Jump to content

Euler numbers: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Changing short description from "Integer sequence" to "Integers occurring in the coefficients of the Taylor series of 1/cosh t" (Shortdesc helper)
Citation bot (talk | contribs)
Added doi. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Integer sequences | #UCB_Category 66/220
 
(25 intermediate revisions by 18 users not shown)
Line 2: Line 2:
{{short description|Integers occurring in the coefficients of the Taylor series of 1/cosh t}}
{{short description|Integers occurring in the coefficients of the Taylor series of 1/cosh t}}
{{confused|Eulerian number|Euler's number}}
{{confused|Eulerian number|Euler's number}}
{{other uses|List of things named after Leonhard Euler#Euler's numbers}}
{{other uses|List of things named after Leonhard Euler#Numbers}}
In [[mathematics]], the '''Euler numbers''' are a [[sequence]] ''E<sub>n</sub>'' of [[integer]]s {{OEIS|A122045}} defined by the [[Taylor series]] expansion
In [[mathematics]], the '''Euler numbers''' are a [[sequence]] ''E<sub>n</sub>'' of [[integer]]s {{OEIS|A122045}} defined by the [[Taylor series]] expansion


:<math>\frac{1}{\cosh t} = \frac{2}{e^{t} + e^ {-t} } = \sum_{n=0}^\infty \frac{E_n}{n!} \cdot t^n</math>,
:<math>\frac{1}{\cosh t} = \frac{2}{e^{t} + e^ {-t} } = \sum_{n=0}^\infty \frac{E_n}{n!} \cdot t^n</math>,


where {{math|cosh ''t''}} is the [[Hyperbolic function|hyperbolic cosine]]. The Euler numbers are related to a special value of the [[Euler polynomials]], namely:
where <math>\cosh (t)</math> is the [[Hyperbolic function|hyperbolic cosine function]]. The Euler numbers are related to a special value of the [[Euler polynomials]], namely:
:<math>E_n=2^nE_n(\tfrac 12).</math>
:<math>E_n=2^nE_n(\tfrac 12).</math>


Line 35: Line 35:
|''E''<sub>18</sub> ||=||align=right| {{val|−2,404,879,675,441}}
|''E''<sub>18</sub> ||=||align=right| {{val|−2,404,879,675,441}}
|}
|}
Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, or change all signs to positive. This article adheres to the convention adopted above.
Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, or change all signs to positive {{OEIS|id=A000364}}. This article adheres to the convention adopted above.


==Explicit formulas==
==Explicit formulas==
===In terms of Stirling numbers of the second kind===
===In terms of Stirling numbers of the second kind===
Following two formulas express the Euler numbers in terms of [[Stirling numbers of the second kind]]<ref>{{cite journal | first1=Sumit Kumar | last1= Jha | title=A new explicit formula for Bernoulli numbers involving the Euler number | journal=Moscow Journal of Combinatorics and Number Theory | volume=8 | issue=4 | pages=385–387 | year=2019 | url= https://projecteuclid.org/euclid.moscow/1572314455| doi= 10.2140/moscow.2019.8.389 }}</ref>
Following two formulas express the Euler numbers in terms of [[Stirling numbers of the second kind]]<ref>{{cite journal | first1=Sumit Kumar | last1= Jha | title=A new explicit formula for Bernoulli numbers involving the Euler number | journal=Moscow Journal of Combinatorics and Number Theory | volume=8 | issue=4 | pages=385–387 | year=2019 | url= https://projecteuclid.org/euclid.moscow/1572314455| doi= 10.2140/moscow.2019.8.389 | s2cid= 209973489 }}</ref>
<ref>{{cite web |url=https://osf.io/smw7h/ |title=A new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind |last=Jha |first=Sumit Kumar |date= 15 November 2019}}</ref>
<ref>{{cite web |url=https://osf.io/smw7h/ |title=A new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind |last=Jha |first=Sumit Kumar |date= 15 November 2019}}</ref>


