Jump to content

Cinnabar: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Bergminer (talk | contribs)
I have changed the figure for a better one.
 
(13 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Short description|Red mercury(II) sulfide mineral, HgS}}
{{Short description|Red mercury(II) sulfide mineral, HgS}}
{{Use American English|date=November 2021}}
{{Use American English|date=November 2021}}
{{Use mdy dates|date=August 2024}}
{{Other uses}}
{{Other uses}}
{{Infobox mineral
{{Infobox mineral
Line 47: Line 48:
Cinnabar generally occurs as a vein-filling [[mineral]] associated with [[volcanic activity]] and [[Alkaline earth metal|alkaline]] [[hot spring]]s. The mineral resembles [[quartz]] in symmetry and it exhibits [[birefringence]]. Cinnabar has a mean [[refractive index]] near 3.2, a [[mohs scale of mineral hardness|hardness]] between 2.0 and 2.5, and a [[specific gravity]] of approximately 8.1. The color and properties derive from a structure that is a hexagonal crystalline [[bravais lattice|lattice]] belonging to the [[trigonal crystal system]], crystals that sometimes exhibit [[Crystal twinning|twinning]].
Cinnabar generally occurs as a vein-filling [[mineral]] associated with [[volcanic activity]] and [[Alkaline earth metal|alkaline]] [[hot spring]]s. The mineral resembles [[quartz]] in symmetry and it exhibits [[birefringence]]. Cinnabar has a mean [[refractive index]] near 3.2, a [[mohs scale of mineral hardness|hardness]] between 2.0 and 2.5, and a [[specific gravity]] of approximately 8.1. The color and properties derive from a structure that is a hexagonal crystalline [[bravais lattice|lattice]] belonging to the [[trigonal crystal system]], crystals that sometimes exhibit [[Crystal twinning|twinning]].


Cinnabar has been used for its color since antiquity in the [[Near East]], including as a [[rouge (cosmetics)|rouge]]-type [[cosmetics|cosmetic]], in the [[New World]] since the [[Olmec]] culture, and in [[China]] since as early as the [[Yangshao culture]], where it was used in coloring [[stoneware]].
Cinnabar has been used for its color since antiquity in the [[Near East]], including as a [[rouge (cosmetics)|rouge]]-type [[cosmetics|cosmetic]], in the [[New World]] since the [[Olmec]] culture, and in [[China]] since as early as the [[Yangshao culture]], where it was used in coloring [[stoneware]]. In Roman times, cinnabar was highly valued as paint for walls, especially interiors, since it darkened when used outdoors due to exposure to sunlight.


Associated modern precautions for the use and handling of cinnabar arise from the [[mercury toxicity|toxicity of the mercury component]], which was recognized as early as [[ancient Rome]].
Associated modern precautions for the use and handling of cinnabar arise from the [[mercury toxicity|toxicity of the mercury component]], which was recognized as early as [[ancient Rome]].
Line 66: Line 67:


== Occurrence ==
== Occurrence ==
[[File:cinnabar09.jpg|thumb|left|upright|Cinnabar mercury ore from [[Nevada]], United States]]
[[File:cinnabar09.jpg|thumb|left|Cinnabar mercury ore from [[Nevada]], United States]]
Cinnabar generally occurs as a vein-filling [[mineral]] associated with [[volcanic activity]] and alkaline [[hot spring]]s. Cinnabar is deposited by [[epithermal]] ascending [[aqueous]] solutions (those near the surface and not too hot) far removed from their igneous source.<ref>{{Cite book|chapter-url=https://pubs.geoscienceworld.org/segweb/books/book/1816/chapter/107705190/Thermal-Springs-and-Epithermal-Ore-Deposits|publisher=GeoScienceWorld|chapter=Thermal Springs and Epithermal Ore Deposits|doi=10.5382/AV50.03|title=Fiftieth Anniversary Volume. 1905-1955|year=1955|last1=White|first1=Donald E.|isbn=978-1-9349-6952-6}}</ref> It is associated with native mercury, [[stibnite]], [[realgar]], [[pyrite]], [[marcasite]], [[opal]], [[quartz]], [[chalcedony]], [[Dolomite (mineral)|dolomite]], [[calcite]], and [[barite]].<ref name=Handbook/>
Cinnabar generally occurs as a vein-filling [[mineral]] associated with [[volcanic activity]] and alkaline [[hot spring]]s. Cinnabar is deposited by [[epithermal]] ascending [[aqueous]] solutions (those near the surface and not too hot) far removed from their igneous source.<ref>{{Cite book|chapter-url=https://pubs.geoscienceworld.org/segweb/books/book/1816/chapter/107705190/Thermal-Springs-and-Epithermal-Ore-Deposits|publisher=GeoScienceWorld|chapter=Thermal Springs and Epithermal Ore Deposits|doi=10.5382/AV50.03|title=Fiftieth Anniversary Volume, 1905–1955|year=1955|last1=White|first1=Donald E.|isbn=978-1-9349-6952-6}}</ref> It is associated with native mercury, [[stibnite]], [[realgar]], [[pyrite]], [[marcasite]], [[opal]], [[quartz]], [[chalcedony]], [[Dolomite (mineral)|dolomite]], [[calcite]], and [[barite]].<ref name=Handbook/>


