical setting as well as the physiological state of the patient; the incidence is 0.2% in general surgery, about 0.4% during caesarean section, between 1% and 2% during cardiac surgery and between 10% and 40% for anesthesia of the traumatized.<ref>{{cite journal|vauthors=Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB|date=September 2004|title=The incidence of awareness during anesthesia: a multicenter United States study|journal=Anesthesia and Analgesia|volume=99|issue=3|pages=833–9, table of contents|doi=10.1213/01.ane.0000130261.90896.6c|pmid=15333419|s2cid=7413819|doi-access=free}}</ref><ref>{{cite journal|vauthors=Bogetz MS, Katz JA|date=July 1984|title=Recall of surgery for major trauma|journal=Anesthesiology|volume=61|issue=1|pages=6–9|doi=10.1097/00000542-198461010-00003|pmid=6742485}}</ref><ref>{{cite journal|vauthors=Bogod DG, Orton JK, Yau HM, Oh TE|date=April 1990|title=Detecting awareness during general anaesthetic caesarean section. An evaluation of two methods|journal=Anaesthesia|volume=45|issue=4|pages=279–84|doi=10.1111/j.1365-2044.1990.tb14732.x|pmid=2337210|s2cid=58254125|doi-access=free}}</ref><ref>{{cite journal|vauthors=Dowd NP, Cheng DC, Karski JM, Wong DT, Munro JA, Sandler AN|date=November 1998|title=Intraoperative awareness in fast-track cardiac anesthesia|journal=Anesthesiology|volume=89|issue=5|pages=1068–73; discussion 9A|doi=10.1097/00000542-199811000-00006|pmid=9821994|s2cid=24961481}}</ref><ref>{{cite journal|vauthors=Goldmann L, Shah MV, Hebden MW|date=June 1987|title=Memory of cardiac anaesthesia. Psychological sequelae in cardiac patients of intra-operative suggestion and operating room conversation|journal=Anaesthesia|volume=42|issue=6|pages=596–603|doi=10.1111/j.1365-2044.1987.tb03082.x|pmid=3618993|s2cid=35320774|doi-access=}}</ref><ref>{{cite journal|vauthors=Liu WH, Thorp TA, Graham SG, Aitkenhead AR|date=June 1991|title=Incidence of awareness with recall during general anaesthesia|journal=Anaesthesia|volume=46|issue=6|pages=435–7|doi=10.1111/j.1365-2044.1991.tb11677.x|pmid=2048657|s2cid=40244356|doi-access=}}</ref><ref name="pmid1996761">{{cite journal|vauthors=Lyons G, Macdonald R|date=January 1991|title=Awareness during caesarean section|journal=Anaesthesia|volume=46|issue=1|pages=62–4|doi=10.1111/j.1365-2044.1991.tb09321.x|pmid=1996761|s2cid=45800761|doi-access=free}}</ref><ref>{{cite journal|vauthors=Sandin RH, Enlund G, Samuelsson P, Lennmarken C|date=February 2000|title=Awareness during anaesthesia: a prospective case study|journal=Lancet|volume=355|issue=9205|pages=707–11|doi=10.1016/s0140-6736(99)11010-9|pmid=10703802|s2cid=11170260}}</ref><ref name="ReferenceA">{{cite journal|vauthors=Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB|date=September 2004|title=The incidence of awareness during anesthesia: a multicenter United States study|journal=Anesthesia and Analgesia|volume=99|issue=3|pages=833–9, table of contents|doi=10.1213/01.ANE.0000130261.90896.6C|pmid=15333419|s2cid=7413819|doi-access=free}}</ref> The majority of these do not feel pain, although around one-third did, in a range of experience from a sore throat caused by the endotracheal tube, to traumatic pain at the incision site. The incidence is halved in the absence of neuromuscular blockade.<ref name="ReferenceA" /> |
||
The quoted incidences are controversial as many cases of "awareness" are open to interpretation. |
The quoted incidences are controversial as many cases of "awareness" are open to interpretation. |
||
The incidence |
The incidence is higher and has more serious sequelae when [[muscle relaxants]] or [[neuromuscular-blocking drug]]s are used.<ref name="pmid12557119">{{cite journal | vauthors = Schneider G | title = [Intraoperative awareness] | language = de | journal = Anästhesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie | volume = 38 | issue = 2 | pages = 75–84 | date = February 2003 | pmid = 12557119 | doi = 10.1055/s-2003-36993 | s2cid = 259981791 }}</ref> This is because without relaxant the patient will move and the anesthesiologist will then deepen the anesthesia. |
||
One study has indicated this phenomenon occurs in |
One study has indicated that this phenomenon occurs in 0.13% of patients, or between 1 and 2 per 1000.<ref>{{cite journal | vauthors = Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB | title = The incidence of awareness during anesthesia: a multicenter United States study | journal = Anesthesia and Analgesia | volume = 99 | issue = 3 | pages = 833–9, table of contents | date = September 2004 | pmid = 15333419 | doi = 10.1213/01.ANE.0000130261.90896.6C | s2cid = 7413819 | doi-access = free }}</ref> There are conflicting data, however, as another study suggested it is a rarer phenomenon, with an incidence of 0.0068%, after review of data from a population of 211,842 patients.<ref name="pmid17264720">{{cite journal | vauthors = Pollard RJ, Coyle JP, Gilbert RL, Beck JE | title = Intraoperative awareness in a regional medical system: a review of 3 years' data | journal = Anesthesiology | volume = 106 | issue = 2 | pages = 269–74 | date = February 2007 | pmid = 17264720 | doi = 10.1097/00000542-200702000-00014 | s2cid = 7262082 | doi-access = free }}</ref> |
||
Postoperative interview by an anesthetist is common practice to elucidate whether awareness occurred in the case. If awareness is reported, a case review is immediately performed to identify machine, medication, or operator error.{{citation needed|date=August 2014}} |
|||
==Outcomes== |
==Outcomes== |
||
