Jump to content

Hominini: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Tags: Mobile edit Mobile web edit
No edit summary
Tags: Mobile edit Mobile web edit
 
(31 intermediate revisions by 17 users not shown)
Line 1: Line 1:
{{short description|Tribe of mammals}}
{{short description|Tribe of mammals}}
{{Distinguish|Hominoidea|Hominidae|Homininae|Australopithecine{{!}}Hominina|Homo}}
{{Distinguish|Hominoidea|Hominidae|Homininae|Australopithecine{{!}}Hominina|Homo}}

{{automatic taxobox
{{automatic taxobox
| fossil_range = {{fossilrange|7|0|earliest=7}}
| fossil_range = {{fossilrange|7|0|earliest=7}}
| image = Ham-and-handler.jpg
| image = Ham-and-handler.jpg
| image_caption = Two hominins: A [[human]] holding a [[chimpanzee]] ([[Ham (chimpanzee)|Ham the chimp]])
| image_caption = Two hominins: A [[human]] holding a [[chimpanzee]] ([[Joseph V. Brady]] and [[Ham (chimpanzee)|Ham the chimp]])
| taxon = Hominini
| taxon = Hominini
| authority = [[Camille Arambourg|Arambourg]], 1948<ref>{{cite journal |last1=Arambourg |first1=C. |title=La Classification des Primates et Particulierement des Hominiens |journal=Mammalia |date=1948 |volume=12 |issue=3 |doi=10.1515/mamm.1948.12.3.123 |s2cid=84553920 }}</ref>
| authority = [[Camille Arambourg|Arambourg]], 1948<ref>{{cite journal |last1=Arambourg |first1=C. |title=La Classification des Primates et Particulierement des Hominiens |journal=Mammalia |date=1948 |volume=12 |issue=3 |doi=10.1515/mamm.1948.12.3.123 |s2cid=84553920 }}</ref>
Line 14: Line 13:
**''[[Pan (genus)|Pan]]''
**''[[Pan (genus)|Pan]]''
*[[Australopithecina]]/[[Australopithecine|Hominina]]
*[[Australopithecina]]/[[Australopithecine|Hominina]]
**{{extinct}}''[[Australopithecus]]''
**{{extinct}}''[[Australopithecus]]''(paraphyletic)
**{{extinct}}''[[Kenyanthropus]]'' ([[Cladistically]] included)
**{{extinct}}''[[Kenyanthropus]]'' ([[Cladistically]] included)
**{{extinct}}''[[Paranthropus]]'' ([[Cladistically]] included)
**{{extinct}}''[[Paranthropus]]'' ([[Cladistically]] included)
**''[[Homo]]'' ([[Cladistically]] included)
**''[[Homo]]'' ([[Cladistically]] included)
**{{extinct}}''[[Ardipithecus]]''
**{{extinct}}''[[Ardipithecus]]''
**{{extinct}}''[[Sahelanthropus]]''
**{{extinct}}''[[Sahelanthropus]]''?
**{{extinct}}''[[Orrorin]]''
**{{extinct}}''[[Orrorin]]''
**{{extinct}}''[[Graecopithecus]]''<ref>{{cite journal |last1=Fuss |first1=J. |last2=Spassov |first2=N. |last3=Begun |first3=D. R. |last4=Böhme |first4=M. |year=2017 |title=Potential hominin affinities of ''Graecopithecus'' from the Late Miocene of Europe |doi=10.1371/journal.pone.0177127 |journal=[[PLOS ONE]] |volume=12 |issue=5 |page=e0177127 |doi-access=free |bibcode=2017PLoSO..1277127F |pmid=28531170 |pmc=5439669}}</ref>
**{{extinct}}''[[Graecopithecus]]''<ref>{{cite journal |last1=Fuss |first1=J. |last2=Spassov |first2=N. |last3=Begun |first3=D. R. |last4=Böhme |first4=M. |year=2017 |title=Potential hominin affinities of ''Graecopithecus'' from the Late Miocene of Europe |doi=10.1371/journal.pone.0177127 |journal=[[PLOS ONE]] |volume=12 |issue=5 |page=e0177127 |doi-access=free |bibcode=2017PLoSO..1277127F |pmid=28531170 |pmc=5439669}}</ref>
}}
}}
The '''Hominini''' form a [[Tribe (biology)|taxonomic tribe]] of the subfamily [[Homininae]] ("hominines"). Hominini includes the extant genera ''[[Homo]]'' ([[human]]s) and ''[[Pan (genus)|Pan]]'' ([[chimpanzee]]s and [[bonobo]]s) and in standard usage excludes the genus ''[[Gorilla]]'' (gorillas).
The '''Hominini''' (hominins) form a [[Tribe (biology)|taxonomic tribe]] of the subfamily [[Homininae]] (hominines). They comprise two extant genera: ''[[Homo]]'' ([[human]]s) and ''[[Pan (genus)|Pan]]'' ([[chimpanzee]]s and [[bonobo]]s), but in standard usage exclude the genus ''[[Gorilla (genus)|Gorilla]]'' ([[gorilla]]s), which is grouped separately within subfamily Homininae.


The term was originally introduced by [[Camille Arambourg]] (1948).
The term Hominini was originally introduced by [[Camille Arambourg]] (1948), who combined the categories of ''Hominina'' and ''Simiina'' pursuant to [[John Edward Gray|Gray]]'s classifications (1825).
Arambourg combined the categories of ''Hominina'' and ''Simiina'' due to Gray (1825) into his new subtribe.


[[File:Hominoid taxonomy 7.svg|thumb|center|300px|The taxonomic classification of hominoids]]{{Clear|left}}
[[File:Hominoid taxonomy 7.svg|thumb|center|450px|Taxonomic classification of the superfamily [[Hominoidae]] ([[hominoid]]s), emphasizing the tribe Hominini. 𝄪 Tribe Hominini (lower left in graphic) comprises two genera, ''Homo'' and ''Pan''; while gorillas are classified as separate from these—as the single genus ''Gorilla'' of tribe Gorillini; all of subfamily Homininae.]]{{Clear|left}}
Traditionally, [[chimpanzee]]s, [[gorilla]]s and [[orangutan]]s were grouped together as [[pongidae|pongids]]. Since Gray's classification, evidence has accumulated from genetic [[phylogeny]] confirming that [[human]]s, chimpanzees, and gorillas are more closely related to each other than to the orangutan.<ref name=NcNulty2016>{{cite journal |last1=McNulty |first1=K. P. |title=Hominin Taxonomy and Phylogeny: What's In A Name? |journal=Nature Education Knowledge |date=2016 |volume=7 |issue=1 |pages=2 |url=https://www.nature.com/scitable/knowledge/library/hominin-taxonomy-and-phylogeny-what-s-in-142102877/ |quote=However, overwhelming genetic evidence has since demonstrated that humans, chimpanzees, and gorillas are much more closely related to each other than to the orangutan ... Thus, there is no genetic support for grouping the great apes together in a distinct group from humans. For this reason, many researchers now place all species of great ape and human within a single family, Hominidae – making them all proper 'hominids'.}}</ref> The former pongids were reassigned to the subfamily [[Hominidae]] ("great [[ape]]s"), which already included humans,<ref name=NcNulty2016/> but the details of this reassignment remain contested; within Hominini, not every source excludes gorillas, and not every source includes chimpanzees.
Traditionally, [[chimpanzee]]s, [[gorilla]]s and [[orangutan]]s were grouped together, excluding humans, as [[pongidae|pongids]]. Since Gray's classifications, evidence accumulating from genetic [[phylogeny]] confirmed that humans, chimpanzees, and gorillas are more closely related to each other than to the orangutan.<ref name=NcNulty2016>{{cite journal |last1=McNulty |first1=K. P. |title=Hominin Taxonomy and Phylogeny: What's In A Name? |journal=Nature Education Knowledge |date=2016 |volume=7 |issue=1 |pages=2 |url=https://www.nature.com/scitable/knowledge/library/hominin-taxonomy-and-phylogeny-what-s-in-142102877/ |quote=However, overwhelming genetic evidence has since demonstrated that [[human]]s, [[chimpanzee]]s, and [[gorilla]]s are much more closely related to each other than to the [[orangutan]] ... Thus, there is no genetic support for grouping the [[great ape]]s together in a distinct group from humans. For this reason, many researchers now place all species of great [[ape]] and human within a single family, Hominidae – making them all proper '[[hominid]]s'.}}</ref> The orangutans were reassigned to the family [[Hominidae]] ([[great ape]]s), which already included humans; and the gorillas were grouped as a separate tribe (Gorillini) of the subfamily Homininae.<ref name=NcNulty2016/> Still, details of this reassignment remain contested, and of publishing since (on tribe Hominini), not every source excludes gorillas and not every source includes chimpanzees.


