Jacobson radical: Difference between revisions
→Examples: Updated examples by separating commutative and noncommutative cases, with commutative examples added, improved notation in parts of the page (which still should be finished), and created a definitions section for commutative and general case. This makes is much easier to find a definition when coming to the page! |
Kumar Dayal (talk | contribs) Adding local short description: "Structure in Ring Theory (Mathematics)", overriding Wikidata description "radical of a ring as a module over itself; the intersection of all maximal right (or equivalently left) ideals of the ring; the sum of all superfluous right (or equiv. left) ideals" |
||
(34 intermediate revisions by 24 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Structure in Ring Theory (Mathematics)}} |
|||
In [[mathematics]], more specifically [[ring theory]], the '''Jacobson radical''' of a [[Ring (mathematics)|ring]] <math>R</math> is the [[ideal (ring theory)|ideal]] consisting of those elements in <math>R</math> that [[Annihilator (ring theory)|annihilate]] all [[Simple module|simple]] right <math>R</math>-[[Module (mathematics)|modules]]. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by <math>J(R)</math> or <math>rad(R)</math>; the former notation will be preferred in this article, because it avoids confusion with other [[radical of a ring|radicals of a ring]]. The Jacobson radical is named after [[Nathan Jacobson]], who was the first to study it for arbitrary rings in {{harv|Jacobson|1945}}. |
|||
[[File:Nathan_Jacobson.jpg | thumb|220x124px | right | alt= Image of Nathan Jacobson looking off-camera in a sitting position | Nathan Jacobson]]In [[mathematics]], more specifically [[ring theory]], the '''Jacobson radical''' of a [[Ring (mathematics)|ring]] ''R'' is the [[ideal (ring theory)|ideal]] consisting of those elements in ''R'' that [[annihilator (ring theory)|annihilate]] all [[Simple module|simple]] right ''R''-[[module (mathematics)|modules]]. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left–right symmetric. The Jacobson radical of a ring is frequently denoted by J(''R'') or rad(''R''); the former notation will be preferred in this article, because it avoids confusion with other [[radical of a ring|radicals of a ring]]. The Jacobson radical is named after [[Nathan Jacobson]], who was the first to study it for arbitrary rings in {{harvnb|Jacobson|1945}}. |
|||
The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to [[non-unital ring]]s. The [[radical of a module]] extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring- and module-theoretic results, such as [[Nakayama's lemma]]. |
|||
<!-- For instance, if ''R'' is a ring, J(''R'') equals the intersection of all ''maximal right ideals'' in ''R''.{{sfn|ps=|Isaacs|1994|p=180|loc=Corollary 13.3}} Somewhat remarkable is that this also equals the intersection of all ''maximal left ideals'' of ''R''.{{sfn|ps=|Isaacs|1994|p=182}} Although the Jacobson radical is indeed an ideal, this is not entirely obvious from the previous two characterizations and hence other characterizations are preferred.{{sfn|ps=|Isaacs|1994|p=180}} Despite the nature of these characterizations, the intersection of all ''maximal (double-sided) ideals'' in ''R'' need not equal J(''R'') – for instance, when ''R'' is a the [[endomorphism ring]] of a [[vector space]] with [[countable]] [[dimension of a vector space|dimension]] over a field ''F'', it is known that ''R'' has precisely three ideals, {{mset|0}}, ''I'' and ''R'', however since ''R'' is [[von Neumann regular]] {{nowrap|1=J(''R'') = 0++}}. {{harv|Lam|2001|p=46|loc=Ex. 3.15}}--> |
|||
<!-- A computationally convenient notion when working with the Jacobson radical of a ring, is the notion of [[Quasiregular element|quasiregularity]].{{sfn|ps=|Isaacs|1994|p=180}} In particular, every element of a ring's Jacobson radical is quasiregular, and the Jacobson radical can be characterized as the unique right ideal of a ring, maximal with respect to the property that each element is [[Quasiregular element|right quasiregular]].{{sfn|ps=|Isaacs|1994|p=180|loc=Theorem 13.4}}{{sfn|ps=|Isaacs|1994|p=181}} It is not necessarily true, however, that every quasiregular element belongs to a ring's Jacobson radical.{{sfn|ps=|Isaacs|1994|p=181}} The notion of quasiregularity proves to be very useful in various situations discussed later{{sfn|ps=|Isaacs|1994|p=181}}{{sfn|ps=|Isaacs|1994|p=183|loc=Theorem 13.11}} --> |
|||
<!--The Jacobson radical of a ring is also useful in studying [[Module (mathematics)|modules]] over the ring.{{sfn|ps=|Isaacs|1994|p=182}}{{sfn|ps=|Isaacs|1994|p=183|loc=Theorem 13.11}} For instance, if ''U'' is a right ''R''-module, and ''V'' is a maximal submodule of ''U'', then {{nowrap|''U'' · J(''R'')}} is contained in ''V'', where {{nowrap|''U'' · J(''R'')}} denotes all products of elements of J(''R'') (the "scalars") with elements in ''U'', on the right.{{sfn|ps=|Isaacs|1994|p=182}} Another instance of the usefulness of J(''R'') when studying right ''R''-modules, is [[Nakayama's lemma]].{{sfn|ps=|Isaacs|1994|p=183|loc=Corollary 13.12}}--> |
|||
<!-- In this case, the ring may not even contain a (proper) ''maximal'' right or left ideal (although, it may well contain non-trivial proper (one-sided) ideals). Thus, all of the above characterizations fail (including the characterization involving [[Quasiregular element|quasiregularity]] for this requires that the ring have unity). This problem, as well as the solution, is discussed later in the article, where the Jacobson radical is defined for rings without unity. --> |
|||
The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to rings without [[Multiplicative identity|unity]]. The [[radical of a module]] extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring and module theoretic results, such as [[Nakayama's lemma]]. |
|||
<!-- For instance, if ''R'' is a ring, J(''R'') equals the intersection of all ''maximal right ideals'' in ''R''.<ref>Isaacs, Corollary 13.3, p. 180</ref> Somewhat remarkable is that this also equals the intersection of all ''maximal left ideals'' of ''R''.{{sfn|Isaacs|1994|loc=p. 182}} Although the Jacobson radical is indeed an ideal, this is not entirely obvious from the previous two characterizations and hence other characterizations are preferred.<ref>Isaacs, p. 180</ref> Despite the nature of these characterizations, the intersection of all ''maximal (double-sided) ideals'' in ''R'' need not equal J(''R'') – for instance, when ''R'' is a the [[endomorphism ring]] of a [[vector space]] with [[countable]] [[dimension of a vector space|dimension]] over a field ''F'', it is known that ''R'' has precisely three ideals, {0},''I'' and ''R'', however since ''R'' is [[von Neumann regular]] J(''R'')=0. {{harv|Lam|2001|loc=Ex. 3.15|p=46}}--> |
|||