Patients who experience full awareness with explicit recall may have suffered an enormous trauma due to the extreme pain of surgery. Some patients experience [[post traumatic stress disorder]] (PTSD), leading to long-lasting after-effects such as [[nightmare]]s, [[night terror]]s, [[Flashback (psychology)|flashbacks]], [[insomnia]], and in some cases even [[suicide]].<ref>{{cite news|url=http://www.foxnews.com/printer_friendly_wires/2007Apr10/0,4675,SurgerySuicide,00.html|title=Lawsuit: Wide-Awake Surgery Led to Death|last=Breen|first=Tom | name-list-style = vanc |date=April 10, 2007|work=[[Fox News Channel]]|access-date=2009-09-04|location=CHARLESTON, W.Va.}}</ref> Some cases of awareness alert the patient to intra-operative errors.{{citation needed|date=April 2013}} |
Patients who experience full awareness with explicit recall may have suffered an enormous trauma due to the extreme pain of surgery. Some patients experience [[post traumatic stress disorder|post-traumatic stress disorder]] (PTSD), leading to long-lasting after-effects such as [[nightmare]]s, [[night terror]]s, [[Flashback (psychology)|flashbacks]], [[insomnia]], and in some cases even [[suicide]].<ref>{{cite news|url=http://www.foxnews.com/printer_friendly_wires/2007Apr10/0,4675,SurgerySuicide,00.html|title=Lawsuit: Wide-Awake Surgery Led to Death|last=Breen|first=Tom | name-list-style = vanc |date=April 10, 2007|work=[[Fox News Channel]]|access-date=2009-09-04|location=CHARLESTON, W.Va.}}</ref> Some cases of awareness alert the patient to intra-operative errors.{{citation needed|date=April 2013}} |
||
A study from Sweden in 2002 attempted to follow up 18 patients for approximately 2 years after having been previously diagnosed with awareness under anesthesia.<ref>{{cite journal | vauthors = Lennmarken C, Bildfors K, Enlund G, Samuelsson P, Sandin R | title = Victims of awareness | journal = Acta Anaesthesiologica Scandinavica | volume = 46 | issue = 3 | pages = 229–31 | date = March 2002 | pmid = 11939910 | doi = 10.1034/j.1399-6576.2002.t01-1-460301.x | s2cid = 19464947 }}</ref> Four of the nine interviewed patients were still severely disabled due to psychiatric/psychological after-effects. All of these patients had experienced anxiety during the period of awareness, but only one had stated feeling pain. Another three patients had less severe, transient mental symptoms, although they could cope with these in daily life. Two patients denied any lasting effects from their awareness episode.{{citation needed|date=February 2022}} |
A study from Sweden in 2002 attempted to follow up 18 patients for approximately 2 years after having been previously diagnosed with awareness under anesthesia.<ref>{{cite journal | vauthors = Lennmarken C, Bildfors K, Enlund G, Samuelsson P, Sandin R | title = Victims of awareness | journal = Acta Anaesthesiologica Scandinavica | volume = 46 | issue = 3 | pages = 229–31 | date = March 2002 | pmid = 11939910 | doi = 10.1034/j.1399-6576.2002.t01-1-460301.x | s2cid = 19464947 }}</ref> Four of the nine interviewed patients were still severely disabled due to psychiatric/psychological after-effects. All of these patients had experienced anxiety during the period of awareness, but only one had stated feeling pain. Another three patients had less severe, transient mental symptoms, although they could cope with these in daily life. Two patients denied any lasting effects from their awareness episode.{{citation needed|date=February 2022}} |
||
==Society and culture== |
==Society and culture== |
||
* ''[[Awake (2007 film)|Awake]]'', a 2007 film about anesthetic awareness |
* ''[[Awake (2007 film)|Awake]]'', a 2007 film about anesthetic awareness. |
||
* ''Anesthesia'', an award-winning horror film about anesthesia awareness.<ref name="titleAnesthesia (2006)">{{cite web|url=https://www.imdb.com/title/tt0810754|title=Anesthesia (2006)|access-date=2007-11-26|work=IMDb}}</ref> |
* ''Anesthesia'', an award-winning horror film about anesthesia awareness.<ref name="titleAnesthesia (2006)">{{cite web|url=https://www.imdb.com/title/tt0810754|title=Anesthesia (2006)|access-date=2007-11-26|work=IMDb}}</ref> |
||
* ''Return'', a Korean thriller movie about anesthesia awareness.<ref name="titleReturn (2007) - 리턴 @ HanCinema :: The Korean Movie and Drama Database">{{cite web|url=http://www.hancinema.net/korean_movie_Return.php|title=Return (2007) – 리턴 @ HanCinema :: The Korean Movie and Drama Database|access-date=2007-11-26|work=HanCinema|archive-url=https://web.archive.org/web/20071014152018/http://hancinema.net/korean_movie_Return.php|archive-date=14 October 2007|url-status=live }}</ref> |
* ''Return'', a Korean thriller movie about anesthesia awareness.<ref name="titleReturn (2007) - 리턴 @ HanCinema :: The Korean Movie and Drama Database">{{cite web|url=http://www.hancinema.net/korean_movie_Return.php|title=Return (2007) – 리턴 @ HanCinema :: The Korean Movie and Drama Database|access-date=2007-11-26|work=HanCinema|archive-url=https://web.archive.org/web/20071014152018/http://hancinema.net/korean_movie_Return.php|archive-date=14 October 2007|url-status=live }}</ref> |
||
* In an episode of ''[[Nip/Tuck]]'' a woman, Rhea Reynolds, experiences anesthesia awareness while having surgery to repair scarring on her face. |
* In an episode of ''[[Nip/Tuck]]'' a woman, Rhea Reynolds, experiences anesthesia awareness while having surgery to repair scarring on her face. |
||
* A sixth-season episode of "[[Grey's Anatomy]]", "State of Love and Trust," involves a patient waking up during removal of an abdominal tumor, and retaining full memory of the event. |
* A sixth-season episode of "[[Grey's Anatomy]]", "State of Love and Trust," involves a patient waking up during removal of an abdominal tumor, and retaining full memory of the event. |
||
* Under: a 2006 film about anesthetic awareness |
* Under: a 2006 film about anesthetic awareness. |
||
* 2014 Bollywood movie ''[[Heartless (2014 film)|Heartless]]'' – the patient experienced full awareness during [[heart transplant]]. |
* 2014 Bollywood movie ''[[Heartless (2014 film)|Heartless]]'' – the patient experienced full awareness during [[heart transplant]]. |
||