Humans are the only extant species in the [[Australopithecine]] branch (subtribe), which also contains many extinct close relatives of humans.
Humans are the only extant species in the [[Australopithecine]] branch (subtribe), which also contains many extinct close relatives of humans.
Line 36: Line 34:
{{see|Human taxonomy}}
{{see|Human taxonomy}}


Concerning membership, when Hominini is taken to exclude ''Pan'', [[Pan (genus)|Panini]] ("panins")<ref>{{cite journal |last=Delson |title=Catarrhine phylogeny and classification: principles, methods and comments |journal=[[Journal of Human Evolution]] |volume=6 |year=1977 |issue=5 |page=450 |doi=10.1016/S0047-2484(77)80057-2}}</ref> may refer to the tribe containing ''Pan'' as its only genus.<ref name="Potts2010a">{{cite book |last=Potts |url=https://archive.org/details/whatdoesitmeanto0000pott/page/34/mode/2up |title=What does it mean to be human? |publisher=[[National Geographic Society]] |year=2010 |isbn=978-1-4262-0606-1 |location=Washington |page=34 |url-access=registration}}</ref><ref name=Dunbar2014>{{cite book |quote="Conventionally, taxonomists now refer to the great ape family (including humans) as 'hominids', while all members of the lineage leading to modern humans that arose after the split with the [''Homo''-''Pan''] LCA are referred to as 'hominins'. The older literature used the terms hominoids and hominids respectively." |last1=Dunbar |first1=Robin |title=Human evolution |date=2014 |publisher=Pelican |isbn=978-0-14-197531-3 }}</ref> Or perhaps place ''Pan'' with other [[Dryopithecini|dryopithecine]] genera, making the whole tribe or subtribe of Panini or Panina together. Minority dissenting nomenclatures include ''Gorilla'' in Hominini and ''Pan'' in ''Homo'' (Goodman et al. 1998), or both ''Pan'' and ''Gorilla'' in ''Homo'' (Watson et al. 2001).
Concerning membership, when Hominini is taken to exclude ''Pan'', [[Pan (genus)|Panini]] ("panins")<ref>{{cite journal |last=Delson |title=Catarrhine phylogeny and classification: principles, methods and comments |journal=[[Journal of Human Evolution]] |volume=6 |year=1977 |issue=5 |page=450 |doi=10.1016/S0047-2484(77)80057-2|bibcode=1977JHumE...6..433D }}</ref> may refer to the tribe containing ''Pan'' as its only genus.<ref name="Potts2010a">{{cite book |last=Potts |url=https://archive.org/details/whatdoesitmeanto0000pott/page/34/mode/2up |title=What does it mean to be human? |publisher=[[National Geographic Society]] |year=2010 |isbn=978-1-4262-0606-1 |location=Washington |page=34 |url-access=registration}}</ref><ref name=Dunbar2014>{{cite book |quote="Conventionally, taxonomists now refer to the great ape family (including humans) as 'hominids', while all members of the lineage leading to modern humans that arose after the split with the [''Homo''-''Pan''] LCA are referred to as 'hominins'. The older literature used the terms hominoids and hominids respectively." |last1=Dunbar |first1=Robin |title=Human evolution |date=2014 |publisher=Pelican |isbn=978-0-14-197531-3 }}</ref> Or perhaps place ''Pan'' with other [[Dryopithecini|dryopithecine]] genera, making the whole tribe or subtribe of Panini or Panina together. Minority dissenting nomenclatures include ''Gorilla'' in Hominini and ''Pan'' in ''Homo'' (Goodman et al. 1998), or both ''Pan'' and ''Gorilla'' in ''Homo'' (Watson et al. 2001).


By convention, the adjectival term "hominin" (or nominalized "hominins") refers to the tribe Hominini, whereas the members of the subtribe Hominina (and thus all archaic human species) are referred to as "homininian" ("homininians").<ref>{{cite book |doi=10.1163/9789047416616_013 |chapter=The Last Common Ancestor of Apes and Humans |title=Interpreting the Past |year=2005 |pages=103–121 |isbn=978-90-474-1661-6 |s2cid=203884394 |last1=Andrews |first1=Peter |last2=Harrison |first2=Terry }}</ref><ref>{{cite book |doi=10.1002/9781118524756.ch8 |chapter=Origin, Development, and Evolution of Primate Muscles, with Notes on Human Anatomical Variations and Anomalies |title=Developmental Approaches to Human Evolution |year=2015 |last1=Diogo |first1=Rui |last2=Wood |first2=Bernard |pages=167–204 |isbn=978-1-118-52475-6 }}</ref><ref>{{cite thesis |id={{ProQuest|1038821782}} |first=Steven |last=Worthington |title=New approaches to late Miocene hominoid systematics: Ranking morphological characters by phylogenetic signal |date=2012 }}</ref> This follows the proposal by Mann and Weiss (1996), which presents tribe Hominini as including both ''Pan'' and ''Homo'', placed in separate subtribes. The genus ''[[Pan (genus)|Pan]]'' is referred to subtribe [[Panina]], and genus ''Homo'' is included in the subtribe [[Hominina]] (see [[#Cladogram|below]]).<ref name=Mann>{{cite journal |author1=Mann, Alan |author2=Weiss, Mark |year=1996 |title=Hominoid phylogeny and taxonomy: a consideration of the molecular and fossil evidence in an historical perspective |journal=[[Molecular Phylogenetics and Evolution]] |volume=5 |issue=1 |pages=169–181 |doi=10.1006/mpev.1996.0011 |pmid=8673284|doi-access=free }}</ref>
By convention, the adjectival term "hominin" (or nominalized "hominins") refers to the tribe Hominini, whereas the members of the subtribe Hominina (and thus all archaic human species) are referred to as "homininan" ("homininans").<ref>{{cite book |doi=10.1163/9789047416616_013 |chapter=The Last Common Ancestor of Apes and Humans |title=Interpreting the Past |year=2005 |pages=103–121 |isbn=978-90-474-1661-6 |s2cid=203884394 |last1=Andrews |first1=Peter |last2=Harrison |first2=Terry }}</ref><ref>{{cite book |doi=10.1002/9781118524756.ch8 |chapter=Origin, Development, and Evolution of Primate Muscles, with Notes on Human Anatomical Variations and Anomalies |title=Developmental Approaches to Human Evolution |year=2015 |last1=Diogo |first1=Rui |last2=Wood |first2=Bernard |pages=167–204 |isbn=978-1-118-52475-6 }}</ref><ref>{{cite thesis |id={{ProQuest|1038821782}} |first=Steven |last=Worthington |title=New approaches to late Miocene hominoid systematics: Ranking morphological characters by phylogenetic signal |date=2012 }}</ref> This follows the proposal by Mann and Weiss (1996), which presents tribe Hominini as including both ''Pan'' and ''Homo'', placed in separate subtribes. The genus ''[[Pan (genus)|Pan]]'' is referred to subtribe [[Panina]], and genus ''Homo'' is included in the subtribe [[Hominina]] (see [[#Cladogram|below]]).<ref name=Mann>{{cite journal |author1=Mann, Alan |author2=Weiss, Mark |year=1996 |title=Hominoid phylogeny and taxonomy: a consideration of the molecular and fossil evidence in an historical perspective |journal=[[Molecular Phylogenetics and Evolution]] |volume=5 |issue=1 |pages=169–181 |doi=10.1006/mpev.1996.0011 |pmid=8673284|doi-access=free |bibcode=1996MolPE...5..169M }}</ref>


