Fall factor: Difference between revisions
m An error has been removed. |
removed Category:Climbing; added Category:Climbing terminology using HotCat |
||
(24 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mathematical ratio relevant to climbing safety}} |
|||
[[File:Fall factor diagram.svg|thumb|250px|The climber will fall about the same height ''h'' in both cases, but they will be subjected to a greater force at position 1, due to the greater fall factor.]] |
[[File:Fall factor diagram.svg|thumb|250px|The climber will fall about the same height ''h'' in both cases, but they will be subjected to a greater force at position 1, due to the greater fall factor.]] |
||
In [[lead climbing]] using a [[dynamic rope]], the '''fall factor''' ('''''f''''') is the ratio of the height (''h'') a climber falls before the climber's rope begins to stretch and the rope length (''L'') available to absorb the energy of the fall |
In [[lead climbing]] using a [[dynamic rope]], the '''fall factor''' ('''''f''''') is the ratio of the height (''h'') a climber falls before the climber's rope begins to stretch and the rope length (''L'') available to absorb the energy of the fall, |
||
:<math>f = \frac{h}{L}</math> |
:<math>f = \frac{h}{L}.</math> |
||
It is the main factor determining the violence of the forces acting on the climber and the gear. |
|||
== Impact force == |
|||
⚫ | As a numerical example, consider a fall of 20 feet that occurs with 10 feet of rope out (i.e., the climber has placed no protection and falls from 10 feet above the [[Belaying|belayer]] to 10 feet below—a factor 2 fall). This fall produces far more force on the climber and the gear than if a similar 20 foot fall had occurred 100 feet above the belayer. In the latter case (a fall factor of 0.2), the rope acts like a bigger, longer rubber band, and its stretch more effectively cushions the fall. |
||
⚫ | |||
== Sizes of fall factors == |
|||
⚫ | |||
[[File:PetzlScorpioShockAbsorber.jpg|thumb|[[Energy absorber (climbing)|Energy absorber]]]] |
|||
The smallest possible fall factor is zero. This occurs, for example, in top-rope a fall onto a rope with no slack. The rope stretches, so although ''h''=0, there is a fall. |
|||
When climbing from the ground up, the maximum possible fall factor is 1, since any greater fall would mean that the climber hit the ground. |
|||
where ''mg'' is the climber's weight, ''h'' is the fall height and ''k'' is the spring constant of the rope. Using the [[elastic modulus]] ''E'' = ''k L/q'' which is a material constant, the impact force depends only on the fall factor ''f'', i.e. on the ratio ''h/L'', the cross section ''q'' of the rope, and the climber’s weight. The more rope is available, the softer the rope becomes which is just compensating the higher fall energy. The maximum force on the climber is ''F<sub>max</sub>'' reduced by the climber’s weight ''mg''. The above formula can be easily obtained by the law of conservation of energy at the time of maximum tension resp. maximum elongation ''x<sub>max</sub>'' of the rope: |
|||
⚫ | In [[multi-pitch climbing]] (and [[big wall climbing]]), or in any climb where a leader starts from a position on an exposed ledge well above the ground, a fall factor in [[lead climbing]] can be as high as 2. This can occur only when a lead climber who has placed no [[Protection (climbing)|protection]] falls past the belayer (two times the distance of the rope length between them), or the anchor if the climber is solo climbing the route using a self-belay. As soon as the climber clips the rope into protection above the belay, the fall factor drops below 2. |
||
⚫ | |||
⚫ | In falls occurring on a [[via ferrata]], fall factors can be much higher. This is possible because the length of rope between the harness and the [[carabiner]] is short and fixed, while the distance the climber can fall depends on the gaps between anchor points of the safety cable (i.e. the climber's [[lanyard (climbing)|lanyard]] will fall down the safety cable until it reaches an anchor point); to mitigate this, via ferrata climbers can use [[energy absorber (climbing)|energy absorber]]s.<ref>{{Cite web|url=https://www.thebmc.co.uk/get-into-via-ferrata-the-gear|title=Get into via ferrata: the gear|last=Davies|first=Carey|date=July 16, 2017|website=www.thebmc.co.uk|archive-url=|archive-date=|access-date=2019-02-16}}</ref> |