:<math> E_{r}=2^{2r-1}\sum_{k=1}^{r}\frac{(-1)^{k}S(r,k)}{k+1}\left(3\left(\frac{1}{4}\right)^{(k)}-\left(\frac{3}{4}\right)^{(k)}\right), </math>
:<math> E_{n}=2^{2n-1}\sum_{\ell=1}^{n}\frac{(-1)^{\ell}S(n,\ell)}{\ell+1}\left(3\left(\frac{1}{4}\right)^{(\ell)}-\left(\frac{3}{4}\right)^{(\ell)}\right), </math>
:<math> E_{2l}=-4^{2l}\sum_{k=1}^{2l}(-1)^{k}\cdot \frac{S(2l,k)}{k+1}\cdot \left(\frac{3}{4}\right)^{(k)},</math>
:<math> E_{2n}=-4^{2n}\sum_{\ell=1}^{2n}(-1)^{\ell}\cdot \frac{S(2n,\ell)}{\ell+1}\cdot \left(\frac{3}{4}\right)^{(\ell)},</math>

where <math> S(r,k) </math> denotes the [[Stirling numbers of the second kind]], and <math> x^{(n)}=(x)(x+1)\cdots (x+n-1) </math> denotes the [[Falling and rising factorials|rising factorial]].


where <math> S(n,\ell) </math> denotes the [[Stirling numbers of the second kind]], and <math> x^{(\ell)}=(x)(x+1)\cdots (x+\ell-1) </math> denotes the [[Falling and rising factorials|rising factorial]].
===As a double sum===
===As a double sum===
Following two formulas express the Euler numbers as double sums<ref>{{cite journal | first1=Chun-Fu | last1= Wei | first2=Feng | last2=Qi | title=Several closed expressions for the Euler numbers | journal=Journal of Inequalities and Applications | volume=219 | issue=2015| year=2015 | doi= 10.1186/s13660-015-0738-9 | doi-access=free }}
Following two formulas express the Euler numbers as double sums<ref>{{cite journal | first1=Chun-Fu | last1= Wei | first2=Feng | last2=Qi | title=Several closed expressions for the Euler numbers | journal=Journal of Inequalities and Applications | volume=219 | issue=2015| year=2015 | doi= 10.1186/s13660-015-0738-9 | doi-access=free }}
</ref>
</ref>
:<math>E_{2k}=(2 k+1)\sum_{\ell=1}^{2k} (-1)^{\ell}\frac{1}{2^{\ell}(\ell +1)}\binom{2 k}{\ell}\sum _{q=0}^{\ell}\binom{\ell}{q}(2q-\ell)^{2k}, </math>
:<math>E_{2n}=(2 n+1)\sum_{\ell=1}^{2n} (-1)^{\ell}\frac{1}{2^{\ell}(\ell +1)}\binom{2 n}{\ell}\sum _{q=0}^{\ell}\binom{\ell}{q}(2q-\ell)^{2n}, </math>
:<math>E_{2k}=\sum_{i=1}^{2k}(-1)^{i} \frac{1}{2^{i}}\sum_{\ell=0}^{2i}(-1)^{\ell } \binom{2i}{\ell}(i-\ell)^{2k}. </math>
:<math>E_{2n}=\sum_{k=1}^{2n}(-1)^{k} \frac{1}{2^{k}}\sum_{\ell=0}^{2k}(-1)^{\ell } \binom{2k}{\ell}(k-\ell)^{2n}. </math>


===As an iterated sum===
===As an iterated sum===
An explicit formula for Euler numbers is:<ref>{{cite web |url=https://oeis.org/A000111/a000111.pdf |title=An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series |last=Tang |first=Ross |date= 2012-05-11}}
An explicit formula for Euler numbers is:<ref>{{cite web |url=https://oeis.org/A000111/a000111.pdf |archive-url=https://web.archive.org/web/20140409060145/http://oeis.org/A000111/a000111.pdf |archive-date=2014-04-09 |url-status=live |title=An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series |last=Tang |first=Ross |date= 2012-05-11}}
</ref>
</ref>


:<math>E_{2n}=i\sum _{k=1}^{2n+1} \sum _{j=0}^k \binom{k}{j}\frac{(-1)^j(k-2j)^{2n+1}}{2^k i^k k},</math>
:<math>E_{2n}=i\sum _{k=1}^{2n+1} \sum _{\ell=0}^k \binom{k}{\ell}\frac{(-1)^\ell(k-2\ell)^{2n+1}}{2^k i^k k},</math>


where {{mvar|i}} denotes the [[imaginary unit]] with {{math|''i''<sup>2</sup> {{=}} −1}}.
where {{mvar|i}} denotes the [[imaginary unit]] with {{math|''i''<sup>2</sup> {{=}} −1}}.