* 2016 episode of [[Shortland Street]], a New Zealand hospital [[soap opera]], the patient experienced full awareness during [[facelift]] |
* 2016 episode of [[Shortland Street]], a New Zealand hospital [[soap opera]], the patient experienced full awareness during [[facelift]]. |
||
* [[Carol Weihrer]], an American activist who experienced intraoperative awareness with recall |
* [[Carol Weihrer]], an American activist who experienced intraoperative awareness with recall. |
||
== References == |
== References == |
||
Line 135: | Line 137: | ||
[[Category:Anesthesia]] |
[[Category:Anesthesia]] |
||
[[Category:Medical controversies]] |
[[Category:Medical controversies]] |
||
[[Category:Perception]] |
Latest revision as of 22:29, 11 October 2024
This article needs more reliable medical references for verification or relies too heavily on primary sources. (April 2014) |
Awareness under anesthesia, also referred to as intraoperative awareness or accidental awareness during general anesthesia (AAGA), is a rare complication of general anesthesia where patients regain varying levels of consciousness during their surgical procedures. While anesthesia awareness is possible without resulting in any long-term memory of the experience, it is also possible for victims to have awareness with explicit recall, where they can remember the events related to their surgery (intraoperative awareness with explicit recall).[1][2]
Intraoperative awareness with explicit recall is an infrequent condition with potentially devastating psychological consequences.[3] While it has gained popular recognition in media, research shows that it only occurs at an incidence rate of 0.1–0.2%. Patients report a variety of experiences, ranging from vague, dreamlike states to being fully awake, immobilized, and in pain from the surgery. Intraoperative awareness is usually caused by the delivery of inadequate anesthetics relative to the patient's requirements. Risk factors can be anesthetic (e.g., use of neuromuscular blockade drugs, use of intravenous anesthetics, technical/mechanical errors), surgical (e.g., cardiac surgery, trauma/emergency, C-sections), or patient-related (e.g., reduced cardiovascular reserve, history of substance use, history of awareness under anesthesia).[4]
Currently, the mechanism behind consciousness and memory under anesthesia is unknown, although there are many working hypotheses. However, intraoperative monitoring of anesthetic level with bispectral index (BIS) or end-tidal anesthetic concentration (ETAC) may help to reduce the incidence of intraoperative awareness, although clinical trials have yet to show a decreased incidence of AAGA with the BIS monitor.[5]
There are also many preventative techniques considered for high-risk patients, such as pre-medicating with benzodiazepines, avoiding complete muscle paralysis, and managing patients' expectations. Diagnosis is made postoperatively by asking patients about potential awareness episodes and can be aided by the modified Brice interview questionnaire. A common but devastating complication of intraoperative awareness with recall is the development of post-traumatic stress disorder (PTSD) from the events experienced during surgery. Prompt diagnosis and referral to counseling and psychiatric treatment are crucial to the treatment of intraoperative awareness and the prevention of PTSD.[6]
Signs and symptoms
[edit]Intraoperative awareness can present with a variety of signs and symptoms. A large proportion of patients report vague, dreamlike experiences, while others report specific intraoperative events, such as:[7][8][9]
- hearing noises or conversations in the operating room
- remembering details of the operation
- sensing pain associated with intubation or surgery
- having weakness or muscle paralysis
- feeling anxiety, helplessness, or an impending sense of doom
Intraoperative signs that may indicate patient awareness include:[9]
- hypertension (high blood pressure)
- tachycardia (high heart rate)
- patient movement
- tachypnea[10]
- intravenous anesthesia line infiltrated or occluded[10]
Patients under anesthesia are paralyzed if a neuromuscular blockade drug, a type of muscle relaxant, has been given as part of general anesthesia. When paralyzed, patients may not be able to communicate their distress or alert the operating room staff of their consciousness until the paralytic wears off. After surgery, recognition of the symptoms of an awareness event may be delayed.[11] One review showed that only about 35% of patients are able to report an awareness event immediately after the surgery, with the rest remembering the experience weeks to months afterward.[12] Depending on the awareness experience, patients may have postoperative psychological problems that range from mild anxiety to post-traumatic stress disorder (PTSD).[7][13] PTSD is characterized by recurrent anxiety, irritability, flashbacks or nightmares, avoidance of triggers related to the trauma, and sleep disturbances.[14]
Causes
[edit]Paralytic and muscle relaxant use
[edit]The biggest risk factor is anesthesia performed by unsupervised trainees and the use of a medication that induces muscle paralysis, such as suxamethonium (succinylcholine) or non-depolarizing neuromuscular blocking drugs (muscle relaxants). During general anesthesia, the patient's muscles may be paralyzed in order to facilitate tracheal intubation or surgical exposure (abdominal and thoracic surgery can be performed only with adequate muscle relaxation). Because the patient cannot breathe for themselves, mechanical ventilation must be used. The paralyzing agent does not cause unconsciousness or take away the patient's ability to feel pain, but does prevent the patient from breathing, so the airway (trachea) must be protected and the lungs ventilated to ensure adequate oxygenation of the blood and removal of carbon dioxide.