Cinnabar is essentially found in all mineral extraction localities that yield mercury, notably [[Almadén]] (Spain). This mine was exploited from Roman times until 1991, being for centuries the most important cinnabar deposit in the world. Good cinnabar crystals have also been found there.<ref>{{Cite book|title=Minerales y Minas de España. Vol. II. Sulfuros y sulfosales|last=Calvo|first=Miguel|publisher=Sulfuros y sulfosales. Museo de Ciencias Naturales de Alava|year=2003|isbn=84-7821-543-3|location=Vitoria, Spain|pages=355–359}}</ref><ref>{{Cite web|url=https://www.mindat.org/gm/1052?page=21|title=Cinnabar. Spain|website=Mindat}}</ref> Cinnabar deposits appear in [[Giza]] (Egypt); [[Puerto Princesa]] (Philippines); [[Red Devil, Alaska]]; [[Murfreesboro, Arkansas]]; [[New Almaden Mine]]<ref>Santa Clara County Parks, Almaden Quicksilver Mining Museum https://parks.sccgov.org/plan-your-visit/activities/cultural-venues/almaden-quicksilver-mining-museum#1849274314-3146410750</ref><ref>San Francisco Gate, "Tracking a toxic trail / Long-closed mine identified as largest source of mercury in San Francisco Bay" Dec 22, 2002 https://www.sfgate.com/bayarea/article/tracking-a-toxic-trail-long-closed-mine-2709557.php Accessed Sept. 10, 2023</ref> in [[San Jose, California]]; [[New Idria, California]], the [[Hastings Mine]] and [[St. John's Mine]] both in [[Vallejo, California]]; [[Terlingua, Texas]] (United States); [[Idrija]] (Slovenia); {{Interlanguage link multi|Moschellandsberg|de}} near [[Obermoschel]] in the [[Rhineland-Palatinate|Palatinate]]; the La Ripa and Levigliani mines<ref>{{Cite journal |last1=Dini |first1=Andrea |last2=Benvenuti |first2=Marco |last3=Costagliola |first3=Pilar |last4=Lattanzi |first4=Pierfranco |date=2001 |title=Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuane Alps (Tuscany, Italy) |journal=Ore Geology Reviews |volume=18 |issue=3 |pages=149–167 |doi=10.1016/S0169-1368(01)00026-9|bibcode=2001OGRv...18..149D }}</ref> at the foot of the [[Apuan Alps]] and in [[Mount Amiata]] (Tuscany, Italy); [[Avala]] (Serbia); [[Huancavelica]] (Peru); the province of [[Guizhou]] in China and [[Western ghats]] in India where fine crystals have been obtained. It has been found in [[Dominica]] near its sulfur springs at the southern end of the island along the west coast.<ref>{{Cite journal|journal=Minerals|title=Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece|year=2020|doi=10.3390/min11010014|doi-access=free|last1=Voudouris|first1=Panagiotis|last2=Kati|first2=Marianna|last3=Magganas|first3=Andreas|last4=Keith|first4=Manuel|last5=Valsami-Jones|first5=Eugenia|last6=Haase|first6=Karsten|last7=Klemd|first7=Reiner|last8=Nestmeyer|first8=Mark|volume=11|issue=1|page=14|bibcode=2020Mine...11...14V|url=https://opus4.kobv.de/opus4-fau/files/15520/minerals-11-00014-v3.pdf}}</ref>
Cinnabar is found in essentially all mineral extraction localities that yield mercury, notably [[Almadén]] (Spain). This mine was exploited from Roman times until 1991, being for centuries the most important cinnabar deposit in the world. Good cinnabar crystals have also been found there.<ref>{{Cite book|title=Minerales y Minas de España |volume=II. Sulfuros y sulfosales|last=Calvo|first=Miguel|publisher=Museo de Ciencias Naturales de Alava|year=2003|isbn=84-7821-543-3|location=Vitoria, Spain|pages=355–359}}</ref><ref>{{Cite web|url=https://www.mindat.org/gm/1052?page=21|title=Cinnabar. Spain|website=Mindat}}</ref> Cinnabar deposits appear in [[Giza]] (Egypt); [[Puerto Princesa]] (Philippines); [[Red Devil, Alaska]]; [[Murfreesboro, Arkansas]]; [[New Almaden Mine]]<ref>{{cite web |publisher=Santa Clara County Parks |title=Almaden Quicksilver Mining Museum |url=https://parks.sccgov.org/plan-your-visit/activities/cultural-venues/almaden-quicksilver-mining-museum#1849274314-3146410750 |access-date=25 August 2024}}</ref><ref>{{cite web |first=Jane |last=Kay |work=SFGate |title=Tracking a toxic trail / Long-closed mine identified as largest source of mercury in San Francisco Bay |date=December 22, 2002 |url=https://www.sfgate.com/bayarea/article/tracking-a-toxic-trail-long-closed-mine-2709557.php |access-date=25 August 2024}}</ref> in [[San Jose, California]]; [[New Idria, California]], the [[Hastings Mine]] and [[St. John's Mine]] both in [[Vallejo, California]]; [[Terlingua, Texas]] (United States); [[Idrija]] (Slovenia); {{Interlanguage link multi|Moschellandsberg|de}} near [[Obermoschel]] in the [[Rhineland-Palatinate|Palatinate]]; the La Ripa and Levigliani mines<ref>{{Cite journal |last1=Dini |first1=Andrea |last2=Benvenuti |first2=Marco |last3=Costagliola |first3=Pilar |last4=Lattanzi |first4=Pierfranco |date=2001 |title=Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuane Alps (Tuscany, Italy) |journal=Ore Geology Reviews |volume=18 |issue=3 |pages=149–167 |doi=10.1016/S0169-1368(01)00026-9|bibcode=2001OGRv...18..149D }}</ref> at the foot of the [[Apuan Alps]] and in [[Mount Amiata]] (Tuscany, Italy); [[Avala]] (Serbia); [[Huancavelica]] (Peru); the province of [[Guizhou]] in China and [[Western ghats]] in India where fine crystals have been obtained. It has been found in [[Dominica]] near its sulfur springs at the southern end of the island along the west coast.<ref>{{Cite journal|journal=Minerals|title=Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece|year=2020|doi=10.3390/min11010014|doi-access=free|last1=Voudouris|first1=Panagiotis|last2=Kati|first2=Marianna|last3=Magganas|first3=Andreas|last4=Keith|first4=Manuel|last5=Valsami-Jones|first5=Eugenia|last6=Haase|first6=Karsten|last7=Klemd|first7=Reiner|last8=Nestmeyer|first8=Mark|volume=11|issue=1|page=14|bibcode=2020Mine...11...14V|url=https://opus4.kobv.de/opus4-fau/files/15520/minerals-11-00014-v3.pdf}}</ref>
[[File:Cinabrio Almadén 2.jpg|thumb|upright=1.2|Specimen composed of pure cinnabar, with the surface covered in crystals. Being an old specimen, they are partially darkened due to exposure to light. Almadén Mine, (Ciudad Real), Spain. Largest dimension, 6 cm.|alt=]]


