Jump to content

Araceae: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Food plants: Added a wikilink.
 
(39 intermediate revisions by 30 users not shown)
Line 1: Line 1:
{{Short description|Family of flowering plants}}
{{Distinguish|Arecaceae|Araliaceae}}
{{Distinguish|Arecaceae|Araliaceae}}
{{Short description|Family of plants}}
{{Automatic taxobox
{{Automatic taxobox
|fossil_range = {{fossil range|115|0}}[[Aptian|Early Cretaceous]]<ref name=Sender /> - Recent
| fossil_range = {{fossil range|115|0}}[[Aptian|Early Cretaceous]]<ref name=Sender /> - Recent
|image = Xanthosoma sagittifolium at Kadavoor.jpg
| image = Spathiphyllum cochlearispathum RTBG.jpg
|image_caption = Inflorescence of ''[[Xanthosoma sagittifolium]]''
| image_caption = Inflorescence of ''[[Spathiphyllum cochlearispathum]]''
|taxon = Araceae
| taxon = Araceae
|authority = [[Antoine Laurent de Jussieu|Juss.]]<ref name="apgiii">{{Citation |last=Angiosperm Phylogeny Group |year=2009 |title=An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III |journal=Botanical Journal of the Linnean Society |volume=161 |issue=2 |pages=105–121 |doi=10.1111/j.1095-8339.2009.00996.x |doi-access=free }}</ref>
| authority = [[Antoine Laurent de Jussieu|Juss.]]<ref name="apgiii">{{Citation |last=Angiosperm Phylogeny Group |year=2009 |title=An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III |journal=Botanical Journal of the Linnean Society |volume=161 |issue=2 |pages=105–121 |doi=10.1111/j.1095-8339.2009.00996.x |doi-access=free |hdl=10654/18083 |hdl-access=free }}</ref>
|subdivision_ranks = Subfamilies
| subdivision_ranks = Subfamilies
|subdivision =
| subdivision = * [[Gymnostachydoideae]]
* [[Gymnostachydoideae]]
* [[Orontioideae]]
* [[Orontioideae]]
* [[Lemnoideae]]
* [[Lemnoideae]]
Line 18: Line 17:
* [[Aroideae]]
* [[Aroideae]]
}}
}}
[[File:044 Dracunculus vulgaris at Akrotiri peninsula, Crete, Greece.jpg|thumb|Snake lily (''[[Dracunculus vulgaris]]'') in [[Crete]]]][[File:Xanthosoma sagittifolium at Kadavoor.jpg|thumb|Arrowleaf elephant ear (''[[Xanthosoma sagittifolium]]''), clearly showing the characteristic spadix and spathe]]The '''Araceae''' are a [[family (biology)|family]] of [[monocotyledon]]ous [[flowering plant]]s in which [[flower]]s are borne on a type of [[inflorescence]] called a [[spadix (botany)|spadix]]. The spadix is usually accompanied by, and sometimes partially enclosed in, a [[spathe]] (or leaf-like [[bract]]). Also known as the '''arum family''', members are often colloquially known as '''aroids'''. This family of 114 [[genera]] and about 3,750 known species<ref name="Christenhusz-Byng2016">{{cite journal |author1=Christenhusz, M. J. M. |author2=Byng, J. W. |name-list-style=amp | year = 2016 | title = The number of known plants species in the world and its annual increase | journal = Phytotaxa | volume = 261 | pages = 201–217 | url = http://biotaxa.org/Phytotaxa/article/download/phytotaxa.261.3.1/20598 | doi = 10.11646/phytotaxa.261.3.1 | issue = 3 | publisher = Magnolia Press | doi-access = free }}</ref> is most diverse in the [[New World]] tropics, although also distributed in the [[Old World]] tropics and northern [[temperate regions]].
[[File:044 Dracunculus vulgaris at Akrotiri peninsula, Crete, Greece.jpg|thumb|Snake lily (''[[Dracunculus vulgaris]]'') in [[Crete]]]]
[[File:Spathiphyllum cochlearispathum RTBG.jpg|thumb|Peace lily (''[[Spathiphyllum cochlearispathum]]'') clearly showing the characteristic spadix and spathe]]


==Description==
The '''Araceae''' are a [[family (biology)|family]] of [[monocotyledon]]ous [[flowering plant]]s in which [[flower]]s are borne on a type of [[inflorescence]] called a spadix. The [[spadix (botany)|spadix]] is usually accompanied by, and sometimes partially enclosed in, a spathe or leaf-like [[bract]]. Also known as the '''arum family''', members are often colloquially known as '''aroids'''. This family of 114 genera and about 3750 known species<ref name="Christenhusz-Byng2016">{{cite journal |author1=Christenhusz, M. J. M. |author2=Byng, J. W. |name-list-style=amp | year = 2016 | title = The number of known plants species in the world and its annual increase | journal = Phytotaxa | volume = 261 | pages = 201–217 | url = http://biotaxa.org/Phytotaxa/article/download/phytotaxa.261.3.1/20598 | doi = 10.11646/phytotaxa.261.3.1 | issue = 3 | publisher = Magnolia Press | doi-access = free }}</ref> is most diverse in the New World tropics, although also distributed in the Old World tropics and northern temperate regions.