A fully paralyzed patient is unable to move, speak, blink the eyes, or otherwise respond to the pain. If neuromuscular blocking drugs are used, this causes skeletal muscle paralysis but does not interfere with cardiac or smooth muscle or the functioning of the autonomic nervous system, so heart rate, blood pressure, intestinal peristalsis, sweating and lacrimation are unaffected. The patient cannot signal distress and may not exhibit the signs of awareness that would be expected to be detectable by clinical vigilance, because other drugs used during anaesthesia may block or obtund these.
Many types of surgery do not require the patient to be paralyzed. A patient who is anesthetized but not paralyzed can move in response to a painful stimulus if the analgesia is inadequate. This may serve as a warning sign that the anesthetic depth is inadequate. Movement under general anesthesia does not imply full awareness but is a sign that the anesthesia is light. Even without the use of neuromuscular blocking drugs the absence of movement does not necessarily imply amnesia.
Light anesthesia
[edit]For certain operations, such as caesarean section, or in hypovolemic patients or patients with minimal cardiac reserve, the anesthesia provider may aim to provide "light anesthesia" and should discuss this with patients to warn them. During such circumstances, consciousness and recall may occur because judgments of depth of anesthesia are not precise. The anesthesia provider must weigh the need to keep the patient safe and stable with the goal of preventing awareness. Sometimes, it is necessary to provide lighter anesthesia in order to preserve the life of the patient. "Light" anesthesia means less drugs by the intravenous route or via inhalational means, leading to less cardiovascular depression (hypotension) but permitting "awareness" in the anesthetized subject.[15]
Anesthesiologist error
[edit]Human errors include repeated attempts at intubation during which the short-acting anesthetic may wear off but the paralyzing drug does not; esophageal intubation; inadequate drug dose; a drug given by the wrong route or a wrong drug given; drugs given in the wrong sequence; inadequate monitoring; patient abandonment; disconnections and kinks in tubes from the ventilator; and failure to refill the anesthetic machine's vaporizers with volatile anesthetic. Other causes include unfamiliarity with techniques used, e.g. intravenous anesthetic regimes, and inexperience. Most cases of awareness are caused by inexperience and poor anesthetic technique, which can be any of the above, but also includes techniques that could be described as outside the boundaries of "normal" practice. The American Society of Anesthesiologists in 2007 released a Practice Advisory outlining the steps that anesthesia professionals and hospitals should take to minimize these risks. Other societies have released their own versions of these guidelines, including the Australian and New Zealand College of Anaesthetists.[16]
To reduce the likelihood of awareness, anesthetists must be adequately trained, and supervised while still in training. Equipment that monitors depth of anesthesia, such as bispectral index monitoring, should not be used in isolation.
Current research attributes the incidence of AAGA to a combination of the risks mentioned above, together with ineffective practice from ODPs, anesthetic nurses, HCAs and anesthetists.[3] The main failures include:
- Inattention or judgment errors related to drugs and volatile agents
- Termination of anesthesia too soon before surgery has finished, due to poor communication
- Lack of understanding of offset times of volatile agents
- Backflow of induction agent up a giving set
- Failure to fill vaporizers (which is the cause of 19% of the cases of AAGA)
- Under-dosing of induction agent during difficult intubation
- Failure to monitor MAC (minimum alveolar concentration of inhaled anaesthetic required to prevent movement in 50% of patients in response to surgical incision)
- Syringe swaps
- Rushing caused by organizational or individual circumstances (often associated with staff shortage and stressful work environment)
- Distractions caused by another member of staff
Equipment failure
[edit]Machine malfunction or misuse may result in an inadequate delivery of anesthetic. Many Boyle's machines in hospitals have the oxygen regulator serving as a slave to the pressure in the nitrous oxide regulator, to enable the nitrous oxide cut-off safety feature. If nitrous oxide delivery suffers due to a leak in its regulator or tubing, an 'inadequate' mixture can be delivered to the patient, causing awareness. Many World War II-vintage Boyle 'F' models are still functional and used in UK hospitals. Their emergency oxygen flush valves have a tendency to release oxygen into the breathing system, which, when added to the mixture set by the anesthesiologist, can lead to awareness. This may also be caused by an empty vaporizer (or nitrous oxide cylinder) or a malfunctioning intravenous pump or disconnection of its delivery tubing. Patient abandonment (when the anesthesiologist is no longer present) causes some cases of awareness and death.
