Jump to content

Train communication network: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m messing word
 
(85 intermediate revisions by 55 users not shown)
Line 1: Line 1:
{{Short description|A hierarchical combination of two fieldbus for data transmission within trains}}
The '''Train Communication Network''' (TCN) is a hierarchical combination of two [[fieldbus]] systems for digital operation of trains. It consists of the '''Multifunction Vehicle Bus''' (MVB) inside each coach and the '''Wire Train Bus''' (WTB) to connect the MVB parts with the train control system. The TCN components have been standardized in '''IEC 61375'''.
{{Outdated as of|year=2021|month=May|day=9|topic=complete the article with the new technologies [[Ethernet Consist Network|Ethernet Consist Network (ECN)]] and [[Ethernet Train Backbone|Ethernet Train Backbone (ETB)]] as alternative vehicle/train busses}}
{{More footnotes needed|date=May 2021}}

{{Infobox fieldbus protocol
| Name = Train communication network (TCN)
| Type_of_Network = [[Bus (computing)|Device bus]], [[process control]]
| Physical_Media = [[Twisted pair]], [[glass fiber]]
| Network_Topology = [[Bus network|Bus]]
| Device_Addressing = hardware/software
| Governing_Body = TrainCom
| URL =
}}

The '''train communication network''' (TCN) is a hierarchical combination of two [[fieldbus]] networks for data transmission within trains. It consists of the '''Multifunction Vehicle Bus''' (MVB) inside each vehicle and of the '''Wire Train Bus''' (WTB) to connect the different vehicles. The TCN components have been standardized in '''IEC 61375'''.

== Multifunction vehicle bus (MVB) ==
The MVB connects individual nodes within a vehicle or closed train set. Unlike the WTB, there is no single connector standard for the [[vehicle bus|MVB]] – instead, there are 3 defined media and connector classes:
* '''OGF''' ([[Fiber-optic cable|Optical Glass Fibre]]) uses 240 micron fiber up to 2000 m
* '''EMD''' (Electrical Medium Distance) uses shielded twisted pair with RS-485 transmitters and transformers for galvanic isolation, up to 200 m
* '''ESD''' (Electrical Short Distance) uses simple backplane wiring without galvanic isolation, up to 20 m
The [[Plugs (connector)|plugs and sockets]] are the same as used by [[Profibus]], with 2 x DE-9 sockets per device.<ref name="clause3" />

For OGF, the media sources are connected by repeaters{{Citation needed|reason=repeaters can also be sued with EMD or ESD connecter classes in particular cases|date=May 2021}} (signal generators) being joined on a central star coupler. A repeater is also used for the transition between mediums.

There is no inauguration, the addresses are statically allocated. The number of addressable devices depends on the configuration of the vehicle bus&nbsp;– there may be up to 4095 simple [[Sensor|sensors]]/[[Actuator|actuators]] (Class I) and up to 255 programmable stations (Class 2, with configuration slots). The physical level is using transmissions at a 1.5&nbsp;Mbit/s [[Bit rate|data rate]] using [[manchester code|Manchester II encoding]]. The maximum distance is determined on the restriction of a maximum allowed reply delay of 42.7&nbsp;μs (where for longer distances a second mode is used that allows up to 83.4&nbsp;μs with reduced throughput, in case MVB is used for switchgear on the track side) while most system parts communicate with a response time of a typical 10&nbsp;μs.<ref name="clause3">{{cite web|url=http://lamspeople.epfl.ch/kirrmann/Pubs/TCN/IEC61375-3-MVB.ppt|archive-url=https://web.archive.org/web/20170413072434/http://lamspeople.epfl.ch/kirrmann/Pubs/TCN/IEC61375-3-MVB.ppt|archive-date=2017-04-13|url-status=dead|format=powerpoint|title=Train Communication Network IEC 61375 – 3 Multifunction Vehicle Bus|date=1999-01-20|author=Prof. Dr. Hubert Kirrmann|publisher=Ecole Polytechnique Fédérale de Lausanne (EPFL)}}</ref>