Within the Araceae, species are often [[rhizomatous]] or [[tuber]]ous; many are [[Epiphyte|epiphytic]], creeping [[Liana|lianas]] or [[Vine|vining]] plants, and the [[Leaf|leaves]] and tissues of the entire plant nearly always contains irritating [[calcium oxalate]] crystals or [[raphide]]s, in varying degrees.<ref name=Efloras>{{cite web|title=Araceae in Flora of North America @ efloras.org|url=http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=10056|work=Efloras.org|access-date=17 January 2014}}</ref><ref name=Gflora>{{cite web|work=The Encyclopedia of House Plants |url=http://www.gflora.com/index.php?cmd=genus&family_id=7|title=Araceae |access-date=30 June 2024}}</ref> The foliage can vary considerably from species to species. The majority of species produce an [[inflorescence]] consisting of a spadix (which some compare to a [[Corncob|corn cob]], in appearance), which is nearly always surrounded by a modified leaf bract called a [[spathe]].<ref name=Hawaii>{{cite web|title=Araceae - Flowering Plant Families, UH Botany|url=http://www.botany.hawaii.edu/faculty/carr/ar.htm|work=University of Hawaii|access-date=17 January 2014}}</ref> In [[monoecious]] aroids, possessing separate male and female flowers (but with both flowers present on one plant), the spadix is usually organized with female flowers towards the bottom and male flowers at the top. In aroids with [[perfect flower]]s, the [[stigma (flower)|stigma]] is no longer receptive when the [[pollen]] is released, thus preventing self-[[fertilization]]. Some species are [[dioecious]].<ref>{{cite web|title=Araceae|url=http://www.eeob.iastate.edu/classes/bio366/families/Araceae.pdf|work=Iowa State University|access-date=17 January 2014|archive-date=3 May 2013|archive-url=https://web.archive.org/web/20130503154022/http://www.eeob.iastate.edu/classes/bio366/families/Araceae.pdf|url-status=dead}}</ref>
One of the largest collections of living Araceae is maintained at the [[Missouri Botanical Gardens]].<ref>. "The resources which have been built up for aroid research at the Missouri Botanical Garden include one of the largest living collections of aroids and the largest collection of herbarium specimens of neotropical aroids. The living and dried collections include a large percentage of Croat's more than 80,000 personal collections". ({{cite journal| author = Croat, Thomas B|year = 1998| title = History and Current Status of Systematic Research with Araceae| journal = Aroideana| volume = 21}})</ref>


Many plants in this family are [[Thermogenic plants|thermogenic]] (heat-producing).<ref>{{cite journal|last1=Korotkova|first1=Nadja|last2=Barthlott|first2=Wilhelm|title=On the thermogenesis of the Titan arum (''Amorphophallus titanum'')|journal=Plant Signaling & Behavior|date=2009|volume=4|issue=11|pages=1096–1098|doi=10.4161/psb.4.11.9872|pmid=19838070|pmc=2819525|doi-access=free}}</ref> Their flowers can reach up to 45&nbsp;°C, even if the surrounding air temperature is much lower. One reason for this unusually high temperature is to attract insects (usually [[Beetle|beetles]]) to pollinate the plant, rewarding the beetles with heat energy, in addition to preventing tissue damage in colder regions. Some examples of thermogenic aroids are ''[[Symplocarpus foetidus]]'' (eastern skunk-cabbage),'' [[Amorphophallus titanum]]'' (titan arum),'' [[Amorphophallus paeoniifolius]]'' (elephant-foot yam), ''[[Helicodiceros muscivorus]]'' (dead-horse arum lily), and ''[[Sauromatum venosum]]'' (voodoo lily). Some species, such as ''A''. ''titanum'' and ''H''. ''muscivorus'', give off a very pungent smell akin to rotten meat, which serves to attract flies for pollination. The heat produced by the plant helps to convey the scent further.
==Description==


===Toxicity===
Species in the Araceae are often [[rhizome|rhizomatous]] or [[tuber]]ous and are often found to contain [[calcium oxalate|calcium oxalate crystals]] or [[raphides]].<ref name=Efloras>{{cite web|title=Araceae in Flora of North America @ efloras.org|url=http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=10056|work=Efloras.org|access-date=17 January 2014}}</ref><ref name=Gflora>{{cite web|title=Araceae - Encyclopedia of House Plants|url=http://www.gflora.com/index.php?cmd=genus&family_id=7|work=gflora.com|access-date=17 January 2014}}</ref> The leaves can vary considerably from species to species. The [[inflorescence]] is composed of a spadix, which is almost always surrounded by a modified leaf called a [[spathe]].<ref name=Hawaii>{{cite web|title=Araceae - Flowering Plant Families, UH Botany|url=http://www.botany.hawaii.edu/faculty/carr/ar.htm|work=University of Hawaii|access-date=17 January 2014}}</ref> In [[Plant sexuality|monoecious]] aroids (possessing separate male and female flowers, but with both flowers present on one plant), the spadix is usually organized with female flowers towards the bottom and male flowers towards the top. In aroids with [[perfect flower]]s, the [[stigma (flower)|stigma]] is no longer receptive when the [[pollen]] is released, thus preventing self-[[fertilization]]. Some species are [[Plant sexuality|dioecious]].<ref>{{cite web|title=Araceae|url=http://www.eeob.iastate.edu/classes/bio366/families/Araceae.pdf|work=Iowa State University|access-date=17 January 2014}}</ref>