<!-- A computationally convenient notion when working with the Jacobson radical of a ring, is the notion of [[Quasiregular element|quasiregularity]].<ref>Isaacs, p. 180</ref> In particular, every element of a ring's Jacobson radical is quasiregular, and the Jacobson radical can be characterized as the unique right ideal of a ring, maximal with respect to the property that each element is [[Quasiregular element|right quasiregular]].<ref>Isaacs, Theorem 13.4, p. 180</ref>{{sfn|Isaacs|1994|loc=p. 181}} It is not necessarily true, however, that every quasiregular element belongs to a ring's Jacobson radical.{{sfn|Isaacs|1994|loc=p. 181}} The notion of quasiregularity proves to be very useful in various situations discussed later{{sfn|Isaacs|1994|loc=p. 181}}<ref>Isaacs, Theorem 13.11, p. 183</ref> --> |
|||
<!--The Jacobson radical of a ring is also useful in studying [[Module (mathematics)|modules]] over the ring.{{sfn|Isaacs|1994|loc=p. 182}}<ref>Isaacs, Theorem 13.11, p. 183</ref> For instance, if ''U'' is a right ''R''-module, and ''V'' is a maximal submodule of ''U'', then ''U''·J(''R'') is contained in ''V'', where ''U''·J(''R'') denotes all products of elements of J(''R'') (the "scalars") with elements in ''U'', on the right.{{sfn|Isaacs|1994|loc=p. 182}} Another instance of the usefulness of J(''R'') when studying right ''R''-modules, is [[Nakayama's lemma]].<ref>Isaacs, Corollary 13.12, p. 183</ref>--> |
|||
<!-- In this case, the ring may not even contain a (proper) ''maximal'' right or left ideal (although, it may well contain non-trivial proper (one-sided) ideals). Thus, all of the above characterizations fail (including the characterization involving [[Quasiregular element|quasiregularity]] for this requires that the ring have unity). This problem, as well as the solution, is discussed later in the article, where the Jacobon radical is defined for rings without unity. --> |
|||
== Definitions == |
== Definitions == |
||
There are multiple equivalent definitions and characterizations of the Jacobson radical, but it is useful to consider the definitions based on if the ring is commutative or not. |
There are multiple equivalent definitions and characterizations of the Jacobson radical, but it is useful to consider the definitions based on if the ring is [[commutative ring|commutative]] or not. |
||
=== Commutative case === |
=== Commutative case === |
||
In the commutative case, the Jacobson radical of a commutative ring |
In the commutative case, the Jacobson radical of a commutative ring ''R'' is defined as<ref>{{Cite web|title=Section 10.18 (0AMD): The Jacobson radical of a ring—The Stacks project|url=https://stacks.math.columbia.edu/tag/0AMD|access-date=2020-12-24|website=stacks.math.columbia.edu}}</ref> the [[intersection (set theory)|intersection]] of all [[maximal ideal]]s <math>\mathfrak{m}</math>. If we denote {{nowrap|Specm ''R''}} as the set of all maximal ideals in ''R'' then<blockquote><math>\mathrm{J}(R) = \bigcap_{ |
||
\mathfrak{m} \in \ |
\mathfrak{m} \,\in\, \operatorname{Specm}R |
||
} \mathfrak{m}</math></blockquote>This definition can be used for explicit calculations in a number of simple cases, such as for [[ |
} \mathfrak{m}</math></blockquote>This definition can be used for explicit calculations in a number of simple cases, such as for [[local ring]]s {{nowrap|(''R'', <math>\mathfrak{p}</math>)}}, which have a unique maximal ideal, [[Artinian ring]]s, and [[product ring|products]] thereof. See the examples section for explicit computations. |
||
=== Noncommutative/general case === |
=== Noncommutative/general case === |
||
For a general ring with unity ''R'', the Jacobson radical J(''R'') is defined as the ideal of all elements {{nowrap|''r'' ∈ ''R''}} such that {{nowrap|1=''rM'' = 0}} whenever ''M'' is a [[simple module|simple]] ''R''-module. That is, |
|||
For a general ring with unit <math>R</math>, the Jacobson radical <math>J(R)</math> is defined as the ideal of all elements <math>r \in R</math> such that <math>rM = 0</math> whenever <math>M</math> is a simple module. That is,<blockquote><math>J(R) = \{r \in R | rM = 0 \text{ where } M \text{ is simple} \}</math></blockquote>This is equivalent to the definition in the commutative case for a commutative ring <math>R</math> because the simple modules over a commutative ring are of the form <math>R/\mathfrak{m}</math> for some maximal ideal <math>\mathfrak{m} \in \text{Specm}(R)</math>, and the only annihilators of <math>R/\mathfrak{m}</math> in <math>R</math> are in <math>\mathfrak{m}</math>, i.e. <math>\text{Ann}_R(R/\mathfrak{m}) = \mathfrak{m}</math>. |
|||
<math display="block">\mathrm{J}(R) = \{r \in R \mid rM = 0 \text{ for all } M \text{ simple} \}.</math> |
|||
This is equivalent to the definition in the commutative case for a commutative ring ''R'' because the simple modules over a commutative ring are of the form {{nowrap|''R'' / <math>\mathfrak{m}</math>}} for some maximal ideal {{nowrap|<math>\mathfrak{m}</math> of ''R''}}, and the [[annihilator (ring theory)|annihilators]] of {{nowrap|''R'' / <math>\mathfrak{m}</math>}} in ''R'' are precisely the elements of <math>\mathfrak{m}</math>, i.e. {{nowrap|1=Ann<sub>''R''</sub>(''R'' / <math>\mathfrak{m}</math>) = <math>\mathfrak{m}</math>}}. |
|||
== Motivation == |
|||
==Intuitive discussion== |
|||
Understanding the Jacobson radical lies in a few different cases: namely its applications and the resulting [[geometry|geometric]] interpretations, and its algebraic interpretations. |
|||
=== Geometric applications === |
|||
As with other [[radical of a ring|radicals of rings]], the '''Jacobson radical''' can be thought of as a collection of "bad" elements. In this case the "bad" property is that these elements annihilate all simple left and right modules of the ring. For purposes of comparison, consider the [[Nilradical of a ring|nilradical]] of a [[commutative ring]], which consists of all elements that are [[Nilpotent element|nilpotent]]. In fact for any ring, the nilpotent elements in the [[Center (ring theory)|center]] of the ring are also in the Jacobson radical.{{sfn|Isaacs|1994|loc=p. 181}} So, for commutative rings, the nilradical is contained in the Jacobson radical. |
|||
{{see also|Nakayama's lemma#Geometric interpretation}} |
|||
Although Jacobson originally introduced his radical as a technique for building a theory of radicals for arbitrary rings, one of the motivating reasons for why the Jacobson radical is considered in the commutative case is because of its appearance in [[Nakayama's lemma]]. This lemma is a technical tool for studying [[finitely generated module]]s over commutative rings that has an easy geometric interpretation: If we have a [[vector bundle]] {{nowrap|''E'' → ''X''}} over a [[topological space]] ''X'', and pick a point {{nowrap|''p'' ∈ ''X''}}, then any basis of ''E''|<sub>''p''</sub> can be extended to a basis of sections of {{nowrap|''E''{{!}}<sub>''U''</sub> → ''U''}} for some [[neighborhood (topology)|neighborhood]] {{nowrap|''p'' ∈ ''U'' ⊆ ''X''}}. |
|||
