Jump to content

Widom–Larsen theory: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Reference edited with ProveIt
Restored revision 1050382316 by Headbomb (talk): Reverting unconstructive edits
 
(46 intermediate revisions by 15 users not shown)
Line 1: Line 1:
The '''Widom-Larsen theory''' is a theory developed in 2016 by Dr. Allan Widom and Dr. Lewis Larsen which describes the production of ultra low momentum neutrons and subsequent catalysis of [[Low Energy Nuclear Reactions]] (LENR). The neutrons are hypothesized to be produced during weak interactions when protons capture "heavy" electrons in certain special conditions, such as [[Hydride#Interstitial_hydrides_or_metallic_hydrides|metallic hydride]] surfaces.<ref name="WLT">{{Cite journal |last=Widom |first=A |last2=Larsen |first2=L |title=Ultra Low Momentum Neutron Catalyzed Nuclear Reactions on Metallic Hydride Surfaces |url=https://link.springer.com/article/10.1140%2Fepjc%2Fs2006-02479-8?LI=true |journal=The European Physical Journal C |publication-date=April 2006 |doi=10.1140/epjc/s2006-02479-8 |archive-url=https://arxiv.org/pdf/cond-mat/0505026.pdf |archive-date=2 May 2005 |access-date=24 March 2017}}</ref>
The '''Widom–Larsen theory''' is a proposed explanation for supposed [[Low Energy Nuclear Reactions]] (LENR) developed in 2005 by Allan Widom and Lewis Larsen. In the paper describing the idea, they claim that ultra low momentum [[neutron]]s are produced in the [[cold fusion]] apparatuses<ref>{{Cite web |url=http://discovermagazine.com/2012/nov/27-big-idea-bring-back-the-cold-fusion-dream |title=Big Idea: Bring Back the "Cold Fusion" Dream. A new theory may explain the notorious cold fusion experiment from two decades ago, reigniting hopes of a clean-energy breakthrough. |last=Anderson |first=Mark |location=Discover Magazine |date=23 October 2012}}</ref> during [[weak interaction]]s when [[proton]]s capture "heavy" electrons from [[Hydride#Interstitial hydrides or metallic hydrides|metallic hydride]] surfaces.<ref name="WLT">{{Cite journal |last1=Widom |first1=A |last2=Larsen |first2=L |title=Ultra Low Momentum Neutron Catalyzed Nuclear Reactions on Metallic Hydride Surfaces |journal= The European Physical Journal C|volume=46 |issue=1 |pages=107–111 |date=April 2006 |doi=10.1140/epjc/s2006-02479-8 |arxiv=cond-mat/0505026 |bibcode=2006EPJC...46..107W |s2cid=55478462 }}</ref> One source has held that it is "unlikely the electron energy threshold for neutron production can be reached in a metal lattice
system without a substantial energy input".<ref>{{Cite journal |last=Tennfors |first=Einor |title=On the idea of low energy nuclear reactions in metallic lattices by producing neutrons from protons capturing "heavy" electrons |url=https://www.researchgate.net/publication/260246109 |journal= The European Physical Journal Plus|volume=128 |issue=2 |pages=15 |date=15 February 2015 |doi=10.1140/epjp/i2013-13015-3 |access-date=24 March 2017|bibcode=2013EPJP..128...15T |s2cid=55677855 }}</ref>


The theory was expanded by Dr. Yogendra Srivastava in 2014, and additionally theorized as a possible explanation for neutrons observed in exploding wire experiments and [[thunderstorms]].<ref name="Pramana">{{Cite journal |last=Srivastava |first=Y |last2=Widom |first2=A |last3=Larsen |first3=L |title=A primer for electroweak induced low-energy nuclear reactions |url=http://www.ias.ac.in/describe/article/pram/075/04/0617-0637 |journal=Pramana – Journal of Physics |publication-date=October 2014 |access-date=24 March 2017}}</ref> theory has been discussed as a theory to explain neutron production in thunderstorms,<ref name="Pramana" /> however, unreal concentrations of free electrons would be needed for the e–(p+, n)νe neutron yield to be a significant component of thunderstorm neutrons.<ref name="PRD">{{Cite journal |last=Babich |first=L P |last2=Bochkov |first2=E I |last3=Kutsyk |first3=I M |last4=Rassoul |first4=H K |title=Analysis of fundamental interactions capable of producing neutrons in thunderstorms |url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.093010#fulltext |journal=Physics Review D |publication-date=13 May 2014 |doi=10.1103/PhysRevD.89.093010 |archive-url=https://dspace-test.lib.fit.edu/xmlui/bitstream/handle/11141/305/PRD20141D.pdf?sequence=1&isAllowed=y |archive-date=2014 |access-date=24 March 2017}}</ref><ref name="JETP">{{Cite journal |last=Babich |first=L P |title=Fundamental processes capable of accounting for the neutron flux enhancements in a thunderstorm atmosphere |url=https://link.springer.com/article/10.1134/S1063776114030017 |journal=Journal of Experimental and Theoretical Physics |doi=10.1134/S1063776114030017 |archive-url=http://crd.yerphi.am/files/Exploration-Discovery/Babich_Neutrons14.pdf |archive-date=2014 |access-date=24 March 2017}}</ref>flames09O<ref name="PRC">{{Cite journal |last=Babich |first=L P |title=Analysis of a laboratory experiment on neutron generation by discharges in the open atmosphere |url=https://journals.aps.org/prc/abstract/10.1103/PhysRevC.92.044602 |journal=Physics Review C |publication-date=8 October 2015 |doi=10.1103/PhysRevC.92.044602 |archive-url=http://crd.yerphi.am/files/Publication/References_to_CRD/Babich_anti_n20.pdf |archive-date=2015 |access-date=24 March 2017}}</ref>
The idea was expanded by Yogendra Srivastava together with Widom and Larsen in 2014, who went on to propose that it could be an explanation for neutrons observed in exploding wire experiments, [[solar corona]] and flares, and neutron production in [[thunderstorm]]s.<ref name="Pramana">{{Cite journal |last1=Srivastava |first1=Y |last2=Widom |first2=A |last3=Larsen |first3=L |title=A primer for electroweak induced low-energy nuclear reactions |url=http://www.ias.ac.in/describe/article/pram/075/04/0617-0637 |journal=Pramana |date=October 2014 |access-date=24 March 2017}}</ref> However, unrealistic concentrations of free electrons are needed for the neutron yield to be a significant component of thunderstorm neutrons, discounting the explanation.<ref name="PRD">{{Cite journal |last1=Babich |first1=L P |last2=Bochkov |first2=E I |last3=Kutsyk |first3=I M |last4=Rassoul |first4=H K |title=Analysis of fundamental interactions capable of producing neutrons in thunderstorms |journal=Physical Review D |volume=89 |issue=9 |pages=093010 |date=13 May 2014 |doi=10.1103/PhysRevD.89.093010 |bibcode=2014PhRvD..89i3010B }}</ref><ref name="JETP">{{Cite journal |last=Babich |first=L P |title=Fundamental processes capable of accounting for the neutron flux enhancements in a thunderstorm atmosphere |journal=Journal of Experimental and Theoretical Physics |volume=118 |issue=3 |pages=375–383 |doi=10.1134/S1063776114030017 |bibcode=2014JETP..118..375B |year=2014 |s2cid=195218932 }}</ref><ref name="PRC">{{Cite journal |last=Babich |first=L P |title=Analysis of a laboratory experiment on neutron generation by discharges in the open atmosphere |journal=Physical Review C |volume=92 |issue=4 |pages=044602 |date=8 October 2015 |doi=10.1103/PhysRevC.92.044602 |bibcode=2015PhRvC..92d4602B }}</ref>