However, there is an alternative convention which uses "hominin" to exclude members of Panina, i.e. either just for ''Homo'' or for both human and australopithecine species. This alternative convention is referenced in e.g. Coyne (2009)<ref name="Coyne, Jerry A. 2009 pp.197-208">{{cite book |last=Coyne |first=Jerry A. |year=2009 |title=Why evolution is true |pages=197–208, 244, 248 |isbn=978-0-670-02053-9 |publisher=[[Penguin Books]] |location=London |quote="Anthropologists apply the term ''hominin'' to all the species on the "human" side of our family tree after it split from the branch that became modern chimps." (p.197)"}}</ref> and in Dunbar (2014).<ref name=Dunbar2014/> Potts (2010) in addition uses the name Hominini in a different sense, as excluding ''Pan'', and uses "hominins" for this, while a separate tribe (rather than subtribe) for chimpanzees is introduced, under the name Panini.<ref name=Potts2010a/> In this recent convention, ''contra'' Arambourg, the term "hominin" is applied to ''Homo'', ''Australopithecus'', ''[[Ardipithecus]]'', and others that arose after the split from the line that led to chimpanzees (see cladogram below);<ref name=Bradley2006>{{Cite Q|Q24646554}}</ref><ref name=WoodRichmond>{{cite journal |last1=Wood |last2=Richmond |first2=B. G. |year=2000 |title=Human evolution: taxonomy and paleobiology |journal=[[Journal of Anatomy]] |volume=197 |pages=19–60 |pmid=10999270 |pmc=1468107 |doi=10.1046/j.1469-7580.2000.19710019.x |issue=Pt 1 |quote="Thus human evolution is the study of the lineage, or clade, comprising species more closely related to modern humans than to chimpanzees. Its stem species is the so-called 'common hominin ancestor', and its only extant member is ''Homo sapiens''. This clade contains all the species more closely related to modern humans than to any other living primate. Until recently, these species were all subsumed into a family, Hominidae, but this group is now more usually recognised as a tribe, the Hominini."}}</ref> that is, they distinguish fossil members on the human side of the split, as "hominins", from those on the chimpanzee side, as "not hominins" (or "non-hominin [[hominid]]s").<ref name="Coyne, Jerry A. 2009 pp.197-208"/>
The alternative convention uses "hominin" to exclude members of Panina: for ''Homo;'' or for human and australopithecine species. This alternative convention is referenced in e.g. Coyne (2009)<ref name="Coyne, Jerry A. 2009 pp.197-208">{{cite book |last=Coyne |first=Jerry A. |year=2009 |title=Why evolution is true |pages=197–208, 244, 248 |isbn=978-0-670-02053-9 |publisher=[[Penguin Books]] |location=London |quote="Anthropologists apply the term ''hominin'' to all the species on the "human" side of our family tree after it split from the branch that became modern chimps." (p.197)"}}</ref> and in Dunbar (2014).<ref name=Dunbar2014/> Potts (2010) in addition uses the name Hominini in a different sense, as excluding ''Pan'', and uses "hominins" for this, while a separate tribe (rather than subtribe) for chimpanzees is introduced, under the name Panini.<ref name=Potts2010a/> In this recent convention, ''contra'' Arambourg, the term "hominin" is applied to ''Homo'', ''Australopithecus'', ''[[Ardipithecus]]'', and others that arose after the split from the line that led to chimpanzees (see cladogram below);<ref name=Bradley2006>{{Cite Q|Q24646554}}</ref><ref name=WoodRichmond>{{cite journal |last1=Wood |last2=Richmond |first2=B. G. |year=2000 |title=Human evolution: taxonomy and paleobiology |journal=[[Journal of Anatomy]] |volume=197 |pages=19–60 |pmid=10999270 |pmc=1468107 |doi=10.1046/j.1469-7580.2000.19710019.x |issue=Pt 1 |quote="Thus human evolution is the study of the lineage, or clade, comprising species more closely related to modern humans than to chimpanzees. Its stem species is the so-called 'common hominin ancestor', and its only extant member is ''Homo sapiens''. This clade contains all the species more closely related to modern humans than to any other living primate. Until recently, these species were all subsumed into a family, Hominidae, but this group is now more usually recognised as a tribe, the Hominini."}}</ref> that is, they distinguish fossil members on the human side of the split, as "hominins", from those on the chimpanzee side, as "not hominins" (or "non-hominin [[hominid]]s").<ref name="Coyne, Jerry A. 2009 pp.197-208"/>


== Cladogram ==
== Cladogram ==
Line 77: Line 75:


== Evolutionary history ==
== Evolutionary history ==
{{Human timeline}}
{{see|Chimpanzee–human last common ancestor}}
{{see|Chimpanzee–human last common ancestor}}