===As a sum over partitions===
===As a sum over partitions===
The Euler number {{math|''E''<sub>2''n''</sub>}} can be expressed as a sum over the even [[Partition (number theory)|partitions]] of {{math|2''n''}},<ref>{{cite journal | first1=David C. | last1= Vella | title=Explicit Formulas for Bernoulli and Euler Numbers | journal=Integers | volume=8 | issue=1 | pages=A1 | year=2008 | url= http://www.integers-ejcnt.org/vol8.html}}</ref>
The Euler number {{math|''E''<sub>2''n''</sub>}} can be expressed as a sum over the even [[Integer partition|partitions]] of {{math|2''n''}},<ref>{{cite journal | first1=David C. | last1= Vella | title=Explicit Formulas for Bernoulli and Euler Numbers | journal=Integers | volume=8 | issue=1 | pages=A1 | year=2008 | url= http://www.integers-ejcnt.org/vol8.html}}</ref>


:<math> E_{2n} = (2n)! \sum_{0 \leq k_1, \ldots, k_n \leq n} \left( \begin{array}{c} K \\ k_1, \ldots , k_n \end{array} \right)
:<math> E_{2n} = (2n)! \sum_{0 \leq k_1, \ldots, k_n \leq n} \binom K {k_1, \ldots , k_n}
\delta_{n,\sum mk_m } \left( -\frac{1}{2!} \right)^{k_1} \left( -\frac{1}{4!} \right)^{k_2}
\delta_{n,\sum mk_m} \left( -\frac{1}{2!} \right)^{k_1} \left( -\frac{1}{4!} \right)^{k_2}
\cdots \left( -\frac{1}{(2n)!} \right)^{k_n} ,</math>
\cdots \left( -\frac{1}{(2n)!} \right)^{k_n} ,</math>


as well as a sum over the odd partitions of {{math|2''n'' − 1}},<ref>{{cite arxiv | eprint=1103.1585 | first1= J. | last1=Malenfant | title=Finite, Closed-form Expressions for the Partition Function and for Euler, Bernoulli, and Stirling Numbers| class= math.NT | year= 2011 }}</ref>
as well as a sum over the odd partitions of {{math|2''n'' − 1}},<ref>{{cite arXiv | eprint=1103.1585 | first1= J. | last1=Malenfant | title=Finite, Closed-form Expressions for the Partition Function and for Euler, Bernoulli, and Stirling Numbers| class= math.NT | year= 2011 }}</ref>


:<math> E_{2n} = (-1)^{n-1} (2n-1)! \sum_{0 \leq k_1, \ldots, k_n \leq 2n-1}
:<math> E_{2n} = (-1)^{n-1} (2n-1)! \sum_{0 \leq k_1, \ldots, k_n \leq 2n-1}
\left( \begin{array} {c} K \\ k_1, \ldots , k_n \end{array} \right)
\binom K {k_1, \ldots , k_n}
\delta_{2n-1,\sum (2m-1)k_m } \left( -\frac{1}{1!} \right)^{k_1} \left( \frac{1}{3!} \right)^{k_2}
\delta_{2n-1,\sum (2m-1)k_m } \left( -\frac{1}{1!} \right)^{k_1} \left( \frac{1}{3!} \right)^{k_2}
\cdots \left( \frac{(-1)^n}{(2n-1)!} \right)^{k_n} , </math>
\cdots \left( \frac{(-1)^n}{(2n-1)!} \right)^{k_n} , </math>