Within the Araceae family, the majority of species produce calcium oxalate crystals in the form of [[Raphide|raphides]]. While it is possible to consume the cooked foliage of certain genera, such as ''[[Alocasia]]'', ''[[Colocasia]]'', and ''[[Xanthosoma]]'', as well as the ripened fruits of ''[[Monstera deliciosa]]'', these raphide compounds are irritating (and even dangerous) for many animals, including humans. Consumption of raw aroid vegetation may cause [[edema]], [[Vesicle (biology and chemistry)|vesicle]] formation or [[dysphagia]], accompanied by a painful stinging and burning in the mouth and throat, with symptoms occurring for up to two weeks, depending on amount consumed. In smaller amounts, patients report feeling a mild to extreme sensation of sand or glass in the esophagus and mouth, lasting up to 48 hours.<ref>{{cite journal|last1=Watson|first1=John T.|last2=Jones|first2=Roderick C.|last3=Siston|first3=Alicia M.|last4=Diaz|first4=Pamela S.|last5=Gerber|first5=Susan I.|last6=Crowe|first6=John B.|last7=Satzger|first7=R. Duane|title=Outbreak of Food-borne Illness Associated with Plant Material Containing Raphides|journal=Clinical Toxicology|date=2005|volume=43|issue=1|pages=17–21|doi=10.1081/CLT-44721|pmid=15732442|s2cid=388923}}</ref> Additionally, in heavier instances of ingestion, [[Anaphylaxis|anaphylactic shock]] could cause swelling of the throat, restricting breathing. The genus ''[[Dieffenbachia]]'' is famously known as "dumb-cane" for this reason; however, given the presence of irritating compounds across the family, this nickname may be applied to virtually any genera within the Araceae.
Many plants in this family are [[Thermogenic plants|thermogenic]] (heat-producing).<ref>{{cite journal|last1=Korotkova|first1=Nadja|last2=Barthlott|first2=Wilhelm|title=On the thermogenesis of the Titan arum (''Amorphophallus titanum'')|journal=Plant Signaling & Behavior|date=2009|volume=4|issue=11|pages=1096–1098|doi=10.4161/psb.4.11.9872|pmid=19838070|pmc=2819525|doi-access=free}}</ref> Their flowers can reach up to 45&nbsp;°C even when the surrounding air temperature is much lower. One reason for this unusually high temperature is to attract insects (usually beetles) to pollinate the plant, rewarding the beetles with heat energy. Another reason is to prevent tissue damage in cold regions. Some examples of thermogenic Araceae are:'' [[Symplocarpus foetidus]]'' (eastern skunk cabbage),'' [[Amorphophallus titanum]]'' (titan arum),'' [[Amorphophallus paeoniifolius]]'' (elephant foot yam), ''[[Helicodiceros muscivorus]]'' (dead horse arum lily), and ''[[Sauromatum venosum]]'' (voodoo lily). Species such as titan arum and the dead horse arum give off a very pungent smell, often resembling rotten flesh, to attract flies to pollinate the plant. The heat produced by the plant helps to convey the scent further.


==Taxonomy==
==Taxonomy==


===Phylogeny===
===Phylogeny===
Phylogeny based on the [[Angiosperm Phylogeny Website]].<ref>{{cite website |website=[[Angiosperm Phylogeny Website]] |version=13 | last=Stevens | first=P.F. | year=2001 | title=Araceae |url=http://www.mobot.org/MOBOT/research/APweb/orders/alismatalesweb.htm#Araceae | access-date= 30 December 2017}}</ref>
Phylogeny based on the [[Angiosperm Phylogeny Website]].<ref>{{cite web |website=[[Angiosperm Phylogeny Website]] |version=13 | last=Stevens | first=P.F. | year=2001 | title=Araceae |url=http://www.mobot.org/MOBOT/research/APweb/orders/alismatalesweb.htm#Araceae | access-date= 30 December 2017}}</ref>

F
{{clade| style=font-size:90%;line-height:80%
{{clade| style=font-size:90%;line-height:80%
|label1='''Araceae'''
|label1='''Araceae'''
Line 67: Line 65:
The first major system of classification for the family was produced by [[Heinrich Wilhelm Schott]], who published ''Genera Aroidearum'' in 1858 and ''Prodromus Systematis Aroidearum'' in 1860. Schott's system was based on floral characteristics, and used a narrow conception of a genus. [[Adolf Engler]] produced a classification in 1876, which was steadily refined up to 1920. His system is significantly different from Schott's, being based more on vegetative characters and anatomy. The two systems were to some extent rivals, with Engler's having more adherents before the advent of [[molecular phylogenetics]] brought new approaches.<ref name=Gray90>{{Citation |last=Grayum |first=Michael H. |year=1990 |title=Evolution and Phylogeny of the Araceae |journal=Annals of the Missouri Botanical Garden |volume=77 |issue=4 |pages=628–697 |doi=10.2307/2399668 |jstor=2399668 }}</ref>
The first major system of classification for the family was produced by [[Heinrich Wilhelm Schott]], who published ''Genera Aroidearum'' in 1858 and ''Prodromus Systematis Aroidearum'' in 1860. Schott's system was based on floral characteristics, and used a narrow conception of a genus. [[Adolf Engler]] produced a classification in 1876, which was steadily refined up to 1920. His system is significantly different from Schott's, being based more on vegetative characters and anatomy. The two systems were to some extent rivals, with Engler's having more adherents before the advent of [[molecular phylogenetics]] brought new approaches.<ref name=Gray90>{{Citation |last=Grayum |first=Michael H. |year=1990 |title=Evolution and Phylogeny of the Araceae |journal=Annals of the Missouri Botanical Garden |volume=77 |issue=4 |pages=628–697 |doi=10.2307/2399668 |jstor=2399668 }}</ref>