Cinnabar is still being deposited, such as from the hot waters of [[Sulphur Bank Mine]]<ref>{{Cite web|url=https://www.mindat.org/locentry-133387.html|publisher=Mindat|title=Cinnabar from Sulphur Bank Mine (Sulfur Bank Mine; Sulphur Bank deposits), Clear Lake Oaks, Sulphur Creek Mining District (Sulfur Creek Mining District; Wilbur Springs Mining District), Lake Co., California, USA|access-date=2021-03-15}}</ref> in California and [[Steamboat Springs, Nevada]] (United States).<ref>{{Cite web|url=https://www.mindat.org/locentry-204963.html|publisher=Mindat|title=Cinnabar from Steamboat Springs mine, Steamboat Springs Mining District, Washoe Co., Nevada, USA|access-date=2021-03-15}}</ref>[[File:Cinnabar-1cm- xl-Almaden.jpg|thumb|upright=1.25|Cinnabar crystals of an individual size of one centimeter, on quartz. Almadén (Ciudad Real) Spain. Coll. Museum of the School of Mining Engineers of Madrid|alt=]]
Cinnabar is still being deposited, such as from the hot waters of [[Sulphur Bank Mine]]<ref>{{Cite web|url=https://www.mindat.org/locentry-133387.html|publisher=Mindat|title=Cinnabar from Sulphur Bank Mine (Sulfur Bank Mine; Sulphur Bank deposits), Clear Lake Oaks, Sulphur Creek Mining District (Sulfur Creek Mining District; Wilbur Springs Mining District), Lake Co., California, USA|access-date=2021-03-15}}</ref> in California and [[Steamboat Springs, Nevada]] (United States).<ref>{{Cite web|url=https://www.mindat.org/locentry-204963.html|publisher=Mindat|title=Cinnabar from Steamboat Springs mine, Steamboat Springs Mining District, Washoe Co., Nevada, USA|access-date=2021-03-15}}</ref>


== Mining and extraction of mercury ==
== Mining and extraction of mercury ==
Line 77: Line 79:
As the most common source of mercury in nature,<ref>{{cite web|url=http://ec.gc.ca/mercure-mercury/default.asp?lang=En&n=2C1BBBDA-1 |publisher=Environment Canada |title=Natural Sources: Mercury |date=9 January 2007 |access-date=2015-07-24}}</ref> cinnabar has been mined for thousands of years, even as far back as the [[Neolithic Age]].<ref>{{cite journal |last1=Martín Gil |first1=J. |last2=Martín Gil |first2=F. J. |last3=Delibes de Castro |first3=G. |last4=Zapatero Magdaleno |first4=P. |last5=Sarabia Herrero |first5=F. J. | year = 1995 | title = The first known use of vermillion | journal = Experientia | volume = 51 | issue = 8 | pages = 759–761 | pmid = 7649232 | doi = 10.1007/BF01922425 |s2cid=21900879 | issn = 0014-4754 }}</ref> During the [[Roman Empire]] it was mined both as a pigment,<ref>{{cite book|author-link=Vitruvius |author=Vitruvius |title=De architectura |volume=VII |at=4–5|title-link=De architectura }}{{primary source inline|date=July 2015}}</ref><ref name=PlinyNatHist33>{{cite book|author-link=Pliny the Elder |author=Pliny |title=Natural History |volume=XXXIII |at=36–42|title-link=Natural History (Pliny) }}{{primary source inline|date=July 2015}}</ref> and for its mercury content.<ref name=PlinyNatHist33/>{{rp|XLI}}
As the most common source of mercury in nature,<ref>{{cite web|url=http://ec.gc.ca/mercure-mercury/default.asp?lang=En&n=2C1BBBDA-1 |publisher=Environment Canada |title=Natural Sources: Mercury |date=9 January 2007 |access-date=2015-07-24}}</ref> cinnabar has been mined for thousands of years, even as far back as the [[Neolithic Age]].<ref>{{cite journal |last1=Martín Gil |first1=J. |last2=Martín Gil |first2=F. J. |last3=Delibes de Castro |first3=G. |last4=Zapatero Magdaleno |first4=P. |last5=Sarabia Herrero |first5=F. J. | year = 1995 | title = The first known use of vermillion | journal = Experientia | volume = 51 | issue = 8 | pages = 759–761 | pmid = 7649232 | doi = 10.1007/BF01922425 |s2cid=21900879 | issn = 0014-4754 }}</ref> During the [[Roman Empire]] it was mined both as a pigment,<ref>{{cite book|author-link=Vitruvius |author=Vitruvius |title=De architectura |volume=VII |at=4–5|title-link=De architectura }}{{primary source inline|date=July 2015}}</ref><ref name=PlinyNatHist33>{{cite book|author-link=Pliny the Elder |author=Pliny |title=Natural History |volume=XXXIII |at=36–42|title-link=Natural History (Pliny) }}{{primary source inline|date=July 2015}}</ref> and for its mercury content.<ref name=PlinyNatHist33/>{{rp|XLI}}


To produce liquid mercury (quicksilver), crushed cinnabar ore is [[Roasting (metallurgy)|roasted]] in [[rotary furnace]]s. Pure mercury separates from sulfur in this process and easily evaporates. A [[Condenser (laboratory)|condensing column]] is used to collect the liquid metal, which is most often shipped in iron flasks.<ref>{{cite web|url=https://nvlpubs.nist.gov/nistpubs/jres/041/jresv41n3p205_A1b.pdf |publisher=Journal of Research of the National Bureau of Standards |title=Concentration of Isotopes of Mercury in Countercurrent Molecular Stills |access-date=2021-03-15}}</ref>
To produce liquid mercury (quicksilver), crushed cinnabar ore is [[Roasting (metallurgy)|roasted]] in [[rotary furnace]]s. Pure mercury separates from sulfur in this process and easily evaporates. A [[Condenser (laboratory)|condensing column]] is used to collect the liquid metal, which is most often shipped in iron flasks.<ref>{{cite journal|url=https://nvlpubs.nist.gov/nistpubs/jres/041/jresv41n3p205_A1b.pdf |journal=Journal of Research of the National Bureau of Standards |title=Concentration of Isotopes of Mercury in Countercurrent Molecular Stills |first1=Samuel L. |last1=Madorsky |first2=Paul |last2=Bradt |first3=Sidney |last3=Straus |volume=41 |date=September 1948 |id=Research Paper RP1918 |access-date=2024-08-26}}</ref>