where in both cases {{math|''K'' {{=}} ''k''<sub>1</sub> + ··· + ''k<sub>n</sub>''}} and
where in both cases {{math|''K'' {{=}} ''k''<sub>1</sub> + ··· + ''k<sub>n</sub>''}} and
:<math> \left( \begin{array}{c} K \\ k_1, \ldots , k_n \end{array} \right)
:<math> \binom K {k_1, \ldots , k_n}
\equiv \frac{ K!}{k_1! \cdots k_n!}</math>
\equiv \frac{ K!}{k_1! \cdots k_n!}</math>
is a [[multinomial coefficient]]. The [[Kronecker delta]]s in the above formulas restrict the sums over the {{mvar|k}}s to {{math|2''k''<sub>1</sub> + 4''k''<sub>2</sub> + ··· + 2''nk<sub>n</sub>'' {{=}} 2''n''}} and to {{math|''k''<sub>1</sub> + 3''k''<sub>2</sub> + ··· + (2''n'' − 1)''k<sub>n</sub>'' {{=}} 2''n'' − 1}}, respectively.
is a [[multinomial coefficient]]. The [[Kronecker delta]]s in the above formulas restrict the sums over the {{mvar|k}}s to {{math|2''k''<sub>1</sub> + 4''k''<sub>2</sub> + ··· + 2''nk<sub>n</sub>'' {{=}} 2''n''}} and to {{math|''k''<sub>1</sub> + 3''k''<sub>2</sub> + ··· + (2''n'' − 1)''k<sub>n</sub>'' {{=}} 2''n'' − 1}}, respectively.
Line 84: Line 84:
\begin{align}
\begin{align}
E_{10} & = 10! \left( - \frac{1}{10!} + \frac{2}{2!\,8!} + \frac{2}{4!\,6!}
E_{10} & = 10! \left( - \frac{1}{10!} + \frac{2}{2!\,8!} + \frac{2}{4!\,6!}
- \frac{3}{2!^2\, 6!}- \frac{3}{2!\,4!^2} +\frac{4}{2!^3\, 4!} - \frac{1}{2!^5}\right) \\
- \frac{3}{2!^2\, 6!}- \frac{3}{2!\,4!^2} +\frac{4}{2!^3\, 4!} - \frac{1}{2!^5}\right) \\[6pt]
& = 9! \left( - \frac{1}{9!} + \frac{3}{1!^2\,7!} + \frac{6}{1!\,3!\,5!}
& = 9! \left( - \frac{1}{9!} + \frac{3}{1!^2\,7!} + \frac{6}{1!\,3!\,5!}
+\frac{1}{3!^3}- \frac{5}{1!^4\,5!} -\frac{10}{1!^3\,3!^2} + \frac{7}{1!^6\, 3!} - \frac{1}{1!^9}\right) \\
+\frac{1}{3!^3}- \frac{5}{1!^4\,5!} -\frac{10}{1!^3\,3!^2} + \frac{7}{1!^6\, 3!} - \frac{1}{1!^9}\right) \\[6pt]
& = -50\,521.
& = -50\,521.
\end{align}
\end{align}
Line 109: Line 109:
:<math>
:<math>
\begin{align}
\begin{align}
(-1)^{n}E_{2n}&=\int_{0}^{\infty} \frac{t^{2n}}{\cosh\frac{\pi t}2}\; dt =\left(\dfrac2\pi\right)^{2n+1}\int_{0}^{\infty} \frac{x^{2n}}{\cosh {x}}\; dx\\ \\ &=\left(\dfrac2\pi\right)^{2n}\int_0^1\log ^{2n}\left(\tan \frac{\pi t}{4} \right)dt =\left(\dfrac2\pi\right)^{2n+1}\int_0^{\pi/2}\log ^{2n}\left(\tan \frac{x}{2} \right)dx\\ \\ &= \dfrac{2^{2n+3}}{\pi^{2n+2}} \int_0^{\pi/2}x\log ^{2n}\left(\tan x \right)\,dx = \left(\dfrac2\pi\right)^{2n+2} \int_0^{\pi }\frac{x}{2}\log ^{2n}\left(\tan \frac{x}{2} \right)\,dx.\end{align}
(-1)^n E_{2n} & = \int_0^\infty \frac{t^{2n}}{\cosh\frac{\pi t}2}\; dt =\left(\frac2\pi\right)^{2n+1} \int_0^\infty \frac{x^{2n}}{\cosh x}\; dx\\[8pt]
&=\left(\frac2\pi\right)^{2n} \int_0^1\log^{2n}\left(\tan \frac{\pi t}{4} \right)\,dt =\left(\frac2\pi\right)^{2n+1}\int_0^{\pi/2} \log^{2n}\left(\tan \frac{x}{2} \right)\,dx\\[8pt]
&= \frac{2^{2n+3}}{\pi^{2n+2}} \int_0^{\pi/2} x \log^{2n} (\tan x)\,dx = \left(\frac2\pi\right)^{2n+2} \int_0^\pi \frac{x}{2} \log^{2n} \left(\tan \frac{x}{2} \right)\,dx.\end{align}
</math>
</math>