A comprehensive taxonomy of Araceae was published by Mayo et al. in 1997.<ref name="Mayo 1997">{{cite book | last=Mayo | first=S. J. | last2=Bogner | first2=J. | last3=Boyce | first3=P. C.| title=The genera of Araceae | publisher=Royal Botanic Gardens, Kew | publication-place=London | date=1997 | isbn=1-900347-22-9 | oclc=60140655}}</ref>
Modern studies based on gene sequences show the Araceae (including the [[Lemnoideae]], duckweeds) to be [[monophyly|monophyletic]], and the first diverging group within the [[Alismatales]].<ref name=APweb_Araceae>{{Cite web |last=Stevens |first=P.F. |title=Araceae|work=Angiosperm Phylogeny Website |url=http://www.mobot.org/MOBOT/research/APweb/orders/alismatalesweb.htm#Araceae }}</ref> The [[APG III system]] of 2009 recognizes the family, including the genera formerly segregated in the Lemnaceae.<ref name=APG3>{{Cite journal|last=Angiosperm Phylogeny Group III|year=2009 |title=An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III |journal=Botanical Journal of the Linnean Society |volume=161 |issue=2 |pages=105–121 |doi=10.1111/j.1095-8339.2009.00996.x |doi-access=free }}</ref> The sinking of the Lemnaceae into the Araceae was not immediately universally accepted. For example, the 2010 ''New Flora of the British Isles'' used a [[Paraphyly|paraphyletic]] Araceae and a separate Lemnaceae.<ref name=Stace3>{{Citation |last=Stace |first=C.A. |author-link = Clive Stace |year=2010 |title=New Flora of the British Isles |edition=Third |location=Cambridge, UK |publisher=Cambridge University Press |isbn=978-0-521-70772-5 }} pp. 830–834.</ref> However ''Lemna'' and its allies were incorporated in Araceae in the 2019 edition.<ref name=Stace4>{{cite book|last=Stace|first=C. A.|author-link = Stace, C. A.|year=2019|title=New Flora of the British Isles|edition=Fourth|publisher=C & M Floristics|location = Middlewood Green, Suffolk, U.K.| isbn=978-1-5272-2630-2}}</ref>{{rp|872}} A comprehensive [[genomic]] study of ''[[Spirodela polyrhiza]]'' was published in February 2014.<ref>{{cite journal|last1=Wang|first1=W.|last2=Haberer|first2=G.|last3=Gundlach|first3=H.|last4=Gläßer|first4=C.|last5=Nussbaumer|first5=T.|last6=Luo|first6=M. C.|last7=Lomsadze|first7=A.|last8=Borodovsky|first8=M.|last9=Kerstetter|first9=R. A.|last10=Shanklin|first10=J.|last11=Byrant|first11=D. W.|last12=Mockler|first12=T. C.|last13=Appenroth|first13=K. J.|last14=Grimwood|first14=J.|last15=Jenkins|first15=J.|last16=Chow|first16=J.|last17=Choi|first17=C.|last18=Adam|first18=C.|last19=Cao|first19=X.-H.|last20=Fuchs|first20=J.|last21=Schubert|first21=I.|last22=Rokhsar|first22=D.|last23=Schmutz|first23=J.|last24=Michael|first24=T. P.|last25=Mayer|first25=K. F. X.|last26=Messing|first26=J|title=The ''Spirodela polyrhiza'' genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle|journal=Nature Communications|date=2014|volume=5|page=3311|doi=10.1038/ncomms4311|pmid=24548928|pmc=3948053|bibcode=2014NatCo...5.3311W}}</ref>

Modern studies based on gene sequences show the Araceae (including the [[Lemnoideae]], duckweeds) to be [[monophyletic]], and the first diverging group within the [[Alismatales]].<ref name=APweb_Araceae>{{Cite web |last=Stevens |first=P.F. |title=Araceae|work=Angiosperm Phylogeny Website |url=http://www.mobot.org/MOBOT/research/APweb/orders/alismatalesweb.htm#Araceae }}</ref> The [[APG III system]] of 2009 recognizes the family, including the genera formerly segregated in the Lemnaceae.<ref name=APG3>{{Cite journal|last=Angiosperm Phylogeny Group III|year=2009 |title=An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III |journal=Botanical Journal of the Linnean Society |volume=161 |issue=2 |pages=105–121 |doi=10.1111/j.1095-8339.2009.00996.x |doi-access=free |hdl=10654/18083 |hdl-access=free }}</ref> The sinking of the Lemnaceae into the Araceae was not immediately universally accepted. For example, the 2010 ''New Flora of the British Isles'' used a [[Paraphyly|paraphyletic]] Araceae and a separate Lemnaceae.<ref name=Stace3>{{Citation |last=Stace |first=C.A. |author-link = Clive Stace |year=2010 |title=New Flora of the British Isles |edition=Third |location=Cambridge, UK |publisher=Cambridge University Press |isbn=978-0-521-70772-5 }} pp. 830–834.</ref> However ''Lemna'' and its allies were incorporated in Araceae in the 2019 edition.<ref name=Stace4>{{cite book|last=Stace|first=C. A.|author-link = Stace, C. A.|year=2019|title=New Flora of the British Isles|edition=Fourth|publisher=C & M Floristics|location = Middlewood Green, Suffolk, U.K.| isbn=978-1-5272-2630-2}}</ref>{{rp|872}} A comprehensive [[genomic]] study of ''[[Spirodela polyrhiza]]'' was published in February 2014.<ref>{{cite journal|last1=Wang|first1=W.|last2=Haberer|first2=G.|last3=Gundlach|first3=H.|last4=Gläßer|first4=C.|last5=Nussbaumer|first5=T.|last6=Luo|first6=M. C.|last7=Lomsadze|first7=A.|last8=Borodovsky|first8=M.|last9=Kerstetter|first9=R. A.|last10=Shanklin|first10=J.|last11=Byrant|first11=D. W.|last12=Mockler|first12=T. C.|last13=Appenroth|first13=K. J.|last14=Grimwood|first14=J.|last15=Jenkins|first15=J.|last16=Chow|first16=J.|last17=Choi|first17=C.|last18=Adam|first18=C.|last19=Cao|first19=X.-H.|last20=Fuchs|first20=J.|last21=Schubert|first21=I.|last22=Rokhsar|first22=D.|last23=Schmutz|first23=J.|last24=Michael|first24=T. P.|last25=Mayer|first25=K. F. X.|last26=Messing|first26=J|title=The ''Spirodela polyrhiza'' genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle|journal=Nature Communications|date=2014|volume=5|page=3311|doi=10.1038/ncomms4311|pmid=24548928|pmc=3948053|bibcode=2014NatCo...5.3311W}}</ref>


===Genera===
===Genera===
Line 74: Line 74:
[[File:Arisaema triphyllum.jpg|thumb|''[[Arisaema triphyllum]]'']]
[[File:Arisaema triphyllum.jpg|thumb|''[[Arisaema triphyllum]]'']]