Patient physiology
[edit]Very rare causes of awareness include drug tolerance, or a tolerance induced by the interaction of other drugs. Some patients may be more resistant to the effects of anesthetics than others; factors such as younger age, obesity, tobacco smoking, or long-term use of certain drugs (alcohol, opiates, or amphetamines) may increase the anesthetic dose needed to produce unconsciousness. There may be genetic variations that cause differences in how quickly patients clear anesthetics, and there may be differences in how the sexes react to anesthetics as well. In addition, anesthetic requirement is increased in persons with naturally red hair.[17] Marked anxiety prior to the surgery can increase the amount of anesthesia required to prevent recall.
Conscious sedation
[edit]There are various levels of consciousness. Full wakefulness and general anesthesia are the two extremes of the spectrum. Conscious sedation and monitored anesthesia care (MAC) refer to an awareness somewhere in the middle of the spectrum, depending on the degree to which a patient is sedated. Monitored anesthesia care involves titration of local anesthesia along with sedation and analgesia.[18] Awareness/wakefulness does not necessarily imply pain or discomfort. The aim of conscious sedation or MAC is to provide a safe and comfortable anesthetic while maintaining the patient's ability to follow commands.
Under certain circumstances, a general anesthetic, whereby the patient is completely unconscious, may be unnecessary or undesirable. For instance, with a caesarean delivery, the goal is to provide comfort with neuraxial anesthetic yet maintain consciousness[19] so that the mother can participate in the birth of the child. Other circumstances may include, but are not limited to, procedures that are minimally invasive or purely diagnostic (and thus not uncomfortable). Sometimes, the patient's health may not tolerate the stress of general anesthesia. The decision to provide MAC versus general anesthesia can be complex, involving careful consideration of individual circumstances and discussion with the patient about their preferences.
Patients who undergo conscious sedation or monitored anesthesia care are never meant to be without recall.[20] Whether a patient remembers the procedure depends on the type of anesthetic, dosages, patient physiology, and other factors. Many patients undergoing monitored anesthesia may go through profound amnesia, depending on the amount of anesthetic used.[21]
Some patients undergo sedation for smaller procedures such as biopsies and colonoscopies and are told they will be asleep, although in fact they are getting a sedation that may allow some level of awareness as opposed to a general anesthetic.
Memory
[edit]New research has been carried out to test what people can remember after a general anesthetic, in an effort to understand anesthesia awareness more clearly and help to protect patients from experiencing it. A memory is not one simple entity; it is a system of many intricate details and networks.
Memory is currently classified under two main subsections.
- Explicit or conscious memory,[22] which refers to the conscious recollection of previous experiences. An example of explicit memory is remembering what you did last weekend. When it comes to an anesthetized patient, a doctor may ask the patient after undergoing general anesthesia if he or she could remember hearing any distinct sounds or words while under anesthesia. This approach is called a "recall test" because patients are asked to recall any memories they had during surgery.
- Implicit memory or unconscious memory, which refers to the changes in performance or behavior that are produced by previous experiences but without any conscious recollection of those experiences. An example of this is a recognition test, where patients are asked to determine, after surgery, which of a selection of words could be heard during the surgery. The following scenario is an example. Patients were exposed during anesthesia to a list of words containing the word "pension". Postoperatively, when presented with the three-letter word stem PEN___ and asked to supply the first word that came to their minds beginning with those letters, they gave the word "pension" more often than "pencil" or "peninsula" or others.[23]
Some researchers are now formally interviewing patients postoperatively to calculate the incidence of anesthesia awareness. It is good practice for the anesthesiologist to visit the patient after the operation and check that the patient was not aware. Most patients who were not unduly disturbed by their experiences do not necessarily report cases of awareness unless directly asked. Many who are greatly disturbed report their awareness but anesthesiologists and hospitals deny that it has happened. It has been found that some patients may not recall experiencing awareness until one to two weeks after undergoing surgery. It was also found that some patients require a more detailed interview to jog their memories for intraoperative experiences but these are only untraumatic cases. Some researchers have found that while anesthesia awareness does not commonly occur in minor surgeries, it may occur more frequently in more serious surgeries, and that it is good practice to warn of the possibility of awareness in those cases where it may be more likely.
Prevention
[edit]The risk of awareness is reduced by avoidance of paralytics unless necessary; careful checking of drugs, doses and equipment; good monitoring, and careful vigilance during the case. The Isolated Forearm Technique (IFT) can be used to monitor consciousness; the technique involves applying a tourniquet to the patient's upper arm before the administration of muscle relaxants, so that the forearm can still be moved consciously.[24][25] The technique is considered a reference standard by which other means of monitoring consciousness can be assessed.[26][27]
Because the medical staff may not know if a person is unconscious or not, it has been suggested that the staff maintain the professional conduct that would be appropriate for a conscious patient.[28]
Monitors
[edit]Recent advances have led to the manufacture of monitors of awareness. Typically these monitor the EEG, which represents the electrical activity of the cerebral cortex, which is active when awake but quiescent under anesthesia (or in natural sleep). The monitors usually process the EEG signal down to a single number, where 100 corresponds to a patient who is fully alert, and zero corresponds to electrical silence. General anesthesia is usually signified by a number between 60 and 40 (this varies with the specific system used). There are several monitors now commercially available. These newer technologies include the bispectral index (BIS),[29] EEG entropy monitoring, auditory evoked potentials, and several other systems such as the SNAP monitor and the Narcotrend monitor.