Another application is in the case of finitely generated commutative rings of the form <math display="inline">R = k[x_1,\ldots, x_n]\,/\,I </math> for some base ring ''k'' (such as a [[field (mathematics)|field]], or the ring of [[Integer#Algebraic properties|integers]]). In this case the [[Nilradical of a ring|nilradical]] and the Jacobson radical coincide. This means we could interpret the Jacobson radical as a measure for how far the ideal ''I'' defining the ring ''R'' is from defining the ring of functions on an [[algebraic variety]] because of the [[Hilbert Nullstellensatz]] theorem. This is because algebraic varieties cannot have a ring of functions with infinitesimals: this is a structure that is only considered in [[Scheme (mathematics)|scheme theory]]. |
|||
The Jacobson radical is very similar to the nilradical in an intuitive sense. A weaker notion of being bad, weaker than being a [[zero divisor]], is being a non-unit (not invertible under multiplication). The Jacobson radical of a ring consists of elements that satisfy a stronger property than being merely a non-unit – in some sense, a member of the Jacobson radical must not "act as a unit" in ''any'' [[Module (mathematics)|module]] "internal to the ring". More precisely, a member of the Jacobson radical must project under the [[Quotient map|canonical homomorphism]] to the zero of every "right division ring" (each non-zero element of which has a [[inverse element|right inverse]]) internal to the ring in question. Concisely, it must belong to every maximal right ideal of the ring. These notions are of course imprecise, but at least explain why the nilradical of a commutative ring is contained in the ring's Jacobson radical. |
|||
=== Equivalent characterizations === |
|||
In yet a simpler way, we may think of the Jacobson radical of a ring as a method to "mod out bad elements of the ring" – that is, members of the Jacobson radical act as 0 in the [[quotient ring]], ''R''/J(''R''). If ''N'' is the nilradical of commutative ring ''R'', then the quotient ring ''R''/''N'' has no nilpotent elements. Similarly for any ring ''R'', the quotient ring has J(''R''/J(''R''))={0} and so all of the "bad" elements in the Jacobson radical have been removed by modding out J(''R''). Elements of the Jacobson radical and nilradical can be therefore seen as generalizations of 0. |
|||
The Jacobson radical of a ring has various internal and external characterizations. The following equivalences appear in many [[noncommutative algebra]] texts such as {{harvnb|Anderson|Fuller|1992|loc=§15}}, {{harvnb|Isaacs|1994|loc=§13B}}, and {{harvnb|Lam|2001|loc=Ch 2}}. |
|||
==Equivalent characterizations== |
|||
The Jacobson radical of a ring has various internal and external characterizations. The following equivalences appear in many noncommutative algebra texts such as {{harv|Anderson|1992|loc=§15}}, {{harv|Isaacs|1994|loc=§13B}}, and {{harv|Lam|2001|loc=Ch 2}}. |
|||
The following are equivalent characterizations of the Jacobson radical in rings with unity (characterizations for rings without unity are given immediately afterward): |
The following are equivalent characterizations of the Jacobson radical in rings with unity (characterizations for rings without unity are given immediately afterward): |
||
* |
* J(''R'') equals the intersection of all [[maximal ideal|maximal right ideals]] of the ring. The equivalence coming from the fact that for all maximal right ideals ''M'', {{nowrap|''R'' / ''M''}} is a simple right ''R''-module, and that in fact all simple right ''R''-modules are [[isomorphic]] to one of this type via the map from ''R'' to ''S'' given by {{nowrap|''r'' ↦ ''xr''}} for any generator ''x'' of ''S''. It is also true that J(''R'') equals the intersection of all maximal left ideals within the ring.{{sfn|ps=|Isaacs|1994|p=182}} These characterizations are internal to the ring, since one only needs to find the maximal right ideals of the ring. For example, if a ring is [[Local ring|local]], and has a unique maximal ''right ideal'', then this unique maximal right ideal is exactly J(''R''). Maximal ideals are in a sense easier to look for than annihilators of modules. This characterization is deficient, however, because it does not prove useful when working computationally with J(''R''). The left-right symmetry of these two definitions is remarkable and has various interesting consequences.{{sfn|ps=|Isaacs|1994|p=182}}{{sfn|ps=|Isaacs|1994|p=173|loc=Problem 12.5}} This symmetry stands in contrast to the lack of symmetry in the [[Socle of a ring|socles]] of ''R'', for it may happen that soc(''R''<sub>''R''</sub>) is not equal to soc(<sub>''R''</sub>''R''). If ''R'' is a [[non-commutative ring]], J(''R'') is not necessarily equal to the intersection of all maximal ''two-sided'' ideals of ''R''. For instance, if ''V'' is a [[countable set|countable]] direct sum of copies of a field ''k'' and {{nowrap|1=''R'' = End(''V'')}} (the [[ring of endomorphisms]] of ''V'' as a ''k''-module), then {{nowrap|1=J(''R'') = 0}} because ''R'' is known to be [[von Neumann regular]], but there is exactly one maximal double-sided ideal in ''R'' consisting of endomorphisms with finite-dimensional [[image (mathematics)|image]].{{sfn|ps=|Lam|2001|p=46|loc=Ex. 3.15}} |
||
* |
* J(''R'') equals the sum of all [[superfluous submodule|superfluous right ideals]] (or symmetrically, the sum of all superfluous left ideals) of ''R''. Comparing this with the previous definition, the sum of superfluous right ideals equals the intersection of maximal right ideals. This phenomenon is reflected dually for the right socle of ''R''; soc(''R''<sub>''R''</sub>) is both the sum of [[minimal ideal|minimal right ideal]]s and the intersection of [[essential extension|essential right ideals]]. In fact, these two relationships hold for the radicals and socles of modules in general. |
||
* As defined in the introduction, |
* As defined in the introduction, J(''R'') equals the intersection of all [[Annihilator (ring theory)|annihilators]] of [[simple module|simple]] right ''R''-modules, however it is also true that it is the intersection of annihilators of simple left modules. An ideal that is the annihilator of a simple module is known as a [[primitive ideal]], and so a reformulation of this states that the Jacobson radical is the intersection of all primitive ideals. This characterization is useful when studying modules over rings. For instance, if ''U'' is a right ''R''-module, and ''V'' is a [[maximal submodule]] of ''U'', {{nowrap|''U'' · J(''R'')}} is contained in ''V'', where {{nowrap|''U'' · J(''R'')}} denotes all products of elements of J(''R'') (the "scalars") with elements in ''U'', on the right. This follows from the fact that the [[quotient module]] {{nowrap|''U'' / ''V''}} is simple and hence annihilated by J(''R''). |
||
* J(''R'') is the unique right ideal of ''R'' maximal with the property that every element is [[Quasiregular element|right quasiregular]]{{sfn|Isaacs|1994 |
* J(''R'') is the unique right ideal of ''R'' maximal with the property that every element is [[Quasiregular element|right quasiregular]]{{sfn|ps=|Isaacs|1994|p=180|loc=Corollary 13.4}}{{sfn|ps=|Isaacs|1994|p=181}} (or equivalently left quasiregular{{sfn|ps=|Isaacs|1994|p=182}}). This characterization of the Jacobson radical is useful both computationally and in aiding intuition. Furthermore, this characterization is useful in studying modules over a ring. [[Nakayama's lemma]] is perhaps the most well-known instance of this. Although every element of the J(''R'') is necessarily [[Quasiregular element|quasiregular]], not every quasiregular element is necessarily a member of J(''R'').{{sfn|ps=|Isaacs|1994|p=181}} |