==Congruences==
==Congruences==
W. Zhang<ref>{{cite journal | first1=W.P.| last1= Zhang | title=Some identities involving the Euler and the central factorial numbers | journal=Fibonacci Quarterly | volume=36 | issue=4 | pages=154–157 | year=1998 | url= https://www.mathstat.dal.ca/FQ/Scanned/36-2/zhang.pdf}}</ref> obtained the following combinational identities concerning the Euler numbers, for any prime <math> p </math>, we have
W. Zhang<ref>{{cite journal | first1=W.P.| last1= Zhang | title=Some identities involving the Euler and the central factorial numbers | journal=Fibonacci Quarterly | volume=36 | issue=4 | pages=154–157 | year=1998 | doi= 10.1080/00150517.1998.12428950 | url= https://www.mathstat.dal.ca/FQ/Scanned/36-2/zhang.pdf |archive-url=https://web.archive.org/web/20191123004402/https://www.mathstat.dal.ca/FQ/Scanned/36-2/zhang.pdf |archive-date=2019-11-23 |url-status=live}}</ref> obtained the following combinational identities concerning the Euler numbers, for any prime <math> p </math>, we have
:<math>
:<math>
(-1)^{\frac{p-1}{2}} E_{p-1} \equiv \textstyle\begin{cases} 0 \mod p &\text{if }p\equiv 1\bmod 4; \\ -2 \mod p & \text{if }p\equiv 3\bmod 4. \end{cases}
(-1)^{\frac{p-1}{2}} E_{p-1} \equiv \textstyle\begin{cases} 0 \mod p &\text{if }p\equiv 1\bmod 4; \\ -2 \mod p & \text{if }p\equiv 3\bmod 4. \end{cases}
</math>
</math>
W. Zhang and Z. Xu<ref>{{cite journal | first1=W.P. | last1= Zhang | first2= Z.F. | last2=Xu | title=On a conjecture of the Euler numbers | journal=Journal of Number Theory | volume=127 | issue=2| pages= 283–291 | year=2007 | doi= 10.1016/j.jnt.2007.04.004 }}
W. Zhang and Z. Xu<ref>{{cite journal | first1=W.P. | last1= Zhang | first2= Z.F. | last2=Xu | title=On a conjecture of the Euler numbers | journal=Journal of Number Theory | volume=127 | issue=2| pages= 283–291 | year=2007 | doi= 10.1016/j.jnt.2007.04.004 | doi-access=free }}
</ref> proved that, for any prime <math> p \equiv 1 \pmod{4} </math> and integer <math> \alpha\geq 1 </math>, we have
</ref> proved that, for any prime <math> p \equiv 1 \pmod{4} </math> and integer <math> \alpha\geq 1 </math>, we have
:<math> E_{\phi(p^{\alpha})/2}\not \equiv 0 \pmod{p^{\alpha}} </math>
:<math> E_{\phi(p^{\alpha})/2}\not \equiv 0 \pmod{p^{\alpha}} </math>
Line 149: Line 151:
* [[Bell number]]
* [[Bell number]]
* [[Bernoulli number]]
* [[Bernoulli number]]
* [[Dirichlet beta function]]
* [[Euler–Mascheroni constant]]
* [[Euler–Mascheroni constant]]


Line 159: Line 162:


{{Classes of natural numbers}}
{{Classes of natural numbers}}
{{Leonhard Euler}}


{{DEFAULTSORT:Euler Number}}
{{DEFAULTSORT:Euler Number}}
[[Category:Eponymous numbers in mathematics]]
[[Category:Integer sequences]]
[[Category:Integer sequences]]
[[Category:Leonhard Euler]]
[[Category:Leonhard Euler]]

Latest revision as of 11:06, 15 October 2024

In mathematics, the Euler numbers are a sequence En of integers (sequence A122045 in the OEIS) defined by the Taylor series expansion

,

where is the hyperbolic cosine function. The Euler numbers are related to a special value of the Euler polynomials, namely:

The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics, specifically when counting the number of alternating permutations of a set with an even number of elements.