None of these systems are perfect. For example, they are unreliable at extremes of age (e.g., neonates, infants or the very elderly). Secondly, certain agents, such as nitrous oxide, may produce anesthesia without reducing the value of the depth monitor.[30] This is because the molecular action of these agents (NMDA receptor antagonists) differs from that of more conventional agents, and they suppress cortical EEG activity less. Third, they are prone to interference from other biological potentials (such as EMG), or external electrical signals (such as electrosurgery). This means that the technology that will reliably monitor depth of anesthesia for every patient and every anesthetic does not yet exist. This may in part explain why a 2016 systematic review and meta analysis concluded that depth-of-anesthesia monitors had a similar effect to standard clinical monitoring on the risk of awareness during surgery.[31]
Incidence
[edit]The incidence of anesthesia awareness is variable; it seems to affect 0.2% to 0.4% of patients. This variation reflects the surgical setting as well as the physiological state of the patient; the incidence is 0.2% in general surgery, about 0.4% during caesarean section, between 1% and 2% during cardiac surgery and between 10% and 40% for anesthesia of the traumatized.[32][33][34][35][36][37][38][39][40] The majority of these do not feel pain, although around one-third did, in a range of experience from a sore throat caused by the endotracheal tube, to traumatic pain at the incision site. The incidence is halved in the absence of neuromuscular blockade.[40]
The quoted incidences are controversial as many cases of "awareness" are open to interpretation.
The incidence is higher and has more serious sequelae when muscle relaxants or neuromuscular-blocking drugs are used.[41] This is because without relaxant the patient will move and the anesthesiologist will then deepen the anesthesia.
One study has indicated that this phenomenon occurs in 0.13% of patients, or between 1 and 2 per 1000.[42] There are conflicting data, however, as another study suggested it is a rarer phenomenon, with an incidence of 0.0068%, after review of data from a population of 211,842 patients.[43]
Postoperative interview by an anesthetist is common practice to elucidate whether awareness occurred in the case. If awareness is reported, a case review is immediately performed to identify machine, medication, or operator error.[citation needed]
Outcomes
[edit]Patients who experience full awareness with explicit recall may have suffered an enormous trauma due to the extreme pain of surgery. Some patients experience post-traumatic stress disorder (PTSD), leading to long-lasting after-effects such as nightmares, night terrors, flashbacks, insomnia, and in some cases even suicide.[44] Some cases of awareness alert the patient to intra-operative errors.[citation needed]
A study from Sweden in 2002 attempted to follow up 18 patients for approximately 2 years after having been previously diagnosed with awareness under anesthesia.[45] Four of the nine interviewed patients were still severely disabled due to psychiatric/psychological after-effects. All of these patients had experienced anxiety during the period of awareness, but only one had stated feeling pain. Another three patients had less severe, transient mental symptoms, although they could cope with these in daily life. Two patients denied any lasting effects from their awareness episode.[citation needed]
Society and culture
[edit]- Awake, a 2007 film about anesthetic awareness.
- Anesthesia, an award-winning horror film about anesthesia awareness.[46]
- Return, a Korean thriller movie about anesthesia awareness.[47]
- In an episode of Nip/Tuck a woman, Rhea Reynolds, experiences anesthesia awareness while having surgery to repair scarring on her face.
- A sixth-season episode of "Grey's Anatomy", "State of Love and Trust," involves a patient waking up during removal of an abdominal tumor, and retaining full memory of the event.
- Under: a 2006 film about anesthetic awareness.
- 2014 Bollywood movie Heartless – the patient experienced full awareness during heart transplant.
- 2016 episode of Shortland Street, a New Zealand hospital soap opera, the patient experienced full awareness during facelift.
- Carol Weihrer, an American activist who experienced intraoperative awareness with recall.
References
[edit]- ^ Mashour GA, Avidan MS (July 2015). "Intraoperative awareness: controversies and non-controversies". British Journal of Anaesthesia. 115 (Suppl 1): i20–i26. doi:10.1093/bja/aev034. PMID 25735710.
- ^ Schnurr, Paula P.; Sall, James A.; Riggs, David (2024-05-29). "VA/Department of Defense Clinical Practice Guideline for PTSD and ASD: A Tool to Optimize Patient Care for Trauma Survivors". JAMA Psychiatry. 81 (8): 743–744. doi:10.1001/jamapsychiatry.2024.1238. ISSN 2168-622X. PMID 38809541.
- ^ a b Almeida D (December 2015). "Awake and unable to move: what can perioperative practitioners do to avoid accidental awareness under general anaesthesia?". Journal of Perioperative Practice. 25 (12): 257–61. doi:10.1177/175045891502501202. PMID 26845787. S2CID 2682608.
- ^ "Essentials of Trauma Anesthesia". International Journal of Health Care Quality Assurance. 26 (3). 2013-01-01. doi:10.1108/ijhcqa.2013.06226caa.015. ISSN 0952-6862.
- ^ Butterworth, John F.; Mackey, David C.; Wasnick, John D. (2022). Morgan & Mikhail's Clinical Anesthesiology (7th ed.). McGraw Hill. p. 1268. ISBN 978-1-260-47379-7.
- ^ Schnurr, Paula P.; Sall, James A.; Riggs, David (2024-05-29). "VA/Department of Defense Clinical Practice Guideline for PTSD and ASD: A Tool to Optimize Patient Care for Trauma Survivors". JAMA Psychiatry. 81 (8): 743–744. doi:10.1001/jamapsychiatry.2024.1238. ISSN 2168-622X. PMID 38809541.