''[[Anthurium]]'' and ''[[Zantedeschia]]'' are two well-known members of this family, as are ''Colocasia esculenta'' ([[taro]]) and ''[[Xanthosoma]] roseum'' (elephant ear or ‘ape). The largest unbranched inflorescence in the world is that of the arum ''Amorphophallus titanum'' (titan arum).<ref name="Titan Arum">{{cite web|title=Titan Arum FAQs {{!}} Biological Sciences Greenhouse|url=http://bioscigreenhouse.osu.edu/titan-arum-faqs|work=[[Ohio State University]]|access-date=17 January 2014|date=2012-05-16}}</ref> The family includes many ornamental plants: ''[[Dieffenbachia]]'', ''[[Aglaonema]]'', ''[[Caladium]]'', ''[[Nephthytis]]'', and ''[[Epipremnum]]'', to name a few. The genera ''[[Cryptocoryne]]'', ''[[Anubias]]'' and ''[[Bucephalandra]] '' are many popular aquarium plants.<ref>{{cite web|title=Aquarium Cryptocoryne Plants|url=http://www.fishchannel.com/freshwater-aquariums/planted-tank/crypt-aquarium-plants.aspx|work=[[Aquarium Fish International]]|access-date=17 January 2014}}</ref> ''[[Philodendron]]'' is an important plant in the ecosystems of the [[rainforest]]s and is often used in home and interior decorating. ''Symplocarpus foetidus'' (skunk cabbage) is a common eastern North American species. An interesting peculiarity is that this family includes the largest unbranched inflorescence, that of the [[titan arum]],<ref name="Titan Arum"/> often erroneously called the "largest flower" and the smallest flowering plant and smallest fruit, found in the duckweed, ''[[Wolffia]]''.<ref>{{cite web|title=What is the smallest flower in the world?|url=http://loc.gov/rr/scitech/mysteries/smallestflower.html|work=[[Library of Congress]]|access-date=17 January 2014}}</ref>
143 genera are accepted within the Araceae.<ref name = powo>[https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30000216-2 Araceae Juss.] ''[[Plants of the World Online]]''. Retrieved 28 April 2024.</ref> ''[[Anthurium]]'', ''[[Epipremnum]]'', ''[[Monstera]]'', ''[[Philodendron]]'' and ''[[Zantedeschia]]'' are some of the most well-known genera of the family, as are the ''[[Colocasia]]'' (taro, ''arbi'') and ''[[Xanthosoma]]'' ('elephant-ear', ‘ape), which are both cultivated for human consumption. The largest unbranched inflorescence in the world is that of the arum ''Amorphophallus titanum'' (titan arum).<ref name="Titan Arum">{{cite web|title=Titan Arum FAQs {{!}} Biological Sciences Greenhouse|url=http://bioscigreenhouse.osu.edu/titan-arum-faqs|work=[[Ohio State University]]|access-date=17 January 2014|date=2012-05-16}}</ref>
The Araceae includes many ornamental genera of global economic importance: ''[[Aglaonema]]'', ''Alocasia'', ''Anthurium'', ''[[Caladium]]'', ''Dieffenbachia'', ''Epipremnum'', ''[[Homalomena]], Monstera'', ''[[Nephthytis]]'', ''[[Rhaphidophora]]'', ''[[Scindapsus]]'', ''[[Spathiphyllum]]'', ''[[Syngonium]]'', and ''[[Zamioculcas]]'', to name but a few. The aquatic genera ''[[Anubias]]'', ''[[Bucephalandra]]'' and ''[[Cryptocoryne]]'' are highly prized and cultivated aquarium plants; other, recently-described genera, such as the ''[[Lagenandra]]'' of India, are gradually becoming more known in the [[aquascaping]] world.<ref>{{cite web|title=Aquarium Cryptocoryne Plants|url=http://www.fishchannel.com/freshwater-aquariums/planted-tank/crypt-aquarium-plants.aspx|work=[[Aquarium Fish International]]|access-date=17 January 2014}}</ref> ''[[Philodendron]]'' is an important genus in the ecosystems of [[Neotropical realm|neotropical]] [[rainforest]]s, and is widely used in home and interior decorating. ''[[Symplocarpus]] foetidus'' (skunk cabbage) is a common eastern North American species. An interesting peculiarity is that this family includes the largest unbranched inflorescence, that of the [[titan arum]],<ref name="Titan Arum" /> often erroneously called the "largest flower", and the smallest flowering plant and smallest fruit, in the [[Lemnoideae|duckweed]], ''[[Wolffia]]''.<ref>{{cite web|title=What is the smallest flower in the world?|url=http://loc.gov/rr/scitech/mysteries/smallestflower.html|work=[[Library of Congress]]|access-date=17 January 2014}}</ref>