Both ''Sahelanthropus'' and ''Orrorin'' existed during the estimated duration of the ancestral chimpanzee–human speciation events, within the range of eight to four million years ago (Mya). Very few fossil specimens have been found that can be considered directly ancestral to genus ''[[Pan (genus)|Pan]]''. News of the first fossil chimpanzee, found in Kenya, was published in 2005. However, it is dated to very recent times—between 545 and 284 thousand years ago.<ref name= McBrearty>{{cite journal |author1=McBrearty, Sally |author2=Jablonski, Nina G. |year=2005 |title=First fossil chimpanzee |journal=[[Nature (journal)|Nature]] |volume=437 |issue=7055 |pages=105–108 |doi=10.1038/nature04008 |pmid=16136135 |bibcode=2005Natur.437..105M |s2cid=4423286}}</ref> The divergence of a "proto-human" or "pre-human" lineage separate from ''Pan'' appears to have been a process of complex [[speciation]]-[[hybrid (biology)#In humans|hybridization]] rather than a clean split, taking place over the period of anywhere between 13 Mya (close to the age of the tribe Hominini itself) and some 4 Mya. Different chromosomes appear to have split at different times, with broad-scale hybridization activity occurring between the two emerging lineages as late as the period 6.3 to 5.4 Mya, according to Patterson et al. (2006),<ref name="complex">{{cite journal |last1=Patterson |first1=N. |last2=Richter |first2=D. J. |last3=Gnerre |first3=S. |last4=Lander |first4=E. S. |last5=Reich |first5=D. |title=Genetic evidence for complex speciation of humans and chimpanzees |journal=[[Nature (journal)|Nature]] |volume=441 |issue=7097 |pages=1103–8 |date=June 2006 |pmid=16710306 |doi=10.1038/nature04789 |bibcode=2006Natur.441.1103P |s2cid=2325560}}</ref> This research group noted that one hypothetical late hybridization period was based in particular on the similarity of [[X chromosome]]s in the proto-humans and stem chimpanzees, suggesting that the final divergence was even as recent as 4 Mya. Wakeley (2008) rejected these hypotheses; he suggested alternative explanations, including selection pressure on the X chromosome in the ancestral populations prior to the [[chimpanzee–human last common ancestor]] (CHLCA).<ref>{{cite journal |last=Wakeley |first=J. |title=Complex speciation of humans and chimpanzees |journal=[[Nature (journal)|Nature]] |volume=452 |issue=7184 |pages=E3–4; discussion E4 |date=March 2008 |pmid=18337768 |doi=10.1038/nature06805 |bibcode=2008Natur.452....3W |s2cid=4367089 |quote="Patterson et al. suggest that the apparently short divergence time between humans and chimpanzees on the X chromosome is explained by a massive interspecific hybridization event in the ancestry of these two species. However, Patterson et al. do not statistically test their own null model of simple speciation before concluding that speciation was complex, and—even if the null model could be rejected—they do not consider other explanations of a short divergence time on the X chromosome. These include natural selection on the X chromosome in the common ancestor of humans and chimpanzees, changes in the ratio of male-to-female mutation rates over time, and less extreme versions of divergence with gene flow. I therefore believe that their claim of hybridization is unwarranted."}}</ref>
Both ''Sahelanthropus'' and ''Orrorin'' existed during the estimated duration of the ancestral chimpanzee–human speciation events, within the range of eight to four million years ago (Mya). Very few fossil specimens have been found that can be considered directly ancestral to genus ''[[Pan (genus)|Pan]]''. News of the first fossil chimpanzee, found in Kenya, was published in 2005. However, it is dated to very recent times—between 545 and 284 thousand years ago.<ref name= McBrearty>{{cite journal |author1=McBrearty, Sally |author2=Jablonski, Nina G. |year=2005 |title=First fossil chimpanzee |journal=[[Nature (journal)|Nature]] |volume=437 |issue=7055 |pages=105–108 |doi=10.1038/nature04008 |pmid=16136135 |bibcode=2005Natur.437..105M |s2cid=4423286}}</ref> The divergence of a "proto-human" or "pre-human" lineage separate from ''Pan'' appears to have been a process of complex [[speciation]]-[[hybrid (biology)#In humans|hybridization]] rather than a clean split, taking place over the period of anywhere between 13 Mya (close to the age of the tribe Hominini itself) and some 4 Mya. Different chromosomes appear to have split at different times, with broad-scale hybridization activity occurring between the two emerging lineages as late as the period 6.3 to 5.4 Mya, according to Patterson et al. (2006),<ref name="complex">{{cite journal |last1=Patterson |first1=N. |last2=Richter |first2=D. J. |last3=Gnerre |first3=S. |last4=Lander |first4=E. S. |last5=Reich |first5=D. |title=Genetic evidence for complex speciation of humans and chimpanzees |journal=[[Nature (journal)|Nature]] |volume=441 |issue=7097 |pages=1103–8 |date=June 2006 |pmid=16710306 |doi=10.1038/nature04789 |bibcode=2006Natur.441.1103P |s2cid=2325560}}</ref> This research group noted that one hypothetical late hybridization period was based in particular on the similarity of [[X chromosome]]s in the proto-humans and stem chimpanzees, suggesting that the final divergence was even as recent as 4 Mya. Wakeley (2008) rejected these hypotheses; he suggested alternative explanations, including selection pressure on the X chromosome in the ancestral populations prior to the [[chimpanzee–human last common ancestor]] (CHLCA).<ref>{{cite journal |last=Wakeley |first=J. |title=Complex speciation of humans and chimpanzees |journal=[[Nature (journal)|Nature]] |volume=452 |issue=7184 |pages=E3–4; discussion E4 |date=March 2008 |pmid=18337768 |doi=10.1038/nature06805 |bibcode=2008Natur.452....3W |s2cid=4367089 |quote="Patterson et al. suggest that the apparently short divergence time between humans and chimpanzees on the X chromosome is explained by a massive interspecific hybridization event in the ancestry of these two species. However, Patterson et al. do not statistically test their own null model of simple speciation before concluding that speciation was complex, and—even if the null model could be rejected—they do not consider other explanations of a short divergence time on the X chromosome. These include natural selection on the X chromosome in the common ancestor of humans and chimpanzees, changes in the ratio of male-to-female mutation rates over time, and less extreme versions of divergence with gene flow. I therefore believe that their claim of hybridization is unwarranted."}}</ref>