Examples

[edit]

The odd-indexed Euler numbers are all zero. The even-indexed ones (sequence A028296 in the OEIS) have alternating signs. Some values are:

E0 = 1
E2 = −1
E4 = 5
E6 = −61
E8 = 1385
E10 = −50521
E12 = 2702765
E14 = −199360981
E16 = 19391512145
E18 = −2404879675441

Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, or change all signs to positive (sequence A000364 in the OEIS). This article adheres to the convention adopted above.

Explicit formulas

[edit]

In terms of Stirling numbers of the second kind

[edit]

Following two formulas express the Euler numbers in terms of Stirling numbers of the second kind[1] [2]

where denotes the Stirling numbers of the second kind, and denotes the rising factorial.

As a double sum

[edit]

Following two formulas express the Euler numbers as double sums[3]

As an iterated sum

[edit]

An explicit formula for Euler numbers is:[4]

where i denotes the imaginary unit with i2 = −1.

As a sum over partitions

[edit]

The Euler number E2n can be expressed as a sum over the even partitions of 2n,[5]

as well as a sum over the odd partitions of 2n − 1,[6]

where in both cases K = k1 + ··· + kn and

is a multinomial coefficient. The Kronecker deltas in the above formulas restrict the sums over the ks to 2k1 + 4k2 + ··· + 2nkn = 2n and to k1 + 3k2 + ··· + (2n − 1)kn = 2n − 1, respectively.

As an example,

As a determinant

[edit]

E2n is given by the determinant

As an integral

[edit]

E2n is also given by the following integrals:

Congruences

[edit]

W. Zhang[7] obtained the following combinational identities concerning the Euler numbers, for any prime , we have

W. Zhang and Z. Xu[8] proved that, for any prime and integer , we have

where is the Euler's totient function.

Asymptotic approximation

[edit]

The Euler numbers grow quite rapidly for large indices as they have the following lower bound

Euler zigzag numbers

[edit]

The Taylor series of is

where An is the Euler zigzag numbers, beginning with

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, ... (sequence A000111 in the OEIS)

For all even n,

where En is the Euler number; and for all odd n,

where Bn is the Bernoulli number.

For every n,

[citation needed]

See also

[edit]

References

[edit]
  1. ^ Jha, Sumit Kumar (2019). "A new explicit formula for Bernoulli numbers involving the Euler number". Moscow Journal of Combinatorics and Number Theory. 8 (4): 385–387. doi:10.2140/moscow.2019.8.389. S2CID 209973489.
  2. ^ Jha, Sumit Kumar (15 November 2019). "A new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind".
  3. ^ Wei, Chun-Fu; Qi, Feng (2015). "Several closed expressions for the Euler numbers". Journal of Inequalities and Applications. 219 (2015). doi:10.1186/s13660-015-0738-9.
  4. ^ Tang, Ross (2012-05-11). "An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series" (PDF). Archived (PDF) from the original on 2014-04-09.
  5. ^ Vella, David C. (2008). "Explicit Formulas for Bernoulli and Euler Numbers". Integers. 8 (1): A1.
  6. ^ Malenfant, J. (2011). "Finite, Closed-form Expressions for the Partition Function and for Euler, Bernoulli, and Stirling Numbers". arXiv:1103.1585 [math.NT].
  7. ^ Zhang, W.P. (1998). "Some identities involving the Euler and the central factorial numbers" (PDF). Fibonacci Quarterly. 36 (4): 154–157. doi:10.1080/00150517.1998.12428950. Archived (PDF) from the original on 2019-11-23.
  8. ^ Zhang, W.P.; Xu, Z.F. (2007). "On a conjecture of the Euler numbers". Journal of Number Theory. 127 (2): 283–291. doi:10.1016/j.jnt.2007.04.004.
[edit]