||
⚫ | Using the HO model to obtain the impact force of real climbing ropes as a function of fall height ''h'' and climber's weight ''mg'', one must know the experimental value for ''E'' of a given rope. However, rope manufacturers give only the rope’s impact force ''F<sub>0</sub>'' and its static and dynamic elongations that are measured under standard [[UIAA]] fall conditions: A fall height ''h<sub>0</sub>'' of 2 × 2.3 m with an available rope length ''L<sub>0</sub>'' = 2.6m leads to a fall factor ''f<sub>0</sub>'' = ''h<sub>0</sub>/L<sub>0</sub>'' = 1.77 and a fall velocity ''v<sub>0</sub>'' = (''2gh<sub>0</sub>'')<sup>1/2</sup> = 9.5 m/s at the end of falling the distance ''h<sub>0</sub>''. The mass ''m<sub>0</sub>'' used in the fall is 80 kg. Using these values to eliminate the unknown quantity ''E'' leads to an expression of the impact force as a function of arbitrary fall heights ''h'', arbitrary fall factors ''f'', and arbitrary gravity ''g'' of the form: |
||
== Derivation and impact force== |
|||
⚫ | |||
The impact force is defined as the maximum tension in the rope when a climber falls. We first state an equation for this quantity and describe its interpretation, and then show its derivation and how it can be put into a more convenient form. |
|||
⚫ | Note that keeping ''g''<sub>0</sub> from the derivation of "''Eq''" based on UIAA test into the above ''F<sub>max</sub>'' formula assures that the transformation will continue to be valid for different gravity fields, as over a slope making less than 90 degrees with the horizontal. This simple undamped harmonic oscillator model of a rope, however, does not correctly describe the entire fall process of real ropes. Accurate measurements on the behaviour of a climbing rope during the entire fall can be explained if the undamped harmonic oscillator is complemented by a non-linear term up to the maximum impact force, and then, near the maximum force in the rope, internal friction in the rope is added that ensures the rapid relaxation of the rope to its rest position.<ref name=leuthaeusser>{{cite journal|url=http://www.sigmadewe.com/bergsportphysik.html?&L=1|title=The physics of a climbing rope under a heavy dynamic load|date= June 17, 2016|accessdate =2016-06-29|author=Leuthäusser, Ulrich| |
||
===Equation for the impact force and its interpretation=== |
|||
⚫ | When the rope is clipped into several carabiners between the climber and the [[belayer]], an additional type of friction occurs, the so-called dry [[friction]] between the rope and particularly the last clipped carabiner. Dry friction leads to an effective rope length smaller than the available length ''L'' and thus increases the impact force.<ref name=uleuthaeusser>Leuthäusser, Ulrich (2011):{{cite web|url=http://www.sigmadewe.com/fileadmin/user_upload/pdf-Dateien/Physics_of_climbing_ropes_Part_2.pdf?&L=1|title=Physics of climbing ropes: impact forces, fall factors and rope drag|accessdate =2011-01-15}}</ref |
||
⚫ | |||
== Lead climbing == |
|||
:<math>F_{max} = mg + \sqrt{(mg)^2 + 2mghk},</math> |
|||
⚫ | |||
where ''mg'' is the climber's weight, ''h'' is the fall height and ''k'' is the spring constant of the portion of the rope that is in play. |
|||
⚫ | |||
We will see below that when varying the height of the fall while keeping the fall factor fixed, the quantity ''hk'' stays constant. |
|||
== Fall factors above two == |
|||
There are two factors of two involved in the interpretation of this equation. First, the maximum force on the top piece of protection is roughly 2''F<sub>max</sub>'', since the gear acts as a simple pulley. Second, it may seem strange that even when ''f=0'', we have ''F<sub>max</sub>''=2''mg'' (so that the maximum force on the top piece is approximately 4''mg''). This is because a factor-zero fall is still a fall onto a slack rope. The average value of the tension over a full cycle of harmonic oscillation will be ''mg'', so that the tension will cycle between 0 and 2''mg''. |