Most [[DNA]] studies find that humans and ''Pan'' are 99% identical,<ref>{{cite thesis |first=Mary-Claire |last=King |year=1973 |title=Protein polymorphisms in chimpanzee and human evolution |oclc=923094595 }}</ref><ref name=sciam>{{cite news |first=Kate |last=Wong |title=Tiny genetic differences between humans and other primates pervade the genome |url=https://www.scientificamerican.com/article/tiny-genetic-differences-between-humans-and-other-primates-pervade-the-genome/ |publisher=[[Scientific American]] |date=1 September 2014}}</ref> but one study found only 94% commonality, with some of the difference occurring in [[non-coding DNA]].<ref name=ns>{{cite journal |url=http://www.scientificamerican.com/article.cfm?id=human-chimp-gene-gap-wide |date=19 December 2006 |title=Humans and chimps: close but not that close |journal=[[Scientific American]] |author=Minkel, J. R.}}</ref> It is most likely that the australopithecines, dating from 4.4 to 3 Mya, evolved into the earliest members of genus ''Homo''.<ref name="Coyne2009">{{cite book |last=Coyne |first=Jerry A. |year=2009 |title=Why evolution is true |pages=202–204 |isbn=978-0-670-02053-9 |publisher=[[Penguin Books]] |location=London |quote="After ''A. afarensis'', the fossil record shows a confusing melange of gracile australopithecine species lasting up to about two million years ago. … [T]he late australopithecines, already bipedal, were beginning to show changes in teeth, skull, and brain that presage modern humans. It is very likely that the lineage that gave rise to modern humans included at least one of these species."}}</ref><ref>{{cite journal |title=Early hominin speciation at the Plio/Pleistocene transition. |journal=[[HOMO: Journal of Comparative Human Biology]] |date=2003 |last=Cameron |first=D. W. |volume=54 |issue=1 |pages=1–28 |pmid=12968420 |doi=10.1078/0018-442x-00057}}</ref> In the year 2000, the discovery of ''[[Orrorin tugenensis]]'', dated as early as 6.2 Mya, briefly challenged critical elements of that hypothesis,<ref name=Potts2010b>{{cite book |last=Potts |year=2010 |title=What does it mean to be human? |pages=38–39 |isbn=978-1-4262-0606-1 |publisher=[[National Geographic Society]] |location=Washington}}</ref> as it suggested that ''Homo'' did not in fact derive from australopithecine ancestors.<ref name=Reynolds_2012>{{cite book |url=https://books.google.com/books?id=PrJ1lmjMakoC&pg=PA116 |title=African genesis: perspectives on hominin evolution |isbn=978-1-107-01995-9 |last1=Reynolds |first1=Sally C. |last2=Gallagher |first2=Andrew |date=2012 |publisher=Cambridge University Press |quote="The discovery of ''Orrorin'' has ... radically modified interpretations of human origins and the environmental context in which the African apes/hominoid transition occurred, although ... the less likely hypothesis of derivation of ''Homo'' from the australopithecines still holds primacy in the minds of most palaeoanthropologists."}}</ref> All the listed fossil genera are evaluated for:
Most [[DNA]] studies find that humans and ''Pan'' are 99% identical,<ref>{{cite thesis |first=Mary-Claire |last=King |year=1973 |title=Protein polymorphisms in chimpanzee and human evolution |oclc=923094595 }}</ref><ref name=sciam>{{cite news |first=Kate |last=Wong |title=Tiny genetic differences between humans and other primates pervade the genome |url=https://www.scientificamerican.com/article/tiny-genetic-differences-between-humans-and-other-primates-pervade-the-genome/ |publisher=[[Scientific American]] |date=1 September 2014}}</ref> but one study found only 94% commonality, with some of the difference occurring in [[non-coding DNA]].<ref name=ns>{{cite journal |url=http://www.scientificamerican.com/article.cfm?id=human-chimp-gene-gap-wide |date=19 December 2006 |title=Humans and chimps: close but not that close |journal=[[Scientific American]] |author=Minkel, J. R.}}</ref> It is most likely that the australopithecines, dating from 4.4 to 3 Mya, evolved into the earliest members of genus ''Homo''.<ref name="Coyne2009">{{cite book |last=Coyne |first=Jerry A. |year=2009 |title=Why evolution is true |pages=202–204 |isbn=978-0-670-02053-9 |publisher=[[Penguin Books]] |location=London |quote="After ''A. afarensis'', the fossil record shows a confusing melange of gracile australopithecine species lasting up to about two million years ago. … [T]he late australopithecines, already bipedal, were beginning to show changes in teeth, skull, and brain that presage modern humans. It is very likely that the lineage that gave rise to modern humans included at least one of these species."}}</ref><ref>{{cite journal |title=Early hominin speciation at the Plio/Pleistocene transition. |journal=[[HOMO: Journal of Comparative Human Biology]] |date=2003 |last=Cameron |first=D. W. |volume=54 |issue=1 |pages=1–28 |pmid=12968420 |doi=10.1078/0018-442x-00057}}</ref> In the year 2000, the discovery of ''[[Orrorin tugenensis]]'', dated as early as 6.2 Mya, briefly challenged critical elements of that hypothesis,<ref name=Potts2010b>{{cite book |last=Potts |year=2010 |title=What does it mean to be human? |pages=38–39 |isbn=978-1-4262-0606-1 |publisher=[[National Geographic Society]] |location=Washington}}</ref> as it suggested that ''Homo'' did not in fact derive from australopithecine ancestors.<ref name=Reynolds_2012>{{cite book |url=https://books.google.com/books?id=PrJ1lmjMakoC&pg=PA116 |title=African genesis: perspectives on hominin evolution |isbn=978-1-107-01995-9 |last1=Reynolds |first1=Sally C. |last2=Gallagher |first2=Andrew |date=2012 |publisher=Cambridge University Press |quote="The discovery of ''Orrorin'' has ... radically modified interpretations of human origins and the environmental context in which the African apes/hominoid transition occurred, although ... the less likely hypothesis of derivation of ''Homo'' from the australopithecines still holds primacy in the minds of most palaeoanthropologists."}}</ref>

All the listed fossil genera are evaluated for two traits that could identify them as hominins:
# probability of being ancestral to ''Homo'', and
# probability of being ancestral to ''Homo'', and
# whether they are more closely related to ''Homo'' than to any other living primate—two traits that could identify them as hominins.
# whether they are more closely related to ''Homo'' than to any other living primate.