== Toxicity ==
== Toxicity ==
{{See also|Mercury poisoning}}
{{See also|Mercury poisoning}}
Associated modern precautions for use and handling of cinnabar arise from the [[Mercury poisoning|toxicity of the mercury]] component, which was recognized as early as in ancient Rome.<ref name=Stewart14>{{cite book |first=Susan |last=Stewart |date=2014 |contribution='Gleaming and deadly white': Toxic cosmetics in the Roman world |page=84 |title=History of Toxicology and Environmental Health: Toxicology in Antiquity |volume=II |editor-first=Philip |editor-last=Wexler |location=New York, NY |publisher=Academic Press |isbn=978-0-12-801634-3 |url=https://books.google.com/books?isbn=0128016345 |access-date=2015-07-24}}</ref> Because of its [[Mercury (element)#Toxicity and safety|mercury]] content, cinnabar can be toxic to human beings. Overexposure to mercury, [[mercury poisoning]] (mercurialism), was seen as an occupational disease to the ancient Romans. Though people in ancient South America often used cinnabar for art, or processed it into refined mercury (as a means to gild silver and gold to objects), the toxic properties of mercury were well known. It was dangerous to those who mined and processed cinnabar; it caused shaking, loss of sense, and death. Data suggests that mercury was [[retort]]ed from cinnabar and the workers were exposed to the toxic mercury fumes.<ref>{{cite book |url=https://www.researchgate.net/publication/287174777 |title=Mining and Metallurgy in Ancient Peru |last=Petersen |first=G. |publisher=The Geological Society of America |year=2010 |series=Special Paper 467 |location=Boulder, CO|page=29}}</ref> "Mining in the Spanish cinnabar mines of [[Almadén]], {{cvt|225|km}} southwest of Madrid, was regarded as being akin to a death sentence due to the shortened life expectancy of the miners, who were slaves or convicts."<ref>{{cite book |title = Principles and Methods of Toxicology |edition = 6th |last= Hayes |first= A. W. |publisher=Informa Healthcare |location = New York, NY |year=2014 |isbn = 978-1-842-14537-1 |page = 10}}</ref>
Associated modern precautions for use and handling of cinnabar arise from the [[Mercury poisoning|toxicity of the mercury]] component, which was recognized as early as in ancient Rome.<ref name=Stewart14>{{cite book |first=Susan |last=Stewart |date=2014 |contribution='Gleaming and deadly white': Toxic cosmetics in the Roman world |page=84 |title=History of Toxicology and Environmental Health: Toxicology in Antiquity |volume=II |editor-first=Philip |editor-last=Wexler |location=New York City |publisher=Academic Press |isbn=978-0-12-801634-3 |url=https://books.google.com/books?isbn=0128016345 |access-date=2015-07-24}}</ref> Because of its [[Mercury (element)#Toxicity and safety|mercury]] content, cinnabar can be toxic to human beings. Overexposure to mercury, [[mercury poisoning]] (mercurialism), was seen as an occupational disease to the ancient Romans. Though people in ancient South America often used cinnabar for art, or processed it into refined mercury (as a means to gild silver and gold to objects), the toxic properties of mercury were well known. It was dangerous to those who mined and processed cinnabar; it caused shaking, loss of sense, and death. Data suggests that mercury was [[retort]]ed from cinnabar and the workers were exposed to the toxic mercury fumes.<ref>{{cite book |url=https://www.researchgate.net/publication/287174777 |title=Mining and Metallurgy in Ancient Peru |last=Petersen |first=G. |publisher=The Geological Society of America |year=2010 |series=Special Paper 467 |location=Boulder, Colorado|page=29}}</ref> "Mining in the Spanish cinnabar mines of [[Almadén]], {{cvt|225|km}} southwest of Madrid, was regarded as being akin to a death sentence due to the shortened life expectancy of the miners, who were slaves or convicts."<ref>{{cite book |title = Principles and Methods of Toxicology |edition = 6th |last= Hayes |first= A. W. |publisher=Informa Healthcare |location = New York City |year=2014 |isbn = 978-1-842-14537-1 |page = 10}}</ref>


== Decorative use ==
== Decorative use ==
Cinnabar has been used for its color since antiquity in the [[Near East]], including as a [[rouge (cosmetics)|rouge]]-type cosmetic,<ref name=Stewart14/> in the New World since the [[Olmec]] culture, and in China for writing on [[oracle bones]] as early as the [[Zhou dynasty]]. Late in the [[Song dynasty]] it was used in coloring [[lacquerware]].{{Cn|date=January 2021}}
Cinnabar has been used for its color since antiquity in the [[Near East]], including as a [[rouge (cosmetics)|rouge]]-type cosmetic,<ref name=Stewart14/> in the New World since the [[Olmec]] culture, and in China for writing on [[oracle bones]] as early as the [[Zhou dynasty]]. Late in the [[Song dynasty]] it was used in coloring [[lacquerware]].{{Cn|date=January 2021}}


Cinnabar's use as a color in the New World, since the [[Olmec]] culture,<ref>{{cite news|url=http://www.time.com/time/magazine/article/0,9171,825208,00.html|archive-url=https://web.archive.org/web/20081205015759/http://www.time.com/time/magazine/article/0,9171,825208,00.html|archive-date=December 5, 2008|title=New World's Oldest|newspaper=[[Time (magazine)|Time]]|date=1957-07-29}}</ref> is exemplified by its use in [[Maya rulers|royal]] [[Maya death rituals|burial chambers]] during the peak of [[Maya civilization]], most dramatically in the 7th-century [[tomb of the Red Queen]] in [[Palenque]], where the remains of a noble woman and objects belonging to her in her sarcophagus were completely covered with bright red powder made from cinnabar.<ref>{{cite journal|last1=Healy |first1=Paul F.|first2=Marc G. |last2=Blainey|year=2011|title=Ancient Maya mosaic mirrors: Function, symbolism, and meaning|journal=Ancient Mesoamerica|volume = 22 | issue=2|page=230|doi=10.1017/S0956536111000241 |s2cid=162282151}}</ref>
Cinnabar's use as a color in the New World, since the [[Olmec]] culture,<ref>{{cite magazine|url=http://www.time.com/time/magazine/article/0,9171,825208,00.html|archive-url=https://web.archive.org/web/20081205015759/http://www.time.com/time/magazine/article/0,9171,825208,00.html|archive-date=December 5, 2008|title=New World's Oldest|magazine=[[Time (magazine)|Time]]|date=1957-07-29}}</ref> is exemplified by its use in royal [[Maya death rituals|burial chambers]] during the peak of [[Maya civilization]], most dramatically in the 7th-century [[tomb of the Red Queen]] in [[Palenque]], where the remains of a noble woman and objects belonging to her in her sarcophagus were completely covered with bright red powder made from cinnabar.<ref>{{cite journal|last1=Healy |first1=Paul F.|first2=Marc G. |last2=Blainey|year=2011|title=Ancient Maya mosaic mirrors: Function, symbolism, and meaning|journal=Ancient Mesoamerica|volume = 22 | issue=2|page=230|doi=10.1017/S0956536111000241 |s2cid=162282151}}</ref>
[[File:Chinese carved cinnabar lacquerware.jpg|thumb|Chinese carved cinnabar lacquerware, late [[Qing dynasty]]. Adilnor Collection, Sweden]]