|||
⚫ | In falls occurring on a [[via ferrata]], fall factors can be much higher. This is possible because the length of rope between harness and [[carabiner]] is short and fixed, while the distance the climber can fall depends on the gaps between anchor points of the safety cable.<ref>{{Cite web|url=https://www.thebmc.co.uk/get-into-via-ferrata-the-gear|title=Get into via ferrata: the gear|last=Davies|first=Carey|date=July 16, 2017|website=www.thebmc.co.uk|archive-url=|archive-date=|access-date=2019-02-16}}</ref> |
||
===Derivation of the equation=== |
|||
Conservation of energy at rope's maximum elongation ''x<sub>max</sub>'' gives |
|||
⚫ | |||
The maximum force on the climber is ''F<sub>max</sub>-mg''. It is convenient to express things in terms of the [[elastic modulus]] ''E'' = ''k L/q'' which is a property of the material that the rope is constructed from. Here ''L'' is the rope's length and ''q'' its cross-sectional area. Solution of the quadratic gives |
|||
⚫ | |||
Other than fixed properties of the system, this form of the equation shows that the impact force depends only on the fall factor. |
|||
⚫ | Using the HO model to obtain the impact force of real climbing ropes as a function of fall height ''h'' and climber's weight ''mg'', one must know the experimental value for ''E'' of a given rope. However, rope manufacturers give only the rope’s impact force ''F<sub>0</sub>'' and its static and dynamic elongations that are measured under standard [[UIAA]] fall conditions: A fall height ''h<sub>0</sub>'' of 2 × 2.3 m with an available rope length ''L<sub>0</sub>'' = 2.6m leads to a fall factor ''f<sub>0</sub>'' = ''h<sub>0</sub>/L<sub>0</sub>'' = 1.77 and a fall velocity ''v<sub>0</sub>'' = (''2gh<sub>0</sub>'')<sup>1/2</sup> = 9.5 m/s at the end of falling the distance ''h<sub>0</sub>''. The mass ''m<sub>0</sub>'' used in the fall is 80 kg. Using these values to eliminate the unknown quantity ''E'' leads to an expression of the impact force as a function of arbitrary fall heights ''h'', arbitrary fall factors ''f'', and arbitrary gravity ''g'' of the form: |
||
⚫ | |||
⚫ | Note that keeping ''g''<sub>0</sub> from the derivation of "''Eq''" based on UIAA test into the above ''F<sub>max</sub>'' formula assures that the transformation will continue to be valid for different gravity fields, as over a slope making less than 90 degrees with the horizontal. This simple undamped harmonic oscillator model of a rope, however, does not correctly describe the entire fall process of real ropes. Accurate measurements on the behaviour of a climbing rope during the entire fall can be explained if the undamped harmonic oscillator is complemented by a non-linear term up to the maximum impact force, and then, near the maximum force in the rope, internal friction in the rope is added that ensures the rapid relaxation of the rope to its rest position.<ref name=leuthaeusser>{{cite journal|url=http://www.sigmadewe.com/bergsportphysik.html?&L=1|title=The physics of a climbing rope under a heavy dynamic load|date= June 17, 2016|accessdate =2016-06-29|author=Leuthäusser, Ulrich|journal=Journal of SPORTS ENGINEERING AND TECHNOLOGY|volume=231 |issue=2 |pages=125–135 |doi=10.1177/1754337116651184}}</ref> |
||
===Effect of friction=== |
|||
⚫ | When the rope is clipped into several carabiners between the climber and the [[belayer]], an additional type of friction occurs, the so-called dry [[friction]] between the rope and particularly the last clipped carabiner. "Dry" friction (i.e., a frictional force that is velocity-independent) leads to an effective rope length smaller than the available length ''L'' and thus increases the impact force.<ref name=uleuthaeusser>Leuthäusser, Ulrich (2011):{{cite web|url=http://www.sigmadewe.com/fileadmin/user_upload/pdf-Dateien/Physics_of_climbing_ropes_Part_2.pdf?&L=1|title=Physics of climbing ropes: impact forces, fall factors and rope drag|accessdate =2011-01-15}}</ref> |
||
==See also== |
==See also== |
||