Some, including ''[[Paranthropus]]'', ''[[Ardipithecus]]'', and ''[[Australopithecus]]'', are broadly thought to be ancestral and closely related to ''Homo'';<ref name=Potts2010c>{{cite book |last=Potts |year=2010 |title=What does it mean to be human? |pages=31–424 |isbn=978-1-4262-0606-1 |publisher=[[National Geographic Society]] |location=Washington}}</ref> others, especially earlier genera, including ''[[Sahelanthropus]]'' (and perhaps ''[[Orrorin]]''), are supported by one community of scientists but doubted by another.<ref>{{cite journal |last1=Brunet |first1=M. |title=A new hominid from the Upper Miocene of Chad, Central Africa |journal=[[Nature (journal)|Nature]] |volume=418 |pages=145–151 |quote=''Sahelanthropus'' is the oldest and most primitive known member of the hominid clade, close to the divergence of hominids and chimpanzees. |date=July 2002 |doi=10.1038/nature00879 |pmid=12110880 |issue=6894 |last2=Guy |first2=F. |last3=Pilbeam |first3=D. |display-authors=3 |last4=MacKaye |first4=H. T. |last5=Likius |first5=A. |last6=Ahounta |first6=D. |last7=Beauvilain |first7=A. |last8=Blondel |first8=C. |last9=Bocherens |first9=H. |last10=Boisserie |first10=J. R. |last11=De Bonis |first11=L. |last12=Coppens |first12=Y. |last13=Dejax |first13=J. |last14=Denys |first14=C. |last15=Duringer |first15=P. |last16=Eisenmann |first16=V. |last17=Fanone |first17=G. |last18=Fronty |first18=P. |last19=Geraads |first19=D. |last20=Lehmann |first20=T. |last21=Lihoreau |first21=F. |last22=Louchart |first22=A. |last23=Mahamat |first23=A. |last24=Merceron |first24=G. |last25=Mouchelin |first25=G. |last26=Otero |first26=O. |last27=Pelaez Campomanes |first27=P. |last28=Ponce De Leon |first28=M. |last29=Rage |first29=J. C. |last30=Sapanet |first30=M. |bibcode=2002Natur.418..145B |s2cid=1316969|url=http://doc.rero.ch/record/13388/files/PAL_E190.pdf }}</ref><ref>{{cite journal |last1=Wolpoff |first1=Milford |title=''Sahelanthropus'' or <nowiki>'</nowiki>''Sahelpithecus''<nowiki>'</nowiki>? |journal=[[Nature (journal)|Nature]] |volume=419 |issue=6907 |pages=581–582 |quote=''Sahelanthropus tchadensis'' is an enigmatic new Miocene species, whose characteristics are a mix of those of apes and ''Homo erectus'' and which has been proclaimed by Brunet et al. to be the earliest hominid. However, we believe that features of the dentition, face and cranial base that are said to define unique links between this Toumaï specimen and the hominid clade are either not diagnostic or are consequences of biomechanical adaptations. To represent a valid clade, hominids must share unique defining features, and ''Sahelanthropus'' does not appear to have been an obligate biped. |date=October 2002 |doi=10.1038/419581a |pmid=12374970 |last2=Senut |first2=Brigitte |last3=Pickford |first3=Martin |last4=Hawks |first4=John |bibcode=2002Natur.419..581W |hdl=2027.42/62951 |s2cid=205029762 |hdl-access=free }}</ref>
Some, including ''[[Paranthropus]]'', ''[[Ardipithecus]]'', and ''[[Australopithecus]]'', are broadly thought to be ancestral and closely related to ''Homo'';<ref name=Potts2010c>{{cite book |last=Potts |year=2010 |title=What does it mean to be human? |pages=31–424 |isbn=978-1-4262-0606-1 |publisher=[[National Geographic Society]] |location=Washington}}</ref> others, especially earlier genera, including ''[[Sahelanthropus]]'' (and perhaps ''[[Orrorin]]''), are supported by one community of scientists but doubted by another.<ref>{{cite journal |last1=Brunet |first1=M. |title=A new hominid from the Upper Miocene of Chad, Central Africa |journal=[[Nature (journal)|Nature]] |volume=418 |pages=145–151 |quote=''Sahelanthropus'' is the oldest and most primitive known member of the hominid clade, close to the divergence of hominids and chimpanzees. |date=July 2002 |doi=10.1038/nature00879 |pmid=12110880 |issue=6894 |last2=Guy |first2=F. |last3=Pilbeam |first3=D. |display-authors=3 |last4=MacKaye |first4=H. T. |last5=Likius |first5=A. |last6=Ahounta |first6=D. |last7=Beauvilain |first7=A. |last8=Blondel |first8=C. |last9=Bocherens |first9=H. |last10=Boisserie |first10=J. R. |last11=De Bonis |first11=L. |last12=Coppens |first12=Y. |last13=Dejax |first13=J. |last14=Denys |first14=C. |last15=Duringer |first15=P. |last16=Eisenmann |first16=V. |last17=Fanone |first17=G. |last18=Fronty |first18=P. |last19=Geraads |first19=D. |last20=Lehmann |first20=T. |last21=Lihoreau |first21=F. |last22=Louchart |first22=A. |last23=Mahamat |first23=A. |last24=Merceron |first24=G. |last25=Mouchelin |first25=G. |last26=Otero |first26=O. |last27=Pelaez Campomanes |first27=P. |last28=Ponce De Leon |first28=M. |last29=Rage |first29=J. C. |last30=Sapanet |first30=M. |bibcode=2002Natur.418..145B |s2cid=1316969|url=http://doc.rero.ch/record/13388/files/PAL_E190.pdf }}</ref><ref>{{cite journal |last1=Wolpoff |first1=Milford |title=''Sahelanthropus'' or <nowiki>'</nowiki>''Sahelpithecus''<nowiki>'</nowiki>? |journal=[[Nature (journal)|Nature]] |volume=419 |issue=6907 |pages=581–582 |quote=''Sahelanthropus tchadensis'' is an enigmatic new Miocene species, whose characteristics are a mix of those of apes and ''Homo erectus'' and which has been proclaimed by Brunet et al. to be the earliest hominid. However, we believe that features of the dentition, face and cranial base that are said to define unique links between this Toumaï specimen and the hominid clade are either not diagnostic or are consequences of biomechanical adaptations. To represent a valid clade, hominids must share unique defining features, and ''Sahelanthropus'' does not appear to have been an obligate biped. |date=October 2002 |doi=10.1038/419581a |pmid=12374970 |last2=Senut |first2=Brigitte |last3=Pickford |first3=Martin |last4=Hawks |first4=John |bibcode=2002Natur.419..581W |hdl=2027.42/62951 |s2cid=205029762 |hdl-access=free }}</ref>


Line 118: Line 117:
*''[[Homo floresiensis]]''
*''[[Homo floresiensis]]''
*''[[Homo luzonensis]]''
*''[[Homo luzonensis]]''
[[File:Sahelanthropus tchadensis - TM 266-01-060-1.jpg|thumb|Cast of a skull of [[Sahelanthropus|''Sahelanthropus tchadensis'']], nick-named ″Toumaï″]]
[[File:KNM ER 1470 (H. rudolfensis).png|thumb|Skull of [[Homo rudolfensis]]]]
{{Div col end}}
{{Div col end}}

== Gallery ==
{{Gallery |align=left |title= |lines=3 |width=200 |height=200 |File:Sahelanthropus tchadensis - TM 266-01-060-1.jpg |Cast of a skull of [[Sahelanthropus|''Sahelanthropus tchadensis'']], nick-named ″Toumaï″ |File:KNM ER 1470 (H. rudolfensis).png |Skull of [[Homo rudolfensis]] }}
{{clear}}


== See also ==
== See also ==
{{portal|Evolutionary biology|Paleontology|Primates}}
* [[History of hominoid taxonomy]]
* [[History of hominoid taxonomy]]
* [[Human evolution]]
* [[Human evolution]]
Line 128: Line 130:
* [[Template:Human timeline|Human timeline]]
* [[Template:Human timeline|Human timeline]]
* [[List of human evolution fossils]]
* [[List of human evolution fossils]]
{{portal bar|Evolutionary biology|Paleontology|Primates|Science}}


== References ==
== References ==

Latest revision as of 14:41, 15 October 2024

Hominini
Temporal range: 7–0 Ma
Two hominins: A human holding a chimpanzee (Joseph V. Brady and Ham the chimp)
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Primates
Suborder: Haplorhini
Infraorder: Simiiformes
Family: Hominidae
Subfamily: Homininae
Tribe: Hominini
Arambourg, 1948[1]
Type genus
Homo
Linnaeus, 1758
Genera

The Hominini (hominins) form a taxonomic tribe of the subfamily Homininae (hominines). They comprise two extant genera: Homo (humans) and Pan (chimpanzees and bonobos), but in standard usage exclude the genus Gorilla (gorillas), which is grouped separately within subfamily Homininae.

The term Hominini was originally introduced by Camille Arambourg (1948), who combined the categories of Hominina and Simiina pursuant to Gray's classifications (1825).

Taxonomic classification of the superfamily Hominoidae (hominoids), emphasizing the tribe Hominini. 𝄪 Tribe Hominini (lower left in graphic) comprises two genera, Homo and Pan; while gorillas are classified as separate from these—as the single genus Gorilla of tribe Gorillini; all of subfamily Homininae.

Traditionally, chimpanzees, gorillas and orangutans were grouped together, excluding humans, as pongids. Since Gray's classifications, evidence accumulating from genetic phylogeny confirmed that humans, chimpanzees, and gorillas are more closely related to each other than to the orangutan.[3] The orangutans were reassigned to the family Hominidae (great apes), which already included humans; and the gorillas were grouped as a separate tribe (Gorillini) of the subfamily Homininae.[3] Still, details of this reassignment remain contested, and of publishing since (on tribe Hominini), not every source excludes gorillas and not every source includes chimpanzees.