The most popularly known use of cinnabar is in Chinese [[carved lacquerware]], a technique that apparently originated in the [[Song dynasty]].<ref>{{cite book|editor-link=Jessica Rawson|editor-last=Rawson|editor-first=Jessica |title=The British Museum Book of Chinese Art |page=178 |date=2007 |edition=2nd |publisher=British Museum Press |isbn=978-0-7141-2446-9}}</ref> The danger of mercury poisoning may be reduced in ancient lacquerware by [[Entrainment (engineering)|entraining]] the powdered pigment in [[lacquer]],<ref>{{cite web|url=http://www.cst.cmich.edu/users/dietr1rv/cinnabar.htm|first=R. V. |last=Dietrich|year=2005|title=Cinnabar|work=Gemrocks: Ornamental & Curio Stones|publisher=University of Michigan | location = Ann Arbor, MI}}{{page needed|date=July 2015}}</ref>{{page needed|date=July 2015}} but could still pose an [[environmental hazard]] if the pieces were accidentally destroyed. In the modern jewellery industry, the toxic pigment is replaced by a resin-based [[polymer]] that approximates the appearance of pigmented lacquer.{{citation needed|date=July 2015}}
The most popularly known use of cinnabar is in Chinese [[carved lacquerware]], a technique that apparently originated in the [[Song dynasty]].<ref>{{cite book|editor-link=Jessica Rawson|editor-last=Rawson|editor-first=Jessica |title=The British Museum Book of Chinese Art |page=178 |date=2007 |edition=2nd |publisher=British Museum Press |isbn=978-0-7141-2446-9}}</ref> The danger of mercury poisoning may be reduced in ancient lacquerware by [[Entrainment (engineering)|entraining]] the powdered pigment in [[lacquer]],<ref>{{cite web|url=http://www.cst.cmich.edu/users/dietr1rv/cinnabar.htm|first=R. V. |last=Dietrich|year=2005|title=Cinnabar|work=Gemrocks: Ornamental & Curio Stones|publisher=University of Michigan | location = Ann Arbor, Michigan}}</ref>{{page needed|date=July 2015}} but could still pose an [[environmental hazard]] if the pieces were accidentally destroyed. In the modern jewellery industry, the toxic pigment is replaced by a resin-based [[polymer]] that approximates the appearance of pigmented lacquer.{{citation needed|date=July 2015}}
[[File:Chinese carved cinnabar lacquerware.jpg|thumb|Chinese carved cinnabar lacquerware, late [[Qing dynasty]]. Adilnor Collection, Sweden.]]


Two female mummies dated AD 1399 to 1475 found in Cerro Esmeralda in Chile in 1976 had clothes colored with cinnabar.<ref>{{cite web |url=https://www.livescience.com/63181-mummies-poison-clothing.html |title=Dressed to Kill: Chilean Mummies' Clothes Were Colored with Deadly Toxin |website=livescience.com|date=27 July 2018 }}</ref>
Two female mummies dated AD 1399 to 1475 found in Cerro Esmeralda in Chile in 1976 had clothes colored with cinnabar.<ref>{{cite web |url=https://www.livescience.com/63181-mummies-poison-clothing.html |first=Mindy |last=Weisberger |title=Dressed to Kill: Chilean Mummies' Clothes Were Colored with Deadly Toxin |website=Live Science|date=27 July 2018 |access-date=26 August 2024}}</ref>


== Other forms ==
== Other forms ==
* Hepatic cinnabar, or paragite, is an impure brownish variety<ref>{{cite web|url=http://www.mindat.org/min-1871.html|title=Hepatic Cinnabar: Hepatic Cinnabar mineral information and data.|work=mindat.org}}</ref> from the mines of [[Idrija]] in the [[Carniola]] region of [[Slovenia]], in which the cinnabar is mixed with [[bitumen|bituminous]] and earthy matter.<ref>{{cite book|last=Shepard|first=Charles Upham|title=Treatise on Mineralogy|publisher=Hezekiah Howe|date=1832|page=132}}</ref>
* Hepatic cinnabar, or paragite, is an impure brownish variety<ref>{{cite web|url=http://www.mindat.org/min-1871.html|title=Hepatic Cinnabar: Hepatic Cinnabar mineral information and data.|work=Mindat}}</ref> from the mines of [[Idrija]] in the [[Carniola]] region of [[Slovenia]], in which the cinnabar is mixed with [[bitumen|bituminous]] and earthy matter.<ref>{{cite book|last=Shepard|first=Charles Upham|title=Treatise on Mineralogy|publisher=Hezekiah Howe|date=1832|page=132}}</ref>
* [[Hypercinnabar]] crystallizes at high temperature in the [[hexagonal crystal system]].<ref>{{cite web|url=http://www.mindat.org/min-1994.html|title=Hypercinnabar: Hypercinnabar mineral information and data.|work=Mindat}}</ref>
* [[Hypercinnabar]] crystallizes at high temperature in the [[hexagonal crystal system]].<ref>{{cite web|url=http://www.mindat.org/min-1994.html|title=Hypercinnabar: Hypercinnabar mineral information and data|work=Mindat}}</ref>
* [[Metacinnabar]] is a black-colored form of mercury(II) sulfide, which crystallizes in the [[cubic crystal system]].<ref>{{cite web|url=http://www.mindat.org/min-2670.html|title=Metacinnabar: Metacinnabar mineral information and data.|work=Mindat}}</ref>
* [[Metacinnabar]] is a black-colored form of mercury(II) sulfide, which crystallizes in the [[cubic crystal system]].<ref>{{cite web|url=http://www.mindat.org/min-2670.html|title=Metacinnabar: Metacinnabar mineral information and data|work=Mindat}}</ref>
* Synthetic cinnabar is produced by treatment of mercury(II) [[Salt (chemistry)|salts]] with [[hydrogen sulfide]] to [[Precipitation (chemistry)|precipitate]] black, synthetic metacinnabar, which is then heated in water. This conversion is promoted by the presence of [[sodium sulfide]].<ref>{{cite book |last1=Holleman |first1=A. F. |last2=Wiberg |first2=E. | title = Inorganic Chemistry | publisher = Academic Press | location = San Diego, CA | year = 2001 | isbn = 0-12-352651-5 }}{{page needed|date=July 2015}}</ref>
* Synthetic cinnabar is produced by treatment of mercury(II) [[Salt (chemistry)|salts]] with [[hydrogen sulfide]] to [[Precipitation (chemistry)|precipitate]] black, synthetic metacinnabar, which is then heated in water. This conversion is promoted by the presence of [[sodium sulfide]].<ref>{{cite book |last1=Holleman |first1=A. F. |last2=Wiberg |first2=E. | title = Inorganic Chemistry | publisher = Academic Press | location = San Diego, California | year = 2001 | isbn = 0-12-352651-5 }}</ref>{{page needed|date=July 2015}}