Line 42: | Line 67: | ||
| last = Goldstone |
| last = Goldstone |
||
| first = Richard |
| first = Richard |
||
| coauthors = |
|||
| title = The Standard Equation for Impact Force |
| title = The Standard Equation for Impact Force |
||
| work = |
|||
| publisher = |
| publisher = |
||
| date = December 27, 2006 |
| date = December 27, 2006 |
||
Line 54: | Line 77: | ||
| last = Busch |
| last = Busch |
||
| first = Wayne |
| first = Wayne |
||
| coauthors = |
|||
| title = Climbing Physics - Understanding Fall Factors |
| title = Climbing Physics - Understanding Fall Factors |
||
| work = |
|||
| publisher = |
| publisher = |
||
| date = |
| date = |
||
Line 65: | Line 86: | ||
*{{cite web |
*{{cite web |
||
| title = UKC - Understanding fall factors |
| title = UKC - Understanding fall factors |
||
| work = |
|||
| publisher = |
| publisher = |
||
| date = |
| date = 19 November 2007 |
||
| url = http://www.ukclimbing.com/articles/page.php?id=647 |
| url = http://www.ukclimbing.com/articles/page.php?id=647 |
||
| format = |
| format = |
||
Line 75: | Line 95: | ||
| last = |
| last = |
||
| first = |
| first = |
||
| coauthors = |
|||
| title = Rock Climbing Fall Impact Force |
| title = Rock Climbing Fall Impact Force |
||
| work = Contains full derivation of equation in Notes |
| work = Contains full derivation of equation in Notes |
||
Line 83: | Line 102: | ||
| doi = |
| doi = |
||
| accessdate = 2014-04-11}} |
| accessdate = 2014-04-11}} |
||
{{Climbing navbox}} |
|||
{{DEFAULTSORT:Fall Factor}} |
{{DEFAULTSORT:Fall Factor}} |
||
[[Category:Climbing]] |
[[Category:Climbing terminology]] |
||
[[Category:Mechanics]] |
[[Category:Mechanics]] |
||
[[Category:Ratios]] |
Latest revision as of 10:05, 19 October 2024
In lead climbing using a dynamic rope, the fall factor (f) is the ratio of the height (h) a climber falls before the climber's rope begins to stretch and the rope length (L) available to absorb the energy of the fall,
It is the main factor determining the violence of the forces acting on the climber and the gear.
As a numerical example, consider a fall of 20 feet that occurs with 10 feet of rope out (i.e., the climber has placed no protection and falls from 10 feet above the belayer to 10 feet below—a factor 2 fall). This fall produces far more force on the climber and the gear than if a similar 20 foot fall had occurred 100 feet above the belayer. In the latter case (a fall factor of 0.2), the rope acts like a bigger, longer rubber band, and its stretch more effectively cushions the fall.
Sizes of fall factors
[edit]The smallest possible fall factor is zero. This occurs, for example, in top-rope a fall onto a rope with no slack. The rope stretches, so although h=0, there is a fall.
When climbing from the ground up, the maximum possible fall factor is 1, since any greater fall would mean that the climber hit the ground.
In multi-pitch climbing (and big wall climbing), or in any climb where a leader starts from a position on an exposed ledge well above the ground, a fall factor in lead climbing can be as high as 2. This can occur only when a lead climber who has placed no protection falls past the belayer (two times the distance of the rope length between them), or the anchor if the climber is solo climbing the route using a self-belay. As soon as the climber clips the rope into protection above the belay, the fall factor drops below 2.
In falls occurring on a via ferrata, fall factors can be much higher. This is possible because the length of rope between the harness and the carabiner is short and fixed, while the distance the climber can fall depends on the gaps between anchor points of the safety cable (i.e. the climber's lanyard will fall down the safety cable until it reaches an anchor point); to mitigate this, via ferrata climbers can use energy absorbers.[1]
Derivation and impact force
[edit]The impact force is defined as the maximum tension in the rope when a climber falls. We first state an equation for this quantity and describe its interpretation, and then show its derivation and how it can be put into a more convenient form.