||
* While not every quasiregular element is in |
* While not every quasiregular element is in J(''R''), it can be shown that ''y'' is in J(''R'') [[if and only if]] ''xy'' is left quasiregular for all ''x'' in ''R''.{{sfn|sp=|Lam|2001|p=50}} |
||
* J(''R'') is the set of elements ''x'' in ''R'' such that every element of {{nowrap|1 + ''RxR''}} is a unit: {{nowrap|1=J(''R'') = {{mset|''x'' ∈ ''R'' {{pipe}} 1 + ''RxR'' ⊂ ''R''<sup>×</sup>}}}}. In fact, {{nowrap|''y'' ∈ ''R''}} is in the Jacobson radical if and only if {{nowrap|1 + ''xy''}} is invertible for any {{nowrap|''x'' ∈ ''R''}}, if and only if {{nowrap|1 + ''yx''}} is invertible for any {{nowrap|''x'' ∈ ''R''}}. This means ''xy'' and ''yx'' behave similarly to a [[nilpotent]] element ''z'' with {{nowrap|1={{italics correction|''z''}}<sup>''n''+1</sup> = 0}} and {{nowrap|1=(1 + ''z'')<sup>−1</sup> = 1 − ''z'' + {{italics correction|''z''}}<sup>2</sup> − ... ± {{italics correction|''z''}}<sup>''n''</sup>}}. |
|||
* <math>J(R)</math> is the set of elements ''x''∈''R'' such that every element of ''1 + RxR'' is a unit: <math>\operatorname J(R)=\{x \in R \mid 1 + RxR \subset R^\times\}</math>. |
|||
For rings without unity it is possible |
For [[Rng (algebra)|rings without unity]] it is possible to have {{nowrap|1=''R'' = J(''R'')}}; however, the equation {{nowrap|1=J(''R'' / J(''R'')) = {{mset|0}}}} still holds. The following are equivalent characterizations of J(''R'') for rings without unity:{{sfn|ps=|Lam|2001|p=63}} |
||
* The notion of left quasiregularity can be generalized in the following way. Call an element ''a'' in ''R'' left ''generalized quasiregular'' if there exists ''c'' in ''R'' such that ''c''+''a'' |
* The notion of left quasiregularity can be generalized in the following way. Call an element ''a'' in ''R'' left ''generalized quasiregular'' if there exists ''c'' in ''R'' such that {{nowrap|1=''c'' + ''a'' − ''ca'' = 0}}. Then J(''R'') consists of every element ''a'' for which ''ra'' is left generalized quasiregular for all ''r'' in ''R''. It can be checked that this definition coincides with the previous quasiregular definition for rings with unity. |
||
* For a ring without unity, the definition of a left |
* For a ring without unity, the definition of a left simple module ''M'' is amended by adding the condition that {{nowrap|''R'' ⋅ ''M'' ≠ 0}}. With this understanding, J(''R'') may be defined as the intersection of all annihilators of simple left ''R'' modules, or just ''R'' if there are no simple left ''R'' modules. Rings without unity with no simple modules do exist, in which case {{nowrap|1=''R'' = J(''R'')}}, and the ring is called a '''radical ring'''. By using the generalized quasiregular characterization of the radical, it is clear that if one finds a ring with J(''R'') nonzero, then J(''R'') is a radical ring when considered as a ring without unity. |
||
==Examples== |
== Examples == |
||
=== Commutative examples === |
=== Commutative examples === |
||
* For the ring of integers '''Z''' its Jacobson radical is the [[zero ideal]], so {{nowrap|1=J('''Z''') = (0)}}, because it is given by the intersection of every ideal generated by a [[prime number]] (''p''). Since {{nowrap|1=(''p''<sub>1</sub>) ∩ (''p''<sub>2</sub>) = (''p''<sub>1</sub> ⋅ ''p''<sub>2</sub>)}}, and we are taking an infinite intersection with no common elements besides 0 between all maximal ideals, we have the computation. |
|||
* For a [[local ring]] {{nowrap|(''R'', <math>\mathfrak{p}</math>)}} the Jacobson radical is simply {{nowrap|1=J(''R'') = <math>\mathfrak{p}</math>}}. This is an important case because of its use in applying Nakayama's lemma. In particular, it implies if we have an algebraic vector bundle {{nowrap|''E'' → ''X''}} over a scheme or algebraic variety ''X'', and we fix a basis of ''E''|<sub>''p''</sub> for some point {{nowrap|''p'' ∈ ''X''}}, then this basis lifts to a set of generators for all sections {{nowrap|''E''|<sub>''U''</sub> → ''U''}} for some neighborhood ''U'' of ''p''. |
|||
* For the ring of integers <math>\mathbb{Z}</math> its Jacobson radical is the zero ideal, so <math>J(\mathbb{Z}) = (0)</math>, because it is given by the intersection of every ideal generated by a prime number <math>(p)</math>. Since <math>(p_1)\cap (p_2) = (p_1\cdot p_2)</math>, and we are taking an infinite intersection which no common elements besides <math>0</math> between all maximal ideals, we have the computation. |
|||
* If ''k'' is a [[field (mathematics)|field]] and {{nowrap|1=''R'' = ''k''[[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]]}} is a ring of [[formal power series]], then J(''R'') consists of those [[power series]] whose constant term is zero, i.e. the power series in the ideal {{nowrap|(''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>)}}. |
|||
* For a [[local ring]] <math>(R,\mathfrak{p})</math> the Jacobson radical is simply <math>J(R) = \mathfrak{p}</math>. This is an important case because of its use in applying Nakayama's lemma. In particular, it implies if we have an algebraic vector bundle <math>E \to X</math> over a scheme or algebraic variety <math>X</math>, and we fix a basis of <math>E|_p</math> for some point <math>p \in X</math>, then this basis lifts to a set of generators for all sections <math>E|_U \to U</math> for some neighborhood <math>U</math> of <math>p</math>. |
|||
* In the case of an [[Artinian ring]]s, such as {{nowrap|'''C'''[''t''<sub>1</sub>, ''t''<sub>2</sub>]/(''t''<sub>1</sub><sup>4</sup>, ''t''<sub>1</sub><sup>2</sup>''t''<sub>2</sub><sup>2</sup>, ''t''<sub>2</sub><sup>9</sup>)}}, the Jacobson radical is {{nowrap|(''t''<sub>1</sub>, ''t''<sub>2</sub>)}}. |
|||
* If <math>k</math> is a field and <math>R = k[[X_1,...,X_n]]</math> is a ring of [[formal power series]], then <math>J(R)</math> consists of those power series whose constant term is zero, i.e. the power series in the ideal <math>(X_1,\ldots, X_n)</math>. |
|||
* The previous example could be extended to the ring {{nowrap|1=''R'' = '''C'''[''t''<sub>2</sub>, ''t''<sub>3</sub>, ...]/(''t''<sub>2</sub><sup>2</sup>, ''t''<sub>3</sub><sup>3</sup>, ...)}}, giving {{nowrap|1=J(''R'') = (''t''<sub>2</sub>, ''t''<sub>3</sub>, ...)}}. |
|||
* In the case of an [[Artinian ring|Artin ring]], such as <math>\mathbb{C}[t_1, t_2]/(t_1^4, t_1^2t_2^2, t_2^9)</math>, the Jacobson radical is <math>(t_1,t_2)</math>. |
|||
* The previous example could be extended to the ring <math>R = \mathbb{C}[t_2,t_3,\ldots]/(t_2^2,t_3^3,\ldots)</math>, giving <math>J(R) = (t_2,t_3,\ldots)</math>. |
|||
* The Jacobson radical of the ring '''Z'''/12'''Z''' is 6'''Z'''/12'''Z''', which is the intersection of the maximal ideals 2'''Z'''/12'''Z''' and 3'''Z'''/12'''Z'''. |