== See also ==
== See also ==

Latest revision as of 17:32, 13 October 2024

Cinnabar
Cinnabar crystals (1 cm) on quartz crystals. Almadén, Ciudad Real (Spain)
General
CategorySulfide mineral
Formula
(repeating unit)
Mercury(II) sulfide, HgS
IMA symbolCin[1]
Strunz classification2.CD.15a
Crystal systemTrigonal
Crystal classTrapezohedral (32)
(same H–M symbol)
Space groupP3121, P3221
Unit cella = 4.145(2) Å, c = 9.496(2) Å, Z = 3
Identification
ColorCochineal-red, towards brownish red and lead-gray
Crystal habitRhombohedral to tabular; granular to massive and as incrustations
TwinningSimple contact twins, twin plane {0001}
CleavagePrismatic {1010}, perfect
FractureUneven to subconchoidal
TenacitySlightly sectile
Mohs scale hardness2.0–2.5
LusterAdamantine to dull
StreakScarlet
DiaphaneityTransparent in thin pieces
Specific gravity8.176
Optical propertiesUniaxial (+); very high relief
Refractive indexnω = 2.905 nε = 3.256
Birefringenceδ = 0.351
Solubility1.04×10−25 g/100 ml water
(Ksp at 25 °C = 2×10−32)[2]
References[3][4][5][6]

Cinnabar (/ˈsɪnəˌbɑːr/; from Ancient Greek κιννάβαρι (kinnábari)),[7] or cinnabarite (/ˌsɪnəˈbɑːrt/), also known as mercurblende is the bright scarlet to brick-red form of mercury(II) sulfide (HgS). It is the most common source ore for refining elemental mercury and is the historic source for the brilliant red or scarlet pigment termed vermilion and associated red mercury pigments.

Cinnabar generally occurs as a vein-filling mineral associated with volcanic activity and alkaline hot springs. The mineral resembles quartz in symmetry and it exhibits birefringence. Cinnabar has a mean refractive index near 3.2, a hardness between 2.0 and 2.5, and a specific gravity of approximately 8.1. The color and properties derive from a structure that is a hexagonal crystalline lattice belonging to the trigonal crystal system, crystals that sometimes exhibit twinning.

Cinnabar has been used for its color since antiquity in the Near East, including as a rouge-type cosmetic, in the New World since the Olmec culture, and in China since as early as the Yangshao culture, where it was used in coloring stoneware. In Roman times, cinnabar was highly valued as paint for walls, especially interiors, since it darkened when used outdoors due to exposure to sunlight.

Associated modern precautions for the use and handling of cinnabar arise from the toxicity of the mercury component, which was recognized as early as ancient Rome.

Etymology

[edit]

The name comes from Greek κιννάβαρι[7] (kinnabari),[8][9] a Greek word most likely applied by Theophrastus to several distinct substances.[7] In Latin, it was sometimes known as minium, meaning also "red cinnamon",[10] though both of these terms now refer specifically to lead tetroxide.[11]

Properties and structure

[edit]

Properties

[edit]

Cinnabar is generally found in a massive, granular, or earthy form and is bright scarlet to brick-red in color, though it occasionally occurs in crystals with a nonmetallic adamantine luster.[12][13] It resembles quartz in its symmetry. It exhibits birefringence, and it has the second-highest refractive index of any mineral.[14] Its mean refractive index is 3.08 (sodium light wavelengths),[15] versus the indices for diamond and the non-mineral gallium(III) arsenide (GaAs), which are 2.42 and 3.93, respectively. The hardness of cinnabar is 2.0–2.5 on the Mohs scale, and its specific gravity 8.1.[6]

Structure

[edit]
Crystal structure of cinnabar: yellow = sulfur, grey = mercury, green = cell

Structurally, cinnabar belongs to the trigonal crystal system.[6] It occurs as thick tabular or slender prismatic crystals or as granular to massive incrustations.[4] Crystal twinning occurs as simple contact twins.[5]

Mercury(II) sulfide, HgS, adopts the cinnabar structure described, and one additional structure, i.e. it is dimorphous.[16] Cinnabar is the more stable form, and is a structure akin to that of HgO: each Hg center has two short Hg−S bonds (each 2.36 Å), and four longer Hg···S contacts (with 3.10, 3.10, 3.30 and 3.30 Å separations). In addition, HgS is found in a black, non-cinnabar polymorph (metacinnabar) that has the zincblende structure.[5]

Occurrence

[edit]
Cinnabar mercury ore from Nevada, United States

Cinnabar generally occurs as a vein-filling mineral associated with volcanic activity and alkaline hot springs. Cinnabar is deposited by epithermal ascending aqueous solutions (those near the surface and not too hot) far removed from their igneous source.[17] It is associated with native mercury, stibnite, realgar, pyrite, marcasite, opal, quartz, chalcedony, dolomite, calcite, and barite.[4]