==Fossil record==
==Fossil record==


The family Araceae has one of the oldest [[fossil]] record among [[angiosperms]], with fossil forms first appearing during the [[Early Cretaceous]] epoch.<ref name=Sender>Sender, L.M., Doyle, J.A., Upchurch, J.R. Jr., Villanueva-Amadoz, U. and Diez J.B. 2019. Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain. Journal of Systematic Palaeontology, vol. 17, p. 1093–1126.</ref><ref name=Nauheimer>Nauheimer, L., Metzler, D. and Renner, S.S. 2012. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytologist, vol. 195, p. 938-950.</ref> Notable fossils from the Early Cretaceous include: ''Spixiarum kipea'',<ref name=Coiffard>Coiffard, C., Mohr, B.A.R. and Bernardes de Oliveira, M.E.C. 2013. The Early Cretaceous aroid, ''Spixiarum kipea'' gen. et sp. nov., and implications on early dispersal and ecology of basal monocots. Taxon, vol. 62. p. 997-1008.</ref> an aroid from the late [[Aptian]] of Brazil;<ref name=Sender /> ''Orontiophyllum ferreri'', an aroid leaf from the late [[Albian]] of Spain;<ref name=Sender /> and ''Turolospadix bogneri'', an aroid spadix from the late Albian of Spain.<ref name=Sender />
The family Araceae has one of the oldest [[fossil]] record among [[angiosperms]], with fossil forms first appearing during the [[Early Cretaceous]] epoch.<ref name=Sender>Sender, L.M., Doyle, J.A., Upchurch, J.R. Jr., Villanueva-Amadoz, U. and Diez J.B. 2019. Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain. Journal of Systematic Palaeontology, vol. 17, p. 1093–1126.</ref><ref name=Nauheimer>Nauheimer, L., Metzler, D. and Renner, S.S. 2012. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytologist, vol. 195, p. 938-950.</ref> Notable fossils from the Early Cretaceous include: ''Spixiarum kipea'',<ref name=Coiffard>Coiffard, C., Mohr, B.A.R. and Bernardes de Oliveira, M.E.C. 2013. The Early Cretaceous aroid, ''Spixiarum kipea'' gen. et sp. nov., and implications on early dispersal and ecology of basal monocots. Taxon, vol. 62. p. 997-1008.</ref> an aroid from the late [[Aptian]] of Brazil;<ref name=Sender /> ''Orontiophyllum ferreri'', an aroid leaf from the late [[Albian]] of Spain;<ref name=Sender /> and ''Turolospadix bogneri'', an aroid spadix from the late Albian of Spain.<ref name=Sender />

==Toxicity==

Within the Araceae, genera such as ''[[Alocasia]]'', ''[[Arisaema]]'', ''[[Caladium]]'', ''[[Colocasia]]'', ''[[Dieffenbachia]]'', and ''[[Philodendron]]'' contain calcium oxalate crystals in the form of raphides. When consumed, these may cause [[edema]], vesicle formation, and [[dysphagia]] accompanied by painful stinging and burning to the mouth and throat, with symptoms occurring for up to two weeks after ingestion.<ref>{{cite journal|last1=Watson|first1=John T.|last2=Jones|first2=Roderick C.|last3=Siston|first3=Alicia M.|last4=Diaz|first4=Pamela S.|last5=Gerber|first5=Susan I.|last6=Crowe|first6=John B.|last7=Satzger|first7=R. Duane|title=Outbreak of Food-borne Illness Associated with Plant Material Containing Raphides|journal=Clinical Toxicology|date=2005|volume=43|issue=1|pages=17–21|doi=10.1081/CLT-44721|pmid=15732442|s2cid=388923}}</ref>


==Food plants==
==Food plants==
Line 107: Line 105:
* [https://web.archive.org/web/20080614045440/http://www.botmuc.de/forschung/bogner.html list of publications (March 2008) for Dr. h.c. Josef Bogner]
* [https://web.archive.org/web/20080614045440/http://www.botmuc.de/forschung/bogner.html list of publications (March 2008) for Dr. h.c. Josef Bogner]
* [http://www.botanical-dermatology-database.info/BotDermFolder/ARAC-1.html Araceae] in [http://www.botanical-dermatology-database.info/index.html BoDD – Botanical Dermatology Database]
* [http://www.botanical-dermatology-database.info/BotDermFolder/ARAC-1.html Araceae] in [http://www.botanical-dermatology-database.info/index.html BoDD – Botanical Dermatology Database]
* [https://web.archive.org/web/20170322171139/http://plantsoftheworldonline.org/ Plants of the World Online] by [https://www.kew.org Royal Botanic Gardens, Kew]


{{Angiosperm families}}
{{Taxonbar|from=Q48227}}
{{Taxonbar|from=Q48227}}
{{Authority control}}


[[Category:Araceae| ]]
[[Category:Araceae| ]]
[[Category:Alismatales families]]
[[Category:Alismatales families]]
[[Category:Poisonous plants]]
[[Category:Extant Maastrichtian first appearances]]
[[Category:Extant Maastrichtian first appearances]]

Latest revision as of 21:23, 14 October 2024

Araceae
Temporal range: 115–0 Ma Early Cretaceous[1] - Recent
Inflorescence of Spathiphyllum cochlearispathum
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Order: Alismatales
Family: Araceae
Juss.[2]
Subfamilies
Snake lily (Dracunculus vulgaris) in Crete
Arrowleaf elephant ear (Xanthosoma sagittifolium), clearly showing the characteristic spadix and spathe

The Araceae are a family of monocotyledonous flowering plants in which flowers are borne on a type of inflorescence called a spadix. The spadix is usually accompanied by, and sometimes partially enclosed in, a spathe (or leaf-like bract). Also known as the arum family, members are often colloquially known as aroids. This family of 114 genera and about 3,750 known species[3] is most diverse in the New World tropics, although also distributed in the Old World tropics and northern temperate regions.

Description

[edit]

Within the Araceae, species are often rhizomatous or tuberous; many are epiphytic, creeping lianas or vining plants, and the leaves and tissues of the entire plant nearly always contains irritating calcium oxalate crystals or raphides, in varying degrees.[4][5] The foliage can vary considerably from species to species. The majority of species produce an inflorescence consisting of a spadix (which some compare to a corn cob, in appearance), which is nearly always surrounded by a modified leaf bract called a spathe.[6] In monoecious aroids, possessing separate male and female flowers (but with both flowers present on one plant), the spadix is usually organized with female flowers towards the bottom and male flowers at the top. In aroids with perfect flowers, the stigma is no longer receptive when the pollen is released, thus preventing self-fertilization. Some species are dioecious.[7]

Many plants in this family are thermogenic (heat-producing).[8] Their flowers can reach up to 45 °C, even if the surrounding air temperature is much lower. One reason for this unusually high temperature is to attract insects (usually beetles) to pollinate the plant, rewarding the beetles with heat energy, in addition to preventing tissue damage in colder regions. Some examples of thermogenic aroids are Symplocarpus foetidus (eastern skunk-cabbage), Amorphophallus titanum (titan arum), Amorphophallus paeoniifolius (elephant-foot yam), Helicodiceros muscivorus (dead-horse arum lily), and Sauromatum venosum (voodoo lily). Some species, such as A. titanum and H. muscivorus, give off a very pungent smell akin to rotten meat, which serves to attract flies for pollination. The heat produced by the plant helps to convey the scent further.