* The Jacobson radical of the ring '''Z'''/12'''Z''' is 6'''Z'''/12'''Z''', which is the intersection of the maximal ideals 2'''Z'''/12'''Z''' and 3'''Z'''/12'''Z'''. |
||
* Consider the ring |
* Consider the ring {{nowrap|'''C'''[''t''] ⊗<sub>'''C'''</sub> '''C'''[''x''<sub>1</sub>, ''x''<sub>2</sub>]<sub>''x''<sub>1</sub><sup>2</sup>+''x''<sub>2</sub><sup>2</sup>−1</sub>}}, where the second is the [[localization (commutative algebra)|localization]] of {{nowrap|'''C'''[''x''<sub>1</sub>, ''x''<sub>2</sub>]}} by the prime ideal {{nowrap|1=<math>\mathfrak{p}</math> = (''x''<sub>1</sub><sup>2</sup> + ''x''<sub>2</sub><sup>2</sup> − 1)}}. Then, the Jacobson radical is trivial because the maximal ideals are generated by an element of the form {{nowrap|(''t'' − ''z'') ⊗ (''x''<sub>1</sub><sup>2</sup> + ''x''<sub>2</sub><sup>2</sup> − 1)}} for {{nowrap|''z'' ∈ '''C'''}}. |
||
=== Noncommutative examples === |
=== Noncommutative examples === |
||
* Rings for which J(''R'') is {0} are called [[semiprimitive ring]]s, or sometimes "Jacobson semisimple rings". The Jacobson radical of any |
* Rings for which J(''R'') is {{mset|0}} are called [[semiprimitive ring]]s, or sometimes "Jacobson semisimple rings". The Jacobson radical of any field, any [[von Neumann regular ring]] and any left or right [[primitive ring]] is {{mset|0}}. The Jacobson radical of the integers is {{mset|0}}. |
||
* If ''K'' is a field and ''R'' is the ring of all upper triangular ''n''-by-''n'' matrices with entries in ''K'', then J(''R'') consists of all upper triangular matrices with zeros on the main diagonal. |
* If ''K'' is a field and ''R'' is the ring of all [[upper triangular]] ''n''-by-''n'' [[matrix (mathematics)|matrices]] with entries in ''K'', then J(''R'') consists of all upper triangular matrices with zeros on the main diagonal. |
||
* Start with a finite, acyclic [[Quiver (mathematics)|quiver]] Γ and a field ''K'' and consider the quiver algebra ''K''{{Hair space}}Γ (as described in the [[Quiver (mathematics)|Quiver]] |
* Start with a finite, acyclic [[Quiver (mathematics)|quiver]] Γ and a field ''K'' and consider the quiver algebra ''K''{{Hair space}}Γ (as described in the article ''[[Quiver (mathematics)|Quiver]]''). The Jacobson radical of this ring is generated by all the paths in Γ of length ≥ 1. |
||
* The Jacobson radical of a [[C*-algebra]] is {0}. This follows from the [[Gelfand–Naimark theorem]] and the fact that for a C*-algebra, a topologically irreducible *-representation on a [[Hilbert space]] is algebraically irreducible, so that its kernel is a primitive ideal in the purely algebraic sense (see [[ |
* The Jacobson radical of a [[C*-algebra]] is {{mset|0}}. This follows from the [[Gelfand–Naimark theorem]] and the fact that for a C*-algebra, a topologically irreducible *-representation on a [[Hilbert space]] is algebraically irreducible, so that its kernel is a primitive ideal in the purely algebraic sense (see ''[[Spectrum of a C*-algebra]]''). |
||
==Properties== |
== Properties == |
||
* If ''R'' is unital and is not the trivial ring {0}, the Jacobson radical is always distinct from ''R'' since [[Maximal ideal#Properties|rings with unity always have maximal right ideals]]. However, some important |
* If ''R'' is unital and is not the trivial ring {{mset|0}}, the Jacobson radical is always distinct from ''R'' since [[Maximal ideal#Properties|rings with unity always have maximal right ideals]]. However, some important [[theorem]]s and [[conjecture]]s in ring theory consider the case when {{nowrap|1=J(''R'') = ''R''}} – "If ''R'' is a nil ring (that is, each of its elements is [[nilpotent]]), is the [[polynomial ring]] ''R''[''x''] equal to its Jacobson radical?" is equivalent to the open [[Köthe conjecture]].{{sfn|ps=|Smoktunowicz|2006|p=260|loc=§5}} |
||
* For any ideal ''I'' contained in J(''R''), |
* For any ideal ''I'' contained in J(''R''), {{nowrap|1=J(''R'' / ''I'') = J(''R'') / ''I''}}. |
||
* In particular, the Jacobson radical of the ring {{nowrap|''R'' / J(''R'')}} is zero. Rings with zero Jacobson radical are called [[semiprimitive ring]]s. |
|||
:J(''R'' / ''I'') = J(''R'') / ''I''.<ref>{{harvtxt|Lam|2001|loc=§4, Prop. 4.6}}</ref> |
|||
* A ring is [[Semisimple module#Semisimple rings|semisimple]] if and only if it is [[Artinian ring|Artinian]] and its Jacobson radical is zero. |
|||
* In particular, the Jacobson radical of the ring ''R''/J(''R'') is zero. Rings with zero Jacobson radical are called [[semiprimitive ring]]s. |
|||
* If {{nowrap|''f'' : ''R'' → ''S''}} is a [[surjective]] [[ring homomorphism]], then {{nowrap|''f''(J(''R'')) ⊆ J(''S'')}}. |
|||
* A ring is [[Semisimple_module#Semisimple_rings|semisimple]] if and only if it is [[Artinian ring|Artinian]] and its Jacobson radical is zero. |
|||
* If '' |
* If ''R'' is a ring with unity and ''M'' is a [[finitely generated module|finitely generated]] left ''R''-module with {{nowrap|1=J(''R'')''M'' = ''M''}}, then {{nowrap|1=''M'' = 0}} ([[Nakayama's lemma]]). |
||
* J(''R'') contains all [[center (ring theory)|central]] nilpotent elements, but contains no [[idempotent (ring theory)|idempotent elements]] except for 0. |
|||
* If R is a ring with unity and ''M'' is a [[finitely generated module|finitely generated]] left ''R''-[[module (mathematics)|module]] with J(''R'')''M'' = ''M'', then ''M'' = 0 ([[Nakayama's lemma]]). |
|||
* J(''R'') contains every [[nil ideal]] of ''R''. If ''R'' is left or right [[Artinian ring|Artinian]], then J(''R'') is a [[nilpotent ideal]].{{pb}}This can actually be made stronger: If {{br}}{{spaces|8}}{{nowrap|1={{mset|0}} = ''T''<sub>0</sub> ⊆ ''T''<sub>1</sub> ⊆ ⋅⋅⋅ ⊆ ''T''<sub>''k''</sub> = ''R''}} {{br}}is a [[Composition series#For modules|composition series]] for the right ''R''-module ''R'' (such a series is sure to exist if ''R'' is right Artinian, and there is a similar left composition series if ''R'' is left Artinian), then {{nowrap|1=(J(''R''))<sup>''k''</sup> = 0}}.{{efn|1=Proof: Since the [[factor module|factors]] {{nowrap|''T''<sub>''u''</sub> / ''T''<sub>''u''−1</sub>}} are simple right ''R''-modules, right multiplication by any element of J(''R'') annihilates these factors. |
|||
* J(''R'') contains all central nilpotent elements, but contains no [[idempotent element (ring theory)|idempotent element]]s except for 0. |
|||
{{br}}In other words, {{nowrap|1=(''T''<sub>''u''</sub> / ''T''<sub>''u''−1</sub>) ⋅ J(''R'') = 0}}, whence {{nowrap|1=''T''<sub>''u''</sub> · J(''R'') ⊆ ''T''<sub>''u''−1</sub>}}. Consequently, [[mathematical induction|induction]] over ''i'' shows that all nonnegative integers ''i'' and ''u'' (for which the following makes sense) satisfy {{nowrap|''T''<sub>''u''</sub> ⋅ (J(''R''))<sup>''i''</sup> ⊆ ''T''<sub>''u''−''i''</sub>}}. Applying this to {{nowrap|1=''u'' = ''i'' = ''k''}} yields the result.}}{{pb}}Note, however, that in general the Jacobson radical need not consist of only the [[nilpotent]] elements of the ring. |
|||
* J(''R'') contains every [[nil ideal]] of ''R''. If ''R'' is left or right [[artinian ring|Artinian]], then J(''R'') is a [[nilpotent ideal]]. |
|||