Cinnabar is found in essentially all mineral extraction localities that yield mercury, notably Almadén (Spain). This mine was exploited from Roman times until 1991, being for centuries the most important cinnabar deposit in the world. Good cinnabar crystals have also been found there.[18][19] Cinnabar deposits appear in Giza (Egypt); Puerto Princesa (Philippines); Red Devil, Alaska; Murfreesboro, Arkansas; New Almaden Mine[20][21] in San Jose, California; New Idria, California, the Hastings Mine and St. John's Mine both in Vallejo, California; Terlingua, Texas (United States); Idrija (Slovenia); Moschellandsberg [de] near Obermoschel in the Palatinate; the La Ripa and Levigliani mines[22] at the foot of the Apuan Alps and in Mount Amiata (Tuscany, Italy); Avala (Serbia); Huancavelica (Peru); the province of Guizhou in China and Western ghats in India where fine crystals have been obtained. It has been found in Dominica near its sulfur springs at the southern end of the island along the west coast.[23]

Specimen composed of pure cinnabar, with the surface covered in crystals. Being an old specimen, they are partially darkened due to exposure to light. Almadén Mine, (Ciudad Real), Spain. Largest dimension, 6 cm.

Cinnabar is still being deposited, such as from the hot waters of Sulphur Bank Mine[24] in California and Steamboat Springs, Nevada (United States).[25]

Mining and extraction of mercury

[edit]
Apparatus for the distillation of cinnabar, Alchimia, 1570

As the most common source of mercury in nature,[26] cinnabar has been mined for thousands of years, even as far back as the Neolithic Age.[27] During the Roman Empire it was mined both as a pigment,[28][29] and for its mercury content.[29]: XLI 

To produce liquid mercury (quicksilver), crushed cinnabar ore is roasted in rotary furnaces. Pure mercury separates from sulfur in this process and easily evaporates. A condensing column is used to collect the liquid metal, which is most often shipped in iron flasks.[30]

Toxicity

[edit]

Associated modern precautions for use and handling of cinnabar arise from the toxicity of the mercury component, which was recognized as early as in ancient Rome.[31] Because of its mercury content, cinnabar can be toxic to human beings. Overexposure to mercury, mercury poisoning (mercurialism), was seen as an occupational disease to the ancient Romans. Though people in ancient South America often used cinnabar for art, or processed it into refined mercury (as a means to gild silver and gold to objects), the toxic properties of mercury were well known. It was dangerous to those who mined and processed cinnabar; it caused shaking, loss of sense, and death. Data suggests that mercury was retorted from cinnabar and the workers were exposed to the toxic mercury fumes.[32] "Mining in the Spanish cinnabar mines of Almadén, 225 km (140 mi) southwest of Madrid, was regarded as being akin to a death sentence due to the shortened life expectancy of the miners, who were slaves or convicts."[33]

Decorative use

[edit]

Cinnabar has been used for its color since antiquity in the Near East, including as a rouge-type cosmetic,[31] in the New World since the Olmec culture, and in China for writing on oracle bones as early as the Zhou dynasty. Late in the Song dynasty it was used in coloring lacquerware.[citation needed]

Cinnabar's use as a color in the New World, since the Olmec culture,[34] is exemplified by its use in royal burial chambers during the peak of Maya civilization, most dramatically in the 7th-century tomb of the Red Queen in Palenque, where the remains of a noble woman and objects belonging to her in her sarcophagus were completely covered with bright red powder made from cinnabar.[35]

Chinese carved cinnabar lacquerware, late Qing dynasty. Adilnor Collection, Sweden

The most popularly known use of cinnabar is in Chinese carved lacquerware, a technique that apparently originated in the Song dynasty.[36] The danger of mercury poisoning may be reduced in ancient lacquerware by entraining the powdered pigment in lacquer,[37][page needed] but could still pose an environmental hazard if the pieces were accidentally destroyed. In the modern jewellery industry, the toxic pigment is replaced by a resin-based polymer that approximates the appearance of pigmented lacquer.[citation needed]

Two female mummies dated AD 1399 to 1475 found in Cerro Esmeralda in Chile in 1976 had clothes colored with cinnabar.[38]

Other forms

[edit]

See also

[edit]