==References==
{{reflist}}


{{DEFAULTSORT:Widom-Larsen theory}}
[[Category:Cold fusion]]
[[Category:Hypotheses]]


reliable secondary sources: https://www.researchgate.net/profile/Einar_Tennfors/publication/260246109_On_the_idea_of_low_energy_nuclear_reactions_in_metallic_lattices_by_producing_neutrons_from_protons_capturing_heavy_electrons/links/0f3175304c0ac9f4e3000000.pdf


{{nuclear-stub}}



==References==
{{reflist}}

Latest revision as of 02:11, 19 October 2024

The Widom–Larsen theory is a proposed explanation for supposed Low Energy Nuclear Reactions (LENR) developed in 2005 by Allan Widom and Lewis Larsen. In the paper describing the idea, they claim that ultra low momentum neutrons are produced in the cold fusion apparatuses[1] during weak interactions when protons capture "heavy" electrons from metallic hydride surfaces.[2] One source has held that it is "unlikely the electron energy threshold for neutron production can be reached in a metal lattice system without a substantial energy input".[3]

The idea was expanded by Yogendra Srivastava together with Widom and Larsen in 2014, who went on to propose that it could be an explanation for neutrons observed in exploding wire experiments, solar corona and flares, and neutron production in thunderstorms.[4] However, unrealistic concentrations of free electrons are needed for the neutron yield to be a significant component of thunderstorm neutrons, discounting the explanation.[5][6][7]

References

[edit]
  1. ^ Anderson, Mark (23 October 2012). "Big Idea: Bring Back the "Cold Fusion" Dream. A new theory may explain the notorious cold fusion experiment from two decades ago, reigniting hopes of a clean-energy breakthrough". Discover Magazine.
  2. ^ Widom, A; Larsen, L (April 2006). "Ultra Low Momentum Neutron Catalyzed Nuclear Reactions on Metallic Hydride Surfaces". The European Physical Journal C. 46 (1): 107–111. arXiv:cond-mat/0505026. Bibcode:2006EPJC...46..107W. doi:10.1140/epjc/s2006-02479-8. S2CID 55478462.
  3. ^ Tennfors, Einor (15 February 2015). "On the idea of low energy nuclear reactions in metallic lattices by producing neutrons from protons capturing "heavy" electrons". The European Physical Journal Plus. 128 (2): 15. Bibcode:2013EPJP..128...15T. doi:10.1140/epjp/i2013-13015-3. S2CID 55677855. Retrieved 24 March 2017.
  4. ^ Srivastava, Y; Widom, A; Larsen, L (October 2014). "A primer for electroweak induced low-energy nuclear reactions". Pramana. Retrieved 24 March 2017.
  5. ^ Babich, L P; Bochkov, E I; Kutsyk, I M; Rassoul, H K (13 May 2014). "Analysis of fundamental interactions capable of producing neutrons in thunderstorms". Physical Review D. 89 (9): 093010. Bibcode:2014PhRvD..89i3010B. doi:10.1103/PhysRevD.89.093010.
  6. ^ Babich, L P (2014). "Fundamental processes capable of accounting for the neutron flux enhancements in a thunderstorm atmosphere". Journal of Experimental and Theoretical Physics. 118 (3): 375–383. Bibcode:2014JETP..118..375B. doi:10.1134/S1063776114030017. S2CID 195218932.
  7. ^ Babich, L P (8 October 2015). "Analysis of a laboratory experiment on neutron generation by discharges in the open atmosphere". Physical Review C. 92 (4): 044602. Bibcode:2015PhRvC..92d4602B. doi:10.1103/PhysRevC.92.044602.