Toxicity

[edit]

Within the Araceae family, the majority of species produce calcium oxalate crystals in the form of raphides. While it is possible to consume the cooked foliage of certain genera, such as Alocasia, Colocasia, and Xanthosoma, as well as the ripened fruits of Monstera deliciosa, these raphide compounds are irritating (and even dangerous) for many animals, including humans. Consumption of raw aroid vegetation may cause edema, vesicle formation or dysphagia, accompanied by a painful stinging and burning in the mouth and throat, with symptoms occurring for up to two weeks, depending on amount consumed. In smaller amounts, patients report feeling a mild to extreme sensation of sand or glass in the esophagus and mouth, lasting up to 48 hours.[9] Additionally, in heavier instances of ingestion, anaphylactic shock could cause swelling of the throat, restricting breathing. The genus Dieffenbachia is famously known as "dumb-cane" for this reason; however, given the presence of irritating compounds across the family, this nickname may be applied to virtually any genera within the Araceae.

Taxonomy

[edit]

Phylogeny

[edit]

Phylogeny based on the Angiosperm Phylogeny Website.[10]

Araceae

Gymnostachydoideae Bogner & Nicolson 1991

Orontioideae Brown ex Müller 1860

Lemnoideae

Pothoideae Engler 1876

Monsteroideae Engler 1876

Lasioideae Engler 1876

Zamioculcadoideae Bogner & Hesse 2005

Aroideae Arnott 1832

Classification

[edit]

One of the earliest observations of species in the Araceae was conducted by Theophrastus in his work Enquiry into Plants.[11] The Araceae were not recognized as a distinct group of plants until the 16th century. In 1789, Antoine Laurent de Jussieu classified all climbing aroids as Pothos and all terrestrial aroids as either Arum or Dracontium in his book Familles des Plantes.[citation needed]

The first major system of classification for the family was produced by Heinrich Wilhelm Schott, who published Genera Aroidearum in 1858 and Prodromus Systematis Aroidearum in 1860. Schott's system was based on floral characteristics, and used a narrow conception of a genus. Adolf Engler produced a classification in 1876, which was steadily refined up to 1920. His system is significantly different from Schott's, being based more on vegetative characters and anatomy. The two systems were to some extent rivals, with Engler's having more adherents before the advent of molecular phylogenetics brought new approaches.[12]

A comprehensive taxonomy of Araceae was published by Mayo et al. in 1997.[13]

Modern studies based on gene sequences show the Araceae (including the Lemnoideae, duckweeds) to be monophyletic, and the first diverging group within the Alismatales.[14] The APG III system of 2009 recognizes the family, including the genera formerly segregated in the Lemnaceae.[15] The sinking of the Lemnaceae into the Araceae was not immediately universally accepted. For example, the 2010 New Flora of the British Isles used a paraphyletic Araceae and a separate Lemnaceae.[16] However Lemna and its allies were incorporated in Araceae in the 2019 edition.[17]: 872  A comprehensive genomic study of Spirodela polyrhiza was published in February 2014.[18]

Genera

[edit]
The cuckoo-pint or lords and ladies (Arum maculatum) is a common arum in British woodlands.
Arisaema triphyllum

143 genera are accepted within the Araceae.[19] Anthurium, Epipremnum, Monstera, Philodendron and Zantedeschia are some of the most well-known genera of the family, as are the Colocasia (taro, arbi) and Xanthosoma ('elephant-ear', ‘ape), which are both cultivated for human consumption. The largest unbranched inflorescence in the world is that of the arum Amorphophallus titanum (titan arum).[20]

The Araceae includes many ornamental genera of global economic importance: Aglaonema, Alocasia, Anthurium, Caladium, Dieffenbachia, Epipremnum, Homalomena, Monstera, Nephthytis, Rhaphidophora, Scindapsus, Spathiphyllum, Syngonium, and Zamioculcas, to name but a few. The aquatic genera Anubias, Bucephalandra and Cryptocoryne are highly prized and cultivated aquarium plants; other, recently-described genera, such as the Lagenandra of India, are gradually becoming more known in the aquascaping world.[21] Philodendron is an important genus in the ecosystems of neotropical rainforests, and is widely used in home and interior decorating. Symplocarpus foetidus (skunk cabbage) is a common eastern North American species. An interesting peculiarity is that this family includes the largest unbranched inflorescence, that of the titan arum,[20] often erroneously called the "largest flower", and the smallest flowering plant and smallest fruit, in the duckweed, Wolffia.[22]

Fossil record

[edit]

The family Araceae has one of the oldest fossil record among angiosperms, with fossil forms first appearing during the Early Cretaceous epoch.[1][23] Notable fossils from the Early Cretaceous include: Spixiarum kipea,[24] an aroid from the late Aptian of Brazil;[1] Orontiophyllum ferreri, an aroid leaf from the late Albian of Spain;[1] and Turolospadix bogneri, an aroid spadix from the late Albian of Spain.[1]

Food plants

[edit]

Food plants in the family Araceae include Amorphophallus paeoniifolius (elephant foot yam), Colocasia esculenta (kochu, taro, dasheen), Xanthosoma (cocoyam, tannia), Typhonium trilobatum and Monstera deliciosa (Mexican breadfruit). While the aroids are little traded, and overlooked by plant breeders to the extent that the Crop Trust calls them "orphan crops", they are widely grown and are important in subsistence agriculture and in local markets. The main food product is the corm, which is high in starch; leaves and flowers also find culinary use.[25]

See also

[edit]