Humans are the only extant species in the Australopithecine branch (subtribe), which also contains many extinct close relatives of humans.

Terminology and definition

[edit]

Concerning membership, when Hominini is taken to exclude Pan, Panini ("panins")[4] may refer to the tribe containing Pan as its only genus.[5][6] Or perhaps place Pan with other dryopithecine genera, making the whole tribe or subtribe of Panini or Panina together. Minority dissenting nomenclatures include Gorilla in Hominini and Pan in Homo (Goodman et al. 1998), or both Pan and Gorilla in Homo (Watson et al. 2001).

By convention, the adjectival term "hominin" (or nominalized "hominins") refers to the tribe Hominini, whereas the members of the subtribe Hominina (and thus all archaic human species) are referred to as "homininan" ("homininans").[7][8][9] This follows the proposal by Mann and Weiss (1996), which presents tribe Hominini as including both Pan and Homo, placed in separate subtribes. The genus Pan is referred to subtribe Panina, and genus Homo is included in the subtribe Hominina (see below).[10]

The alternative convention uses "hominin" to exclude members of Panina: for Homo; or for human and australopithecine species. This alternative convention is referenced in e.g. Coyne (2009)[11] and in Dunbar (2014).[6] Potts (2010) in addition uses the name Hominini in a different sense, as excluding Pan, and uses "hominins" for this, while a separate tribe (rather than subtribe) for chimpanzees is introduced, under the name Panini.[5] In this recent convention, contra Arambourg, the term "hominin" is applied to Homo, Australopithecus, Ardipithecus, and others that arose after the split from the line that led to chimpanzees (see cladogram below);[12][13] that is, they distinguish fossil members on the human side of the split, as "hominins", from those on the chimpanzee side, as "not hominins" (or "non-hominin hominids").[11]

Cladogram

[edit]

This cladogram shows the clade of superfamily Hominoidea and its descendant clades, focused on the division of Hominini (omitting detail on clades not ancestral to Hominini). The family Hominidae ("hominids") comprises the tribes Ponginae (including orangutans), Gorillini (including gorillas) and Hominini, the latter two forming the subfamily of Homininae. Hominini is divided into Panina (chimpanzees) and Australopithecina (australopithecines). The Hominina (humans) are usually held to have emerged within the Australopithecina (which would roughly correspond to the alternative definition of Hominini according to the alternative definition which excludes Pan).

Genetic analysis combined with fossil evidence indicates that hominoids diverged from the Old World monkeys about 25 million years ago (Mya), near the Oligocene-Miocene boundary.[14] The most recent common ancestors (MRCA) of the subfamilies Homininae and Ponginae lived about 15 million years ago. The best-known fossil genus of Ponginae is Sivapithecus, consisting of several species from 12.5 million to 8.5 million years ago. It differs from orangutans in dentition and postcranial morphology.[15] In the following cladogram, the approximate time the clades radiated newer clades is indicated in millions of years ago (Mya).

Hominoidea (20.4 Mya)

Hylobatidae (gibbons)

Hominidae (15.7)

Ponginae (orangutans)

Homininae  (8.8)

Gorillini (gorillas)

Hominini  (6.3)

Panina (chimpanzees)

Hominina (4)

Ardipithecus (†)

Australopithecus

Praeanthropus (†)

Australopithecus/Paranthropus robustus (†2)

Australopithecus garhi (†2.5)

Homo (humans)

Australopithecina

Evolutionary history

[edit]

Both Sahelanthropus and Orrorin existed during the estimated duration of the ancestral chimpanzee–human speciation events, within the range of eight to four million years ago (Mya). Very few fossil specimens have been found that can be considered directly ancestral to genus Pan. News of the first fossil chimpanzee, found in Kenya, was published in 2005. However, it is dated to very recent times—between 545 and 284 thousand years ago.[16] The divergence of a "proto-human" or "pre-human" lineage separate from Pan appears to have been a process of complex speciation-hybridization rather than a clean split, taking place over the period of anywhere between 13 Mya (close to the age of the tribe Hominini itself) and some 4 Mya. Different chromosomes appear to have split at different times, with broad-scale hybridization activity occurring between the two emerging lineages as late as the period 6.3 to 5.4 Mya, according to Patterson et al. (2006),[17] This research group noted that one hypothetical late hybridization period was based in particular on the similarity of X chromosomes in the proto-humans and stem chimpanzees, suggesting that the final divergence was even as recent as 4 Mya. Wakeley (2008) rejected these hypotheses; he suggested alternative explanations, including selection pressure on the X chromosome in the ancestral populations prior to the chimpanzee–human last common ancestor (CHLCA).[18]

Most DNA studies find that humans and Pan are 99% identical,[19][20] but one study found only 94% commonality, with some of the difference occurring in non-coding DNA.[21] It is most likely that the australopithecines, dating from 4.4 to 3 Mya, evolved into the earliest members of genus Homo.[22][23] In the year 2000, the discovery of Orrorin tugenensis, dated as early as 6.2 Mya, briefly challenged critical elements of that hypothesis,[24] as it suggested that Homo did not in fact derive from australopithecine ancestors.[25]

All the listed fossil genera are evaluated for two traits that could identify them as hominins:

  1. probability of being ancestral to Homo, and
  2. whether they are more closely related to Homo than to any other living primate.

Some, including Paranthropus, Ardipithecus, and Australopithecus, are broadly thought to be ancestral and closely related to Homo;[26] others, especially earlier genera, including Sahelanthropus (and perhaps Orrorin), are supported by one community of scientists but doubted by another.[27][28]

List of known hominin species

[edit]

Extant species are in bold.

[edit]

See also

[edit]