Equation for the impact force and its interpretation
[edit]When modeling the rope as an undamped harmonic oscillator (HO) the impact force Fmax in the rope is given by:
where mg is the climber's weight, h is the fall height and k is the spring constant of the portion of the rope that is in play.
We will see below that when varying the height of the fall while keeping the fall factor fixed, the quantity hk stays constant.
There are two factors of two involved in the interpretation of this equation. First, the maximum force on the top piece of protection is roughly 2Fmax, since the gear acts as a simple pulley. Second, it may seem strange that even when f=0, we have Fmax=2mg (so that the maximum force on the top piece is approximately 4mg). This is because a factor-zero fall is still a fall onto a slack rope. The average value of the tension over a full cycle of harmonic oscillation will be mg, so that the tension will cycle between 0 and 2mg.
Derivation of the equation
[edit]Conservation of energy at rope's maximum elongation xmax gives
The maximum force on the climber is Fmax-mg. It is convenient to express things in terms of the elastic modulus E = k L/q which is a property of the material that the rope is constructed from. Here L is the rope's length and q its cross-sectional area. Solution of the quadratic gives
Other than fixed properties of the system, this form of the equation shows that the impact force depends only on the fall factor.
Using the HO model to obtain the impact force of real climbing ropes as a function of fall height h and climber's weight mg, one must know the experimental value for E of a given rope. However, rope manufacturers give only the rope’s impact force F0 and its static and dynamic elongations that are measured under standard UIAA fall conditions: A fall height h0 of 2 × 2.3 m with an available rope length L0 = 2.6m leads to a fall factor f0 = h0/L0 = 1.77 and a fall velocity v0 = (2gh0)1/2 = 9.5 m/s at the end of falling the distance h0. The mass m0 used in the fall is 80 kg. Using these values to eliminate the unknown quantity E leads to an expression of the impact force as a function of arbitrary fall heights h, arbitrary fall factors f, and arbitrary gravity g of the form:
Note that keeping g0 from the derivation of "Eq" based on UIAA test into the above Fmax formula assures that the transformation will continue to be valid for different gravity fields, as over a slope making less than 90 degrees with the horizontal. This simple undamped harmonic oscillator model of a rope, however, does not correctly describe the entire fall process of real ropes. Accurate measurements on the behaviour of a climbing rope during the entire fall can be explained if the undamped harmonic oscillator is complemented by a non-linear term up to the maximum impact force, and then, near the maximum force in the rope, internal friction in the rope is added that ensures the rapid relaxation of the rope to its rest position.[2]
Effect of friction
[edit]When the rope is clipped into several carabiners between the climber and the belayer, an additional type of friction occurs, the so-called dry friction between the rope and particularly the last clipped carabiner. "Dry" friction (i.e., a frictional force that is velocity-independent) leads to an effective rope length smaller than the available length L and thus increases the impact force.[3]
See also
[edit]References
[edit]- ^ Davies, Carey (July 16, 2017). "Get into via ferrata: the gear". www.thebmc.co.uk. Retrieved 2019-02-16.
- ^ Leuthäusser, Ulrich (June 17, 2016). "The physics of a climbing rope under a heavy dynamic load". Journal of SPORTS ENGINEERING AND TECHNOLOGY. 231 (2): 125–135. doi:10.1177/1754337116651184. Retrieved 2016-06-29.
- ^ Leuthäusser, Ulrich (2011):"Physics of climbing ropes: impact forces, fall factors and rope drag" (PDF). Retrieved 2011-01-15.
External links
[edit]- Goldstone, Richard (December 27, 2006). "The Standard Equation for Impact Force". Retrieved 2009-04-17.
- Busch, Wayne. "Climbing Physics - Understanding Fall Factors". Retrieved 2008-06-14.
- "UKC - Understanding fall factors". 19 November 2007.
- "Rock Climbing Fall Impact Force". Contains full derivation of equation in Notes. vCalc. 2014-04-11. Retrieved 2014-04-11.