- ^ a b Longnecker DE, Newman MF, Mackey S, Sandberg WS, Zapol WM (2018). "Chapter 34: Inhalational Anesthetics". Anesthesiology (3rd ed.). New York: McGraw-Hill Education. ISBN 9780071848817. OCLC 957077529.
- ^ Bischoff P, Rundshagen I (January 2011). "Awareness under general anesthesia". Deutsches Ärzteblatt International. 108 (1–2): 1–7. doi:10.3238/arztebl.2011.0001. PMC 3026393. PMID 21285993.
- ^ a b Mulaikal TA, Sansan SL, Atchabahian A, Gupta R (2013). "Chapter 62. Postoperative Complications". The Anesthesia Guide. New York: McGraw-Hill Medical. ISBN 9780071760492. OCLC 793006233.
- ^ a b "Unintended Awareness during General Anesthesia" (PDF). American Association of Nurse Anesthetists. November 2016.
- ^ Sandin RH, Enlund G, Samuelsson P, Lennmarken C (February 2000). "Awareness during anaesthesia: a prospective case study". Lancet. 355 (9205): 707–11. doi:10.1016/S0140-6736(99)11010-9. PMID 10703802. S2CID 11170260.
- ^ Ghoneim MM, Block RI, Haffarnan M, Mathews MJ (February 2009). "Awareness during anesthesia: risk factors, causes and sequelae: a review of reported cases in the literature". Anesthesia and Analgesia. 108 (2): 527–35. doi:10.1213/ane.0b013e318193c634. PMID 19151283. S2CID 25593237.
- ^ Butterworth JF, Mackey DC, Wasnick JD, Morgan G, Edward M, Maged S, Morgan GE (2018). "Chapter 54: Anesthetic Complications". Morgan & Mikhail's Clinical Anesthesiology (6th ed.). New York. ISBN 9781259834424. OCLC 1039081701.
{{cite book}}
: CS1 maint: location missing publisher (link) - ^ Osterman JE, van der Kolk BA (September 1998). "Awareness during anesthesia and posttraumatic stress disorder". General Hospital Psychiatry. 20 (5): 274–81. doi:10.1016/S0163-8343(98)00035-8. PMID 9788027.
- ^ Lobato EB, Gravenstein N, Kirby RR (2007). Complications in anesthesiology (3rd ed.). Lippincott Williams & Wilkins. p. 57. ISBN 978-0-7817-8263-0.
- ^ "ANZCA – ANZCA". Archived from the original on 2007-10-14. Retrieved 2007-11-26.
- ^ Liem EB, Lin CM, Suleman MI, Doufas AG, Gregg RG, Veauthier JM, et al. (August 2004). "Anesthetic requirement is increased in redheads". Anesthesiology. 101 (2): 279–83. doi:10.1097/00000542-200408000-00006. PMC 1362956. PMID 15277908.
- ^ Das S, Ghosh S (2015). "Monitored anesthesia care: An overview". Journal of Anaesthesiology Clinical Pharmacology. 31 (1): 27–9. doi:10.4103/0970-9185.150525. PMC 4353148. PMID 25788769.
- ^ Morgan GE, Mikhail MS, Murray MJ, Kleinman W, Nitti GJ, Nitti JT, et al. (2005-08-26). Clinical Anesthesiology. Mc Graw Hill. p. 291. ISBN 978-0-07-142358-8.
- ^ Lekprasert V (June 2008). "PreAnesthetic Assessment of the Patient Who Reports Previous Intraoperative Awareness". Anesthesiology News. www.AnesthesiologyNews.com: 35–38.
- ^ Alkire MT, Hudetz AG, Tononi G (November 2008). "Consciousness and anesthesia". Science. 322 (5903): 876–80. Bibcode:2008Sci...322..876A. doi:10.1126/science.1149213. PMC 2743249. PMID 18988836.
- ^ Sandin R (2006). "Outcome after awareness with explicit recall". Acta Anaesthesiologica Belgica. 57 (4): 429–32. PMID 17236646.
- ^ Ghoneim MM (February 2000). "Awareness during anesthesia". Anesthesiology. 92 (2): 597–602. doi:10.1097/00000542-200002000-00043. PMID 10691248.
- ^ Tunstall ME (May 1977). "Detecting wakefulness during general anaesthesia for caesarean section". British Medical Journal. 1 (6072): 1321. doi:10.1136/bmj.1.6072.1321-a. PMC 1607133. PMID 861598.
- ^ Russell IF (September 1986). "Comparison of wakefulness with two anaesthetic regimens. Total i.v. v. balanced anaesthesia". British Journal of Anaesthesia. 58 (9): 965–8. doi:10.1093/bja/58.9.965. PMID 3756056.
- ^ Jessop J, Jones JG (June 1991). "Conscious awareness during general anaesthesia--what are we attempting to monitor?". British Journal of Anaesthesia. 66 (6): 635–7. doi:10.1093/bja/66.6.635. PMID 2064875.
- ^ Veselis RA (March 2006). "The remarkable memory effects of propofol". British Journal of Anaesthesia. 96 (3): 289–91. doi:10.1093/bja/ael016. PMID 16467436.
- ^ Gajwani P, Muzina D, Gao K, Calabrese JR (June 2006). "Awareness under anesthesia during electroconvulsive therapy treatment". The Journal of ECT. 22 (2): 158–9. doi:10.1097/00124509-200606000-00018. PMID 16801837.
- ^ Myles PS, Leslie K, McNeil J, Forbes A, Chan MT (May 2004). "Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial" (PDF). Lancet. 363 (9423): 1757–63. doi:10.1016/s0140-6736(04)16300-9. PMID 15172773. S2CID 2612639.