References

[edit]
  1. ^ Arambourg, C. (1948). "La Classification des Primates et Particulierement des Hominiens". Mammalia. 12 (3). doi:10.1515/mamm.1948.12.3.123. S2CID 84553920.
  2. ^ Fuss, J.; Spassov, N.; Begun, D. R.; Böhme, M. (2017). "Potential hominin affinities of Graecopithecus from the Late Miocene of Europe". PLOS ONE. 12 (5): e0177127. Bibcode:2017PLoSO..1277127F. doi:10.1371/journal.pone.0177127. PMC 5439669. PMID 28531170.
  3. ^ a b McNulty, K. P. (2016). "Hominin Taxonomy and Phylogeny: What's In A Name?". Nature Education Knowledge. 7 (1): 2. However, overwhelming genetic evidence has since demonstrated that humans, chimpanzees, and gorillas are much more closely related to each other than to the orangutan ... Thus, there is no genetic support for grouping the great apes together in a distinct group from humans. For this reason, many researchers now place all species of great ape and human within a single family, Hominidae – making them all proper 'hominids'.
  4. ^ Delson (1977). "Catarrhine phylogeny and classification: principles, methods and comments". Journal of Human Evolution. 6 (5): 450. Bibcode:1977JHumE...6..433D. doi:10.1016/S0047-2484(77)80057-2.
  5. ^ a b Potts (2010). What does it mean to be human?. Washington: National Geographic Society. p. 34. ISBN 978-1-4262-0606-1.
  6. ^ a b Dunbar, Robin (2014). Human evolution. Pelican. ISBN 978-0-14-197531-3. Conventionally, taxonomists now refer to the great ape family (including humans) as 'hominids', while all members of the lineage leading to modern humans that arose after the split with the [Homo-Pan] LCA are referred to as 'hominins'. The older literature used the terms hominoids and hominids respectively.
  7. ^ Andrews, Peter; Harrison, Terry (2005). "The Last Common Ancestor of Apes and Humans". Interpreting the Past. pp. 103–121. doi:10.1163/9789047416616_013. ISBN 978-90-474-1661-6. S2CID 203884394.
  8. ^ Diogo, Rui; Wood, Bernard (2015). "Origin, Development, and Evolution of Primate Muscles, with Notes on Human Anatomical Variations and Anomalies". Developmental Approaches to Human Evolution. pp. 167–204. doi:10.1002/9781118524756.ch8. ISBN 978-1-118-52475-6.
  9. ^ Worthington, Steven (2012). New approaches to late Miocene hominoid systematics: Ranking morphological characters by phylogenetic signal (Thesis). ProQuest 1038821782.
  10. ^ Mann, Alan; Weiss, Mark (1996). "Hominoid phylogeny and taxonomy: a consideration of the molecular and fossil evidence in an historical perspective". Molecular Phylogenetics and Evolution. 5 (1): 169–181. Bibcode:1996MolPE...5..169M. doi:10.1006/mpev.1996.0011. PMID 8673284.
  11. ^ a b Coyne, Jerry A. (2009). Why evolution is true. London: Penguin Books. pp. 197–208, 244, 248. ISBN 978-0-670-02053-9. Anthropologists apply the term hominin to all the species on the "human" side of our family tree after it split from the branch that became modern chimps." (p.197)
  12. ^ Brenda J. Bradley (1 April 2008). "Reconstructing phylogenies and phenotypes: a molecular view of human evolution". Journal of Anatomy. 212 (4): 337–353. doi:10.1111/J.1469-7580.2007.00840.X. ISSN 1469-7580. PMC 2409108. PMID 18380860. Wikidata Q24646554.
  13. ^ Wood; Richmond, B. G. (2000). "Human evolution: taxonomy and paleobiology". Journal of Anatomy. 197 (Pt 1): 19–60. doi:10.1046/j.1469-7580.2000.19710019.x. PMC 1468107. PMID 10999270. Thus human evolution is the study of the lineage, or clade, comprising species more closely related to modern humans than to chimpanzees. Its stem species is the so-called 'common hominin ancestor', and its only extant member is Homo sapiens. This clade contains all the species more closely related to modern humans than to any other living primate. Until recently, these species were all subsumed into a family, Hominidae, but this group is now more usually recognised as a tribe, the Hominini.
  14. ^ Balter, Michael (15 May 2013). "Fossils May Pinpoint Critical Split Between Apes and Monkeys". Science.
  15. ^ Taylor, C. (2011). "Old men of the woods". Palaeos. Retrieved 4 April 2013.
  16. ^ McBrearty, Sally; Jablonski, Nina G. (2005). "First fossil chimpanzee". Nature. 437 (7055): 105–108. Bibcode:2005Natur.437..105M. doi:10.1038/nature04008. PMID 16136135. S2CID 4423286.
  17. ^ Patterson, N.; Richter, D. J.; Gnerre, S.; Lander, E. S.; Reich, D. (June 2006). "Genetic evidence for complex speciation of humans and chimpanzees". Nature. 441 (7097): 1103–8. Bibcode:2006Natur.441.1103P. doi:10.1038/nature04789. PMID 16710306. S2CID 2325560.
  18. ^ Wakeley, J. (March 2008). "Complex speciation of humans and chimpanzees". Nature. 452 (7184): E3–4, discussion E4. Bibcode:2008Natur.452....3W. doi:10.1038/nature06805. PMID 18337768. S2CID 4367089. Patterson et al. suggest that the apparently short divergence time between humans and chimpanzees on the X chromosome is explained by a massive interspecific hybridization event in the ancestry of these two species. However, Patterson et al. do not statistically test their own null model of simple speciation before concluding that speciation was complex, and—even if the null model could be rejected—they do not consider other explanations of a short divergence time on the X chromosome. These include natural selection on the X chromosome in the common ancestor of humans and chimpanzees, changes in the ratio of male-to-female mutation rates over time, and less extreme versions of divergence with gene flow. I therefore believe that their claim of hybridization is unwarranted.
  19. ^ King, Mary-Claire (1973). Protein polymorphisms in chimpanzee and human evolution (Thesis). OCLC 923094595.
  20. ^ Wong, Kate (1 September 2014). "Tiny genetic differences between humans and other primates pervade the genome". Scientific American.
  21. ^ Minkel, J. R. (19 December 2006). "Humans and chimps: close but not that close". Scientific American.
  22. ^ Coyne, Jerry A. (2009). Why evolution is true. London: Penguin Books. pp. 202–204. ISBN 978-0-670-02053-9. After A. afarensis, the fossil record shows a confusing melange of gracile australopithecine species lasting up to about two million years ago. … [T]he late australopithecines, already bipedal, were beginning to show changes in teeth, skull, and brain that presage modern humans. It is very likely that the lineage that gave rise to modern humans included at least one of these species.
  23. ^ Cameron, D. W. (2003). "Early hominin speciation at the Plio/Pleistocene transition". HOMO: Journal of Comparative Human Biology. 54 (1): 1–28. doi:10.1078/0018-442x-00057. PMID 12968420.
  24. ^ Potts (2010). What does it mean to be human?. Washington: National Geographic Society. pp. 38–39. ISBN 978-1-4262-0606-1.
  25. ^ Reynolds, Sally C.; Gallagher, Andrew (2012). African genesis: perspectives on hominin evolution. Cambridge University Press. ISBN 978-1-107-01995-9. The discovery of Orrorin has ... radically modified interpretations of human origins and the environmental context in which the African apes/hominoid transition occurred, although ... the less likely hypothesis of derivation of Homo from the australopithecines still holds primacy in the minds of most palaeoanthropologists.
  26. ^ Potts (2010). What does it mean to be human?. Washington: National Geographic Society. pp. 31–424. ISBN 978-1-4262-0606-1.
  27. ^ Brunet, M.; Guy, F.; Pilbeam, D.; et al. (July 2002). "A new hominid from the Upper Miocene of Chad, Central Africa" (PDF). Nature. 418 (6894): 145–151. Bibcode:2002Natur.418..145B. doi:10.1038/nature00879. PMID 12110880. S2CID 1316969. Sahelanthropus is the oldest and most primitive known member of the hominid clade, close to the divergence of hominids and chimpanzees.
  28. ^ Wolpoff, Milford; Senut, Brigitte; Pickford, Martin; Hawks, John (October 2002). "Sahelanthropus or 'Sahelpithecus'?". Nature. 419 (6907): 581–582. Bibcode:2002Natur.419..581W. doi:10.1038/419581a. hdl:2027.42/62951. PMID 12374970. S2CID 205029762. Sahelanthropus tchadensis is an enigmatic new Miocene species, whose characteristics are a mix of those of apes and Homo erectus and which has been proclaimed by Brunet et al. to be the earliest hominid. However, we believe that features of the dentition, face and cranial base that are said to define unique links between this Toumaï specimen and the hominid clade are either not diagnostic or are consequences of biomechanical adaptations. To represent a valid clade, hominids must share unique defining features, and Sahelanthropus does not appear to have been an obligate biped.
[edit]