* If ''R'' is commutative and finitely generated as an [[algebra over a field|algebra]] over either a [[field (mathematics)|field]] or '''Z''', then J(''R'') is equal to the [[nilradical of a ring|nilradical]] of ''R''. |
|||
* The Jacobson radical of a (unital) ring is its largest superfluous right (equivalently, left) ideal. |
|||
== See also == |
|||
:This can actually be made stronger: If |
|||
* [[Frattini subgroup]] |
|||
::<math>\left\{0\right\}= T_0\subseteq T_1\subseteq \dotsb\subseteq T_k=R</math> |
|||
* [[Nilradical of a ring]] |
|||
* [[Radical of a module]] |
|||
* [[Radical of an ideal]] |
|||
== Notes == |
|||
:is a [[Composition series#For modules|composition series]] for the right ''R''-module ''R'' (such a series is sure to exist if ''R'' is right artinian, and there is a similar left composition series if ''R'' is left artinian), then |
|||
{{notelist}} |
|||
::<math>\left(J\left(R\right)\right) ^k=0</math>. |
|||
== Citations == |
|||
::(Proof: Since the factors <math>T_u/T_{u-1}</math> are simple right ''R''-modules, right multiplication by any element of J(''R'') annihilates these factors. |
|||
{{reflist}} |
|||
== References == |
|||
::In other words, |
|||
* {{citation |
|||
:::<math>\left(T_u/T_{u-1}\right)\cdot J\left(R\right)=0</math>, |
|||
|last1=Anderson |first1=Frank W. |
|||
::whence |
|||
|last2=Fuller |first2=Kent R. |
|||
:::<math>T_u\cdot J\left(R\right)\subseteq T_{u-1}</math>. |
|||
::Consequently, induction over ''i'' shows that all nonnegative integers ''i'' and ''u'' (for which the following makes sense) satisfy |
|||
:::<math>T_u\cdot \left(\operatorname J\left(R\right)\right)^i\subseteq T_{u-i}</math>. |
|||
::Applying this to ''u'' = ''i'' = ''k'' yields the result.) |
|||
:Note, however, that in general the Jacobson radical need not consist of only the [[nilpotent]] elements of the ring. |
|||
* If ''R'' is commutative and finitely generated as an algebra over either a field or '''Z''', then J(''R'') is equal to the [[Nilradical of a ring|nilradical]] of ''R''. |
|||
*The Jacobson radical of a (unital) ring is its largest superfluous right (equivalently, left) ideal. |
|||
==See also== |
|||
*[[Frattini subgroup]] |
|||
*[[Nilradical of a ring|Nilradical]] |
|||
*[[Radical of a module]] |
|||
*[[Radical of an ideal]] |
|||
==Notes== |
|||
{{Reflist}} |
|||
==References== |
|||
*{{citation |
|||
|author1=Anderson, Frank W. |
|||
|author2=Fuller, Kent R. |
|||
|title=Rings and Categories of Modules |
|title=Rings and Categories of Modules |
||
|series=[[Graduate Texts in Mathematics]] |
|series=[[Graduate Texts in Mathematics]] |
||
Line 115: | Line 102: | ||
|isbn=0-387-97845-3 |
|isbn=0-387-97845-3 |
||
|mr=1245487 |
|mr=1245487 |
||
|doi=10.1007/978-1-4612-4418-9 |
|doi=10.1007/978-1-4612-4418-9 |
||
}} |
|||
*{{citation |
|||
* {{citation |
|||
|author1=Atiyah, M. F. |
|||
| |
|author1=[[Michael Atiyah|Atiyah, M. F.]] |
||
|author2=[[Ian G. Macdonald|Macdonald, I. G.]] |
|||
|title=Introduction to Commutative Algebra |
|title=Introduction to Commutative Algebra |
||
|publisher=Addison-Wesley Publishing Co. |
|publisher=Addison-Wesley Publishing Co. |
||
|year=1969 |
|year=1969 |
||
|pages=ix+128 |
|pages=ix+128 |
||
|mr=0242802 |
|mr=0242802 |
||
}} |
|||
*Bourbaki, N. ''[[Éléments de mathématique]]''. |
|||
* [[Nicolas Bourbaki|Bourbaki, N.]] ''[[Éléments de mathématique]]''. |
|||
*{{citation |
|||
* {{citation |
|||
|author=Herstein, I. N. |
|author=Herstein, I. N. |
||
|author-link=Israel Nathan Herstein |
|author-link=Israel Nathan Herstein |
||
Line 134: | Line 123: | ||
|place=Washington, DC |
|place=Washington, DC |
||
|year=1994 |
|year=1994 |
||
| |
|orig-year=1968 |
||
|pages=xii+202 |
|pages=xii+202 |
||
|isbn=0-88385-015-X |
|isbn=0-88385-015-X |
||
|mr=1449137}} Reprint of the 1968 original; With an afterword by Lance W. Small |
|mr=1449137 |
||
}} Reprint of the 1968 original; With an afterword by Lance W. Small |
|||
* {{citation |
* {{citation |
||
| last= Isaacs |first=I. M. |
|||
| author-link=Martin Isaacs |
|||
| year = 1994 |
|||
| year = 1994 |
|||
| title = Algebra: a graduate course |
|||
| edition = 1st |
|||
| publisher = [[Brooks/Cole]] Publishing Company |
|||
| isbn = 0-534-19002-2 |
|||
}} |
|||
* {{Citation | last1=Jacobson | first1=Nathan | author1-link=Nathan Jacobson | title=The radical and semi-simplicity for arbitrary rings | doi=10.2307/2371731 | mr=12271 | year=1945 | journal=[[American Journal of Mathematics]] | issn=0002-9327 | volume=67 | pages=300–320}} |
|||
*{{citation |
* {{citation |
||
| last1=Jacobson | first1=Nathan | author1-link=Nathan Jacobson |
|||
| title=The radical and semi-simplicity for arbitrary rings |
|||
| doi=10.2307/2371731 | mr=12271 |
|||
| year=1945 |
|||
| journal=[[American Journal of Mathematics]] |
|||
| issn=0002-9327 |
|||
| volume=67 |
|||
| issue=2 | pages=300–320 |
|||
| jstor=2371731 }} |
|||
* {{citation |
|||
|author=Lam|first=T. Y. |
|author=Lam|first=T. Y. |
||
| |
|author-link=Tsit Yuen Lam |
||
|title=A First Course in Noncommutative Rings |
|title=A First Course in Noncommutative Rings |
||
|series=Graduate Texts in Mathematics |
|series=Graduate Texts in Mathematics |
||
Line 158: | Line 159: | ||
|isbn=0-387-95183-0 |
|isbn=0-387-95183-0 |
||
|mr=1838439 |
|mr=1838439 |
||
|doi=10.1007/978-1-4419-8616-0 |
|doi=10.1007/978-1-4419-8616-0 |
||
}} |
|||
*{{citation |
|||
* {{citation |
|||
|author=Pierce, Richard S. |
|author=Pierce, Richard S. |
||
|title=Associative Algebras |
|title=Associative Algebras |
||
Line 172: | Line 174: | ||
|url=https://archive.org/details/associativealgeb00pier_0/page/ |
|url=https://archive.org/details/associativealgeb00pier_0/page/ |
||
}} Studies in the History of Modern Science, 9 |
}} Studies in the History of Modern Science, 9 |
||
*{{citation |
* {{citation |
||
| last = Smoktunowicz |
|||
| first = Agata |
|||
| author-link = Agata Smoktunowicz |
|||
| contribution = Some results in noncommutative ring theory |
|||
| isbn = 978-3-03719-022-7 |
|||
| mr = 2275597 |
|||
| pages = 259–269 |
|||
| publisher = [[European Mathematical Society]] |
|||
| title = International Congress of Mathematicians, Vol. II |
|||
| url = http://www.icm2006.org/proceedings/Vol_II/contents/ICM_Vol_2_12.pdf |
|||
| year = 2006 |
|||
| access-date = 2014-12-31 |
|||
| archive-date = 2017-08-09 |
|||
| archive-url = https://web.archive.org/web/20170809170625/http://www.icm2006.org/proceedings/Vol_II/contents/ICM_Vol_2_12.pdf |
|||
| url-status = dead |
|||
}} |
|||
== External links == |
|||
* [https://mathoverflow.net/questions/3483/intuitive-example-of-a-jacobson-radical Intuitive Example of a Jacobson Radical] |
|||
{{DEFAULTSORT:Jacobson Radical}} |
{{DEFAULTSORT:Jacobson Radical}} |
||
[[Category:Ideals]] |
[[Category:Ideals (ring theory)]] |
||
[[Category:Ring theory]] |
[[Category:Ring theory]] |
Latest revision as of 13:06, 19 October 2024
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left–right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or rad(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in Jacobson 1945.