References

[edit]
  1. ^ a b c d e Sender, L.M., Doyle, J.A., Upchurch, J.R. Jr., Villanueva-Amadoz, U. and Diez J.B. 2019. Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain. Journal of Systematic Palaeontology, vol. 17, p. 1093–1126.
  2. ^ Angiosperm Phylogeny Group (2009), "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III", Botanical Journal of the Linnean Society, 161 (2): 105–121, doi:10.1111/j.1095-8339.2009.00996.x, hdl:10654/18083
  3. ^ Christenhusz, M. J. M. & Byng, J. W. (2016). "The number of known plants species in the world and its annual increase". Phytotaxa. 261 (3). Magnolia Press: 201–217. doi:10.11646/phytotaxa.261.3.1.
  4. ^ "Araceae in Flora of North America @ efloras.org". Efloras.org. Retrieved 17 January 2014.
  5. ^ "Araceae". The Encyclopedia of House Plants. Retrieved 30 June 2024.
  6. ^ "Araceae - Flowering Plant Families, UH Botany". University of Hawaii. Retrieved 17 January 2014.
  7. ^ "Araceae" (PDF). Iowa State University. Archived from the original (PDF) on 3 May 2013. Retrieved 17 January 2014.
  8. ^ Korotkova, Nadja; Barthlott, Wilhelm (2009). "On the thermogenesis of the Titan arum (Amorphophallus titanum)". Plant Signaling & Behavior. 4 (11): 1096–1098. doi:10.4161/psb.4.11.9872. PMC 2819525. PMID 19838070.
  9. ^ Watson, John T.; Jones, Roderick C.; Siston, Alicia M.; Diaz, Pamela S.; Gerber, Susan I.; Crowe, John B.; Satzger, R. Duane (2005). "Outbreak of Food-borne Illness Associated with Plant Material Containing Raphides". Clinical Toxicology. 43 (1): 17–21. doi:10.1081/CLT-44721. PMID 15732442. S2CID 388923.
  10. ^ Stevens, P.F. (2001). "Araceae". Angiosperm Phylogeny Website. 13. Retrieved 30 December 2017.
  11. ^ Bown, Deni (2000). Aroids: plants of the Arum family. Timber Press. p. 46. ISBN 0881924857.
  12. ^ Grayum, Michael H. (1990), "Evolution and Phylogeny of the Araceae", Annals of the Missouri Botanical Garden, 77 (4): 628–697, doi:10.2307/2399668, JSTOR 2399668
  13. ^ Mayo, S. J.; Bogner, J.; Boyce, P. C. (1997). The genera of Araceae. London: Royal Botanic Gardens, Kew. ISBN 1-900347-22-9. OCLC 60140655.
  14. ^ Stevens, P.F. "Araceae". Angiosperm Phylogeny Website.
  15. ^ Angiosperm Phylogeny Group III (2009). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III". Botanical Journal of the Linnean Society. 161 (2): 105–121. doi:10.1111/j.1095-8339.2009.00996.x. hdl:10654/18083.
  16. ^ Stace, C.A. (2010), New Flora of the British Isles (Third ed.), Cambridge, UK: Cambridge University Press, ISBN 978-0-521-70772-5 pp. 830–834.
  17. ^ Stace, C. A. (2019). New Flora of the British Isles (Fourth ed.). Middlewood Green, Suffolk, U.K.: C & M Floristics. ISBN 978-1-5272-2630-2.
  18. ^ Wang, W.; Haberer, G.; Gundlach, H.; Gläßer, C.; Nussbaumer, T.; Luo, M. C.; Lomsadze, A.; Borodovsky, M.; Kerstetter, R. A.; Shanklin, J.; Byrant, D. W.; Mockler, T. C.; Appenroth, K. J.; Grimwood, J.; Jenkins, J.; Chow, J.; Choi, C.; Adam, C.; Cao, X.-H.; Fuchs, J.; Schubert, I.; Rokhsar, D.; Schmutz, J.; Michael, T. P.; Mayer, K. F. X.; Messing, J (2014). "The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle". Nature Communications. 5: 3311. Bibcode:2014NatCo...5.3311W. doi:10.1038/ncomms4311. PMC 3948053. PMID 24548928.
  19. ^ Araceae Juss. Plants of the World Online. Retrieved 28 April 2024.
  20. ^ a b "Titan Arum FAQs | Biological Sciences Greenhouse". Ohio State University. 2012-05-16. Retrieved 17 January 2014.
  21. ^ "Aquarium Cryptocoryne Plants". Aquarium Fish International. Retrieved 17 January 2014.
  22. ^ "What is the smallest flower in the world?". Library of Congress. Retrieved 17 January 2014.
  23. ^ Nauheimer, L., Metzler, D. and Renner, S.S. 2012. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytologist, vol. 195, p. 938-950.
  24. ^ Coiffard, C., Mohr, B.A.R. and Bernardes de Oliveira, M.E.C. 2013. The Early Cretaceous aroid, Spixiarum kipea gen. et sp. nov., and implications on early dispersal and ecology of basal monocots. Taxon, vol. 62. p. 997-1008.
  25. ^ "Aroids. Colocasia Xanthosoma". The Crop Trust. Retrieved 2019-04-06.

Further reading

[edit]
  • Bown, Deni (2000). Aroids: Plants of the Arum Family [ILLUSTRATED]. Timber Press. ISBN 0-88192-485-7
  • Croat, Thomas B (1998). "History and Current Status of Systematic Research with Araceae". Aroideana. 21. online
  • Grayum, Michael H (1990). "Evolution and Phylogeny of the Araceae". Annals of the Missouri Botanical Garden. 77 (4): 628–697. doi:10.2307/2399668. JSTOR 2399668.
  • Keating R C (2004). "Vegetative anatomical data and its relationship to a revised classification of the genera of Araceae". Annals of the Missouri Botanical Garden. 91 (3): 485–494. JSTOR 3298625.
[edit]