References

[edit]
  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. ^ Myers, R. J. (1986). "The new low value for the second dissociation constant of H2S. Its history, its best value, and its impact on teaching sulfide equilibria". Journal of Chemical Education. 63: 689.
  3. ^ "Cinnabar". Mineralienatlas.
  4. ^ a b c "Cinnabar (HgS)" (PDF). rruff.geo.arizona.edu. Retrieved July 24, 2015.
  5. ^ a b c "Cinnabar: Cinnabar mineral information and data". Mindat. Retrieved July 24, 2015.
  6. ^ a b c "Cinnabar Mineral Data". Webmineral. Retrieved July 24, 2015.
  7. ^ a b c Chisholm, Hugh, ed. (1911). "Cinnabar" . Encyclopædia Britannica. Vol. 6 (11th ed.). Cambridge University Press. p. 376.
  8. ^ Harper, Douglas. "cinnabar". Online Etymology Dictionary.
  9. ^ κιννάβαρι. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project.
  10. ^ minium. Charlton T. Lewis and Charles Short. A Latin Dictionary on Perseus Project.
  11. ^ Thompson, Daniel V. (1956). The Materials and Techniques of Medieval Painting. Chicago, IL: Dover (R. R. Donnelley-Courier). pp. 100–102.
  12. ^ King, R. J. (2002). "Minerals Explained 37: Cinnabar". Geology Today. 18 (5): 195–199. doi:10.1046/j.0266-6979.2003.00366.x. S2CID 247674748.
  13. ^ Klein, Cornelis; Hurlbut, Cornelius S. Jr (1985). Manual of Mineralogy (20th ed.). Wiley. p. 281. ISBN 0-471-80580-7.
  14. ^ "Table of Refractive Indices and Double Refraction of Selected Gems - IGS". International Gem Society. Retrieved January 22, 2020.
  15. ^ Schumann, W. (1997). Gemstones of the World. New York, NY: Sterling. ISBN 0-8069-9461-4.[page needed]
  16. ^ Wells, A. F. (1984). Structural Inorganic Chemistry. Oxford, Oxon: Clarendon Press. ISBN 0-19-855370-6.[page needed]
  17. ^ White, Donald E. (1955). "Thermal Springs and Epithermal Ore Deposits". Fiftieth Anniversary Volume, 1905–1955. GeoScienceWorld. doi:10.5382/AV50.03. ISBN 978-1-9349-6952-6.
  18. ^ Calvo, Miguel (2003). Minerales y Minas de España. Vol. II. Sulfuros y sulfosales. Vitoria, Spain: Museo de Ciencias Naturales de Alava. pp. 355–359. ISBN 84-7821-543-3.
  19. ^ "Cinnabar. Spain". Mindat.
  20. ^ "Almaden Quicksilver Mining Museum". Santa Clara County Parks. Retrieved August 25, 2024.
  21. ^ Kay, Jane (December 22, 2002). "Tracking a toxic trail / Long-closed mine identified as largest source of mercury in San Francisco Bay". SFGate. Retrieved August 25, 2024.
  22. ^ Dini, Andrea; Benvenuti, Marco; Costagliola, Pilar; Lattanzi, Pierfranco (2001). "Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuane Alps (Tuscany, Italy)". Ore Geology Reviews. 18 (3): 149–167. Bibcode:2001OGRv...18..149D. doi:10.1016/S0169-1368(01)00026-9.
  23. ^ Voudouris, Panagiotis; Kati, Marianna; Magganas, Andreas; Keith, Manuel; Valsami-Jones, Eugenia; Haase, Karsten; Klemd, Reiner; Nestmeyer, Mark (2020). "Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece" (PDF). Minerals. 11 (1): 14. Bibcode:2020Mine...11...14V. doi:10.3390/min11010014.
  24. ^ "Cinnabar from Sulphur Bank Mine (Sulfur Bank Mine; Sulphur Bank deposits), Clear Lake Oaks, Sulphur Creek Mining District (Sulfur Creek Mining District; Wilbur Springs Mining District), Lake Co., California, USA". Mindat. Retrieved March 15, 2021.
  25. ^ "Cinnabar from Steamboat Springs mine, Steamboat Springs Mining District, Washoe Co., Nevada, USA". Mindat. Retrieved March 15, 2021.
  26. ^ "Natural Sources: Mercury". Environment Canada. January 9, 2007. Retrieved July 24, 2015.
  27. ^ Martín Gil, J.; Martín Gil, F. J.; Delibes de Castro, G.; Zapatero Magdaleno, P.; Sarabia Herrero, F. J. (1995). "The first known use of vermillion". Experientia. 51 (8): 759–761. doi:10.1007/BF01922425. ISSN 0014-4754. PMID 7649232. S2CID 21900879.
  28. ^ Vitruvius. De architectura. Vol. VII. 4–5.[non-primary source needed]
  29. ^ a b Pliny. Natural History. Vol. XXXIII. 36–42.[non-primary source needed]
  30. ^ Madorsky, Samuel L.; Bradt, Paul; Straus, Sidney (September 1948). "Concentration of Isotopes of Mercury in Countercurrent Molecular Stills" (PDF). Journal of Research of the National Bureau of Standards. 41. Research Paper RP1918. Retrieved August 26, 2024.
  31. ^ a b Stewart, Susan (2014). "'Gleaming and deadly white': Toxic cosmetics in the Roman world". In Wexler, Philip (ed.). History of Toxicology and Environmental Health: Toxicology in Antiquity. Vol. II. New York City: Academic Press. p. 84. ISBN 978-0-12-801634-3. Retrieved July 24, 2015.
  32. ^ Petersen, G. (2010). Mining and Metallurgy in Ancient Peru. Special Paper 467. Boulder, Colorado: The Geological Society of America. p. 29.
  33. ^ Hayes, A. W. (2014). Principles and Methods of Toxicology (6th ed.). New York City: Informa Healthcare. p. 10. ISBN 978-1-842-14537-1.
  34. ^ "New World's Oldest". Time. July 29, 1957. Archived from the original on December 5, 2008.
  35. ^ Healy, Paul F.; Blainey, Marc G. (2011). "Ancient Maya mosaic mirrors: Function, symbolism, and meaning". Ancient Mesoamerica. 22 (2): 230. doi:10.1017/S0956536111000241. S2CID 162282151.
  36. ^ Rawson, Jessica, ed. (2007). The British Museum Book of Chinese Art (2nd ed.). British Museum Press. p. 178. ISBN 978-0-7141-2446-9.
  37. ^ Dietrich, R. V. (2005). "Cinnabar". Gemrocks: Ornamental & Curio Stones. Ann Arbor, Michigan: University of Michigan.
  38. ^ Weisberger, Mindy (July 27, 2018). "Dressed to Kill: Chilean Mummies' Clothes Were Colored with Deadly Toxin". Live Science. Retrieved August 26, 2024.
  39. ^ "Hepatic Cinnabar: Hepatic Cinnabar mineral information and data". Mindat.
  40. ^ Shepard, Charles Upham (1832). Treatise on Mineralogy. Hezekiah Howe. p. 132.
  41. ^ "Hypercinnabar: Hypercinnabar mineral information and data". Mindat.
  42. ^ "Metacinnabar: Metacinnabar mineral information and data". Mindat.
  43. ^ Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego, California: Academic Press. ISBN 0-12-352651-5.

Further reading

[edit]
  • Stewart, Susan (2014). "'Gleaming and deadly white': Toxic cosmetics in the Roman world". In Wexler, Philip (ed.). History of Toxicology and Environmental Health: Toxicology in Antiquity. Vol. II. New York, NY: Academic Press. p. 84. ISBN 978-0-12-801634-3.
  • Barone, G.; Di Bella, M.; Mastelloni, M. A.; Mazzoleni, P.; Quartieri, S.; Raneri, S.; Sabatino, G.; Vailati, C. (2016). Pottery Production of the Pittore di Lipari: Chemical and Mineralogical Analysis of the Pigments. Minerals, Fluids and Rocks: Alphabet and Words of Planet Earth. Rimini: 2nd European Mineralogical Conference (EMC2016) 11–15 Sep 2016. p. 716.
[edit]
[edit]