The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to non-unital rings. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring- and module-theoretic results, such as Nakayama's lemma.
Definitions
[edit]There are multiple equivalent definitions and characterizations of the Jacobson radical, but it is useful to consider the definitions based on if the ring is commutative or not.
Commutative case
[edit]In the commutative case, the Jacobson radical of a commutative ring R is defined as[1] the intersection of all maximal ideals . If we denote Specm R as the set of all maximal ideals in R then
This definition can be used for explicit calculations in a number of simple cases, such as for local rings (R, ), which have a unique maximal ideal, Artinian rings, and products thereof. See the examples section for explicit computations.
Noncommutative/general case
[edit]For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module. That is, This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are precisely the elements of , i.e. AnnR(R / ) = .
Motivation
[edit]Understanding the Jacobson radical lies in a few different cases: namely its applications and the resulting geometric interpretations, and its algebraic interpretations.
Geometric applications
[edit]Although Jacobson originally introduced his radical as a technique for building a theory of radicals for arbitrary rings, one of the motivating reasons for why the Jacobson radical is considered in the commutative case is because of its appearance in Nakayama's lemma. This lemma is a technical tool for studying finitely generated modules over commutative rings that has an easy geometric interpretation: If we have a vector bundle E → X over a topological space X, and pick a point p ∈ X, then any basis of E|p can be extended to a basis of sections of E|U → U for some neighborhood p ∈ U ⊆ X.
Another application is in the case of finitely generated commutative rings of the form for some base ring k (such as a field, or the ring of integers). In this case the nilradical and the Jacobson radical coincide. This means we could interpret the Jacobson radical as a measure for how far the ideal I defining the ring R is from defining the ring of functions on an algebraic variety because of the Hilbert Nullstellensatz theorem. This is because algebraic varieties cannot have a ring of functions with infinitesimals: this is a structure that is only considered in scheme theory.
Equivalent characterizations
[edit]The Jacobson radical of a ring has various internal and external characterizations. The following equivalences appear in many noncommutative algebra texts such as Anderson & Fuller 1992, §15, Isaacs 1994, §13B, and Lam 2001, Ch 2.
The following are equivalent characterizations of the Jacobson radical in rings with unity (characterizations for rings without unity are given immediately afterward):
- J(R) equals the intersection of all maximal right ideals of the ring. The equivalence coming from the fact that for all maximal right ideals M, R / M is a simple right R-module, and that in fact all simple right R-modules are isomorphic to one of this type via the map from R to S given by r ↦ xr for any generator x of S. It is also true that J(R) equals the intersection of all maximal left ideals within the ring.[2] These characterizations are internal to the ring, since one only needs to find the maximal right ideals of the ring. For example, if a ring is local, and has a unique maximal right ideal, then this unique maximal right ideal is exactly J(R). Maximal ideals are in a sense easier to look for than annihilators of modules. This characterization is deficient, however, because it does not prove useful when working computationally with J(R). The left-right symmetry of these two definitions is remarkable and has various interesting consequences.[2][3] This symmetry stands in contrast to the lack of symmetry in the socles of R, for it may happen that soc(RR) is not equal to soc(RR). If R is a non-commutative ring, J(R) is not necessarily equal to the intersection of all maximal two-sided ideals of R. For instance, if V is a countable direct sum of copies of a field k and R = End(V) (the ring of endomorphisms of V as a k-module), then J(R) = 0 because R is known to be von Neumann regular, but there is exactly one maximal double-sided ideal in R consisting of endomorphisms with finite-dimensional image.[4]
- J(R) equals the sum of all superfluous right ideals (or symmetrically, the sum of all superfluous left ideals) of R. Comparing this with the previous definition, the sum of superfluous right ideals equals the intersection of maximal right ideals. This phenomenon is reflected dually for the right socle of R; soc(RR) is both the sum of minimal right ideals and the intersection of essential right ideals. In fact, these two relationships hold for the radicals and socles of modules in general.
- As defined in the introduction, J(R) equals the intersection of all annihilators of simple right R-modules, however it is also true that it is the intersection of annihilators of simple left modules. An ideal that is the annihilator of a simple module is known as a primitive ideal, and so a reformulation of this states that the Jacobson radical is the intersection of all primitive ideals. This characterization is useful when studying modules over rings. For instance, if U is a right R-module, and V is a maximal submodule of U, U · J(R) is contained in V, where U · J(R) denotes all products of elements of J(R) (the "scalars") with elements in U, on the right. This follows from the fact that the quotient module U / V is simple and hence annihilated by J(R).
- J(R) is the unique right ideal of R maximal with the property that every element is right quasiregular[5][6] (or equivalently left quasiregular[2]). This characterization of the Jacobson radical is useful both computationally and in aiding intuition. Furthermore, this characterization is useful in studying modules over a ring. Nakayama's lemma is perhaps the most well-known instance of this. Although every element of the J(R) is necessarily quasiregular, not every quasiregular element is necessarily a member of J(R).[6]
- While not every quasiregular element is in J(R), it can be shown that y is in J(R) if and only if xy is left quasiregular for all x in R.[7]
- J(R) is the set of elements x in R such that every element of 1 + RxR is a unit: J(R) = {x ∈ R | 1 + RxR ⊂ R×}. In fact, y ∈ R is in the Jacobson radical if and only if 1 + xy is invertible for any x ∈ R, if and only if 1 + yx is invertible for any x ∈ R. This means xy and yx behave similarly to a nilpotent element z with zn+1 = 0 and (1 + z)−1 = 1 − z + z2 − ... ± zn.
For rings without unity it is possible to have R = J(R); however, the equation J(R / J(R)) = {0} still holds. The following are equivalent characterizations of J(R) for rings without unity:[8]
- The notion of left quasiregularity can be generalized in the following way. Call an element a in R left generalized quasiregular if there exists c in R such that c + a − ca = 0. Then J(R) consists of every element a for which ra is left generalized quasiregular for all r in R. It can be checked that this definition coincides with the previous quasiregular definition for rings with unity.