- ^ Clapcich AJ, Emerson RG, Roye DP, Xie H, Gallo EJ, Dowling KC, et al. (November 2004). "The effects of propofol, small-dose isoflurane, and nitrous oxide on cortical somatosensory evoked potential and bispectral index monitoring in adolescents undergoing spinal fusion". Anesthesia and Analgesia. 99 (5): 1334–40, table of contents. doi:10.1213/01.ANE.0000134807.73615.5C. PMC 2435242. PMID 15502027.
- ^ Messina AG, Wang M, Ward MJ, Wilker CC, Smith BB, Vezina DP, Pace NL (October 2016). "Anaesthetic interventions for prevention of awareness during surgery". The Cochrane Database of Systematic Reviews. 2016 (10): CD007272. doi:10.1002/14651858.cd007272.pub2. PMC 6461159. PMID 27755648.
- ^ Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB (September 2004). "The incidence of awareness during anesthesia: a multicenter United States study". Anesthesia and Analgesia. 99 (3): 833–9, table of contents. doi:10.1213/01.ane.0000130261.90896.6c. PMID 15333419. S2CID 7413819.
- ^ Bogetz MS, Katz JA (July 1984). "Recall of surgery for major trauma". Anesthesiology. 61 (1): 6–9. doi:10.1097/00000542-198461010-00003. PMID 6742485.
- ^ Bogod DG, Orton JK, Yau HM, Oh TE (April 1990). "Detecting awareness during general anaesthetic caesarean section. An evaluation of two methods". Anaesthesia. 45 (4): 279–84. doi:10.1111/j.1365-2044.1990.tb14732.x. PMID 2337210. S2CID 58254125.
- ^ Dowd NP, Cheng DC, Karski JM, Wong DT, Munro JA, Sandler AN (November 1998). "Intraoperative awareness in fast-track cardiac anesthesia". Anesthesiology. 89 (5): 1068–73, discussion 9A. doi:10.1097/00000542-199811000-00006. PMID 9821994. S2CID 24961481.
- ^ Goldmann L, Shah MV, Hebden MW (June 1987). "Memory of cardiac anaesthesia. Psychological sequelae in cardiac patients of intra-operative suggestion and operating room conversation". Anaesthesia. 42 (6): 596–603. doi:10.1111/j.1365-2044.1987.tb03082.x. PMID 3618993. S2CID 35320774.
- ^ Liu WH, Thorp TA, Graham SG, Aitkenhead AR (June 1991). "Incidence of awareness with recall during general anaesthesia". Anaesthesia. 46 (6): 435–7. doi:10.1111/j.1365-2044.1991.tb11677.x. PMID 2048657. S2CID 40244356.
- ^ Lyons G, Macdonald R (January 1991). "Awareness during caesarean section". Anaesthesia. 46 (1): 62–4. doi:10.1111/j.1365-2044.1991.tb09321.x. PMID 1996761. S2CID 45800761.
- ^ Sandin RH, Enlund G, Samuelsson P, Lennmarken C (February 2000). "Awareness during anaesthesia: a prospective case study". Lancet. 355 (9205): 707–11. doi:10.1016/s0140-6736(99)11010-9. PMID 10703802. S2CID 11170260.
- ^ a b Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB (September 2004). "The incidence of awareness during anesthesia: a multicenter United States study". Anesthesia and Analgesia. 99 (3): 833–9, table of contents. doi:10.1213/01.ANE.0000130261.90896.6C. PMID 15333419. S2CID 7413819.
- ^ Schneider G (February 2003). "[Intraoperative awareness]". Anästhesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie (in German). 38 (2): 75–84. doi:10.1055/s-2003-36993. PMID 12557119. S2CID 259981791.
- ^ Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB (September 2004). "The incidence of awareness during anesthesia: a multicenter United States study". Anesthesia and Analgesia. 99 (3): 833–9, table of contents. doi:10.1213/01.ANE.0000130261.90896.6C. PMID 15333419. S2CID 7413819.
- ^ Pollard RJ, Coyle JP, Gilbert RL, Beck JE (February 2007). "Intraoperative awareness in a regional medical system: a review of 3 years' data". Anesthesiology. 106 (2): 269–74. doi:10.1097/00000542-200702000-00014. PMID 17264720. S2CID 7262082.
- ^ Breen T (April 10, 2007). "Lawsuit: Wide-Awake Surgery Led to Death". Fox News Channel. CHARLESTON, W.Va. Retrieved 2009-09-04.
- ^ Lennmarken C, Bildfors K, Enlund G, Samuelsson P, Sandin R (March 2002). "Victims of awareness". Acta Anaesthesiologica Scandinavica. 46 (3): 229–31. doi:10.1034/j.1399-6576.2002.t01-1-460301.x. PMID 11939910. S2CID 19464947.
- ^ "Anesthesia (2006)". IMDb. Retrieved 2007-11-26.
- ^ "Return (2007) – 리턴 @ HanCinema :: The Korean Movie and Drama Database". HanCinema. Archived from the original on 14 October 2007. Retrieved 2007-11-26.
External links
[edit]- American Association of Nurse Anesthetists Awareness Brochure at aana.com
- Anesthetic Awareness Fact Sheet at aana.com (American Association of Nurse Anesthetists)
- American Society of Anesthesiologists at asahq.org
- Resource for Student & Working Nurse Anesthetists at nurse-anesthesia.org
- Resource for Physiology and Pharmacology at Stanford University