- For a ring without unity, the definition of a left simple module M is amended by adding the condition that R ⋅ M ≠ 0. With this understanding, J(R) may be defined as the intersection of all annihilators of simple left R modules, or just R if there are no simple left R modules. Rings without unity with no simple modules do exist, in which case R = J(R), and the ring is called a radical ring. By using the generalized quasiregular characterization of the radical, it is clear that if one finds a ring with J(R) nonzero, then J(R) is a radical ring when considered as a ring without unity.
Examples
[edit]Commutative examples
[edit]- For the ring of integers Z its Jacobson radical is the zero ideal, so J(Z) = (0), because it is given by the intersection of every ideal generated by a prime number (p). Since (p1) ∩ (p2) = (p1 ⋅ p2), and we are taking an infinite intersection with no common elements besides 0 between all maximal ideals, we have the computation.
- For a local ring (R, ) the Jacobson radical is simply J(R) = . This is an important case because of its use in applying Nakayama's lemma. In particular, it implies if we have an algebraic vector bundle E → X over a scheme or algebraic variety X, and we fix a basis of E|p for some point p ∈ X, then this basis lifts to a set of generators for all sections E for some neighborhood U of p.
- If k is a field and R = k[[X1, ..., Xn]] is a ring of formal power series, then J(R) consists of those power series whose constant term is zero, i.e. the power series in the ideal (X1, ..., Xn).
- In the case of an Artinian rings, such as C[t1, t2]/(t14, t12t22, t29), the Jacobson radical is (t1, t2).
- The previous example could be extended to the ring R = C[t2, t3, ...]/(t22, t33, ...), giving J(R) = (t2, t3, ...).
- The Jacobson radical of the ring Z/12Z is 6Z/12Z, which is the intersection of the maximal ideals 2Z/12Z and 3Z/12Z.
- Consider the ring C[t] ⊗C C[x1, x2]x12+x22−1, where the second is the localization of C[x1, x2] by the prime ideal = (x12 + x22 − 1). Then, the Jacobson radical is trivial because the maximal ideals are generated by an element of the form (t − z) ⊗ (x12 + x22 − 1) for z ∈ C.
Noncommutative examples
[edit]- Rings for which J(R) is {0} are called semiprimitive rings, or sometimes "Jacobson semisimple rings". The Jacobson radical of any field, any von Neumann regular ring and any left or right primitive ring is {0}. The Jacobson radical of the integers is {0}.
- If K is a field and R is the ring of all upper triangular n-by-n matrices with entries in K, then J(R) consists of all upper triangular matrices with zeros on the main diagonal.
- Start with a finite, acyclic quiver Γ and a field K and consider the quiver algebra K Γ (as described in the article Quiver). The Jacobson radical of this ring is generated by all the paths in Γ of length ≥ 1.
- The Jacobson radical of a C*-algebra is {0}. This follows from the Gelfand–Naimark theorem and the fact that for a C*-algebra, a topologically irreducible *-representation on a Hilbert space is algebraically irreducible, so that its kernel is a primitive ideal in the purely algebraic sense (see Spectrum of a C*-algebra).
Properties
[edit]- If R is unital and is not the trivial ring {0}, the Jacobson radical is always distinct from R since rings with unity always have maximal right ideals. However, some important theorems and conjectures in ring theory consider the case when J(R) = R – "If R is a nil ring (that is, each of its elements is nilpotent), is the polynomial ring R[x] equal to its Jacobson radical?" is equivalent to the open Köthe conjecture.[9]
- For any ideal I contained in J(R), J(R / I) = J(R) / I.
- In particular, the Jacobson radical of the ring R / J(R) is zero. Rings with zero Jacobson radical are called semiprimitive rings.
- A ring is semisimple if and only if it is Artinian and its Jacobson radical is zero.
- If f : R → S is a surjective ring homomorphism, then f(J(R)) ⊆ J(S).
- If R is a ring with unity and M is a finitely generated left R-module with J(R)M = M, then M = 0 (Nakayama's lemma).
- J(R) contains all central nilpotent elements, but contains no idempotent elements except for 0.
- J(R) contains every nil ideal of R. If R is left or right Artinian, then J(R) is a nilpotent ideal.This can actually be made stronger: If
{0} = T0 ⊆ T1 ⊆ ⋅⋅⋅ ⊆ Tk = R
is a composition series for the right R-module R (such a series is sure to exist if R is right Artinian, and there is a similar left composition series if R is left Artinian), then (J(R))k = 0.[a]Note, however, that in general the Jacobson radical need not consist of only the nilpotent elements of the ring. - If R is commutative and finitely generated as an algebra over either a field or Z, then J(R) is equal to the nilradical of R.
- The Jacobson radical of a (unital) ring is its largest superfluous right (equivalently, left) ideal.
See also
[edit]Notes
[edit]- ^ Proof: Since the factors Tu / Tu−1 are simple right R-modules, right multiplication by any element of J(R) annihilates these factors.
In other words, (Tu / Tu−1) ⋅ J(R) = 0, whence Tu · J(R) ⊆ Tu−1. Consequently, induction over i shows that all nonnegative integers i and u (for which the following makes sense) satisfy Tu ⋅ (J(R))i ⊆ Tu−i. Applying this to u = i = k yields the result.
Citations
[edit]- ^ "Section 10.18 (0AMD): The Jacobson radical of a ring—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-12-24.
- ^ a b c Isaacs 1994, p. 182
- ^ Isaacs 1994, p. 173, Problem 12.5
- ^ Lam 2001, p. 46, Ex. 3.15
- ^ Isaacs 1994, p. 180, Corollary 13.4
- ^ a b Isaacs 1994, p. 181
- ^ Lam 2001, p. 50.
- ^ Lam 2001, p. 63
- ^ Smoktunowicz 2006, p. 260, §5
References
[edit]- Anderson, Frank W.; Fuller, Kent R. (1992), Rings and Categories of Modules, Graduate Texts in Mathematics, vol. 13 (2 ed.), New York: Springer-Verlag, pp. x+376, doi:10.1007/978-1-4612-4418-9, ISBN 0-387-97845-3, MR 1245487
- Atiyah, M. F.; Macdonald, I. G. (1969), Introduction to Commutative Algebra, Addison-Wesley Publishing Co., pp. ix+128, MR 0242802
- Bourbaki, N. Éléments de mathématique.
- Herstein, I. N. (1994) [1968], Noncommutative Rings, Carus Mathematical Monographs, vol. 15, Washington, DC: Mathematical Association of America, pp. xii+202, ISBN 0-88385-015-X, MR 1449137 Reprint of the 1968 original; With an afterword by Lance W. Small
- Isaacs, I. M. (1994), Algebra: a graduate course (1st ed.), Brooks/Cole Publishing Company, ISBN 0-534-19002-2
- Jacobson, Nathan (1945), "The radical and semi-simplicity for arbitrary rings", American Journal of Mathematics, 67 (2): 300–320, doi:10.2307/2371731, ISSN 0002-9327, JSTOR 2371731, MR 0012271
- Lam, T. Y. (2001), A First Course in Noncommutative Rings, Graduate Texts in Mathematics, vol. 131 (2 ed.), Springer-Verlag, pp. xx+385, doi:10.1007/978-1-4419-8616-0, ISBN 0-387-95183-0, MR 1838439
- Pierce, Richard S. (1982), Associative Algebras, Graduate Texts in Mathematics, vol. 88, Springer-Verlag, pp. xii+436, ISBN 0-387-90693-2, MR 0674652 Studies in the History of Modern Science, 9
- Smoktunowicz, Agata (2006), "Some results in noncommutative ring theory", International Congress of Mathematicians, Vol. II (PDF), European Mathematical Society, pp. 259–269, ISBN 978-3-03719-022-7, MR 2275597, archived from the original (PDF) on 2017-08-09, retrieved 2014-12-31