===History===

MVB was derived from the [[P215 bus]] developed by [[Brown, Boveri & Cie|Brown Boveri Cie]], [[Switzerland]] (now [[ABB]]), incorporating the [[Publish–subscribe pattern|publisher/subscriber principle]] from early [[Fieldbus|field busses]] ([[DATRAS]]){{Citation needed|reason=|date=May 2021}}. Back in 1984, [[IEC TC 57]] defined the requirement specifications for busses to be used in electrical substation in collaboration with [[IEC SC65C]]. MVB presents many similarities with the [[Factory Instrumentation Protocol|FIP]] field bus (originally from French "''Flux d'Information vers le Processus''", relabeled as '''Factory Instrumentation Protocol''' or some references also use the hybrid "Flux Information Protocol") that was developed in the French [[NFC 46602|NFC 46602 standard series]].<ref>[http://www.datenschutz-praxis.de/lexikon/enwiki/w/worldfip.html WorldFIP] {{Webarchive|url=https://archive.today/20120803135354/http://www.datenschutz-praxis.de/lexikon/enwiki/w/worldfip.html |date=2012-08-03 }}</ref> Since both stemmed from the same [[IEC TC 57]] specifications. This explains why MVB and FIP have similar operation (cyclic and event-driven), only the arbitration method in case of multiple access differs, as MVB used a binary bisection mode relying of collision detection while FIP piggy-backed a "look-at-me" bit over periodic data. Efforts to merge FIP and MVB failed at the stubbornness of the two parties{{Citation needed|reason=|date=May 2021}}. MVB, [[Profibus]] and [[WorldFIP]] were proposed as a substation bus in [[IEC TC 57]], but to avoid parallel solutions, [[IEC TC 57]] decided that none will be used and favored [[Ethernet]] as a common denominator{{Citation needed|reason=|date=May 2021}}.

The MVB frames are not compatible with [[IEC 61158|IEC 61158-2]] fieldbus frames as it omits most of the preamble synchronization (which is not required if zero-crossing detection is possible).<ref name="clause3" /> The paradox situation is that the IEC 61158 field bus and MVB physical layer were developed by the same persons in [[IEC TC 57]]. The difference came from the [[fieldbus]] [[physical layer]] which assumes a phase-locked loop to decode the Manchester data, requiring a preamble to synthonize the decoder, while MVB operated principally with optical fibres{{Citation needed|reason=ESD and EMD are commonly used within older train|date=May 2021}} where this method is useless, MVB's decoding relies on zero-crossing detectors and Manchester pattern recognition.

However most of the modern development and test equipment can equally communicate WTB/MVB frames as well as [[Profibus]] frames on the line<!-- at least that is what the device manufacturers say -->{{Citation needed|reason=|date=May 2021}} as the telegram structure similar to [[Profibus]].
The [[WorldFIP]] connectors found usage in train equipment in [[France]] and [[North America]] (by [[Bombardier Transportation|Bombardier]]) until a joined effort on a common [[International Union of Railways|UIC]] train bus was started (with [[Siemens Mobility|Siemens]] and other industry partners) that led to the WTB/MVB standard in late 1999{{Citation needed|reason=|date=May 2021}}.

=== Alternate vehicle buses ===
The MVB standard was introduced to replace the multitude of [[Fieldbus|field buses]] in the train equipment. Despite the advantages of the MVB field bus, many vehicle buses are still built from [[CANopen]], [[WorldFIP]] (in [[France]]), [[LonWorks]] (in the [[United States|USA]]) and [[Profibus]] components. While the [[WorldFIP]], [[CANopen]], [[LonWorks|Lonworks]] and [[PROFINET|Profinet]] are controlled by international manufacturer associations targeting a wide range of application, MVB was tailored to the rolling stock application, with the goal of plug-compatibility, and therefore allows no options. This was intentional as the fight between the field busses raged in the 1990s{{Citation needed|reason=|date=May 2021}} and the decision of the [[International Union of Railways|IEC]] that any of the eight{{Citation needed|reason=which ones?|date=May 2021}} field busses was a standard did not help plug-compatibility.
MVB modules are more expensive than for instance [[CANopen]] or [[LonWorks]] components. This is not due to the communication technology: most devices implement the MVB protocol machine in a small area of an [[FPGA]] which is today anyhow present, and the costliest component remains the connector{{Citation needed|reason=|date=May 2021}}. But railways certification is costly and not always needed for uncritical applications such as comfort and [[Passenger information system|passenger information]]. When total cost of ownership is considered, the cost of the hardware elements can easily be outweighed by additional engineering costs in the railways market with its small series.

In the [[United States|USA]], the [[IEEE RTVISC]] evaluated both MVB and [[Local Operating Network|LON]] as vehicle and train bus. The [[Institute of Electrical and Electronics Engineers|IEEE]] finally decided to standardize both in [[IEEE 1374]], with a clear separation of tasks{{Citation needed|reason=|date=May 2021}}:
* MVB for critical operation such as traction control and signalling in the driver's cab,
* LON for uncritical and slow data transfer, but low-cost connections such as passenger displays and diagnostics. This separation is not always observed{{Citation needed|reason=|date=May 2021}}.

Additionally more and more components are added to rail vehicles that need far more bandwidth than any field bus can provide (e.g. for [[video surveillance]]), so [[switched Ethernet]] [[IEEE 802.3]] with 100&nbsp;Mbit/s is being introduced into train sets (according to the [[EN 50155]] profile). Still all the alternate vehicle buses are connected to the Wire Train Bus.<ref>{{cite web|url=http://www.all-electronics.de/media/file/4509|title=Informations&nbsp;– und Steuerungstechnik auf Schienenfahrzeugen&nbsp;– Bussysteme im Zug|work=elektronik industrie 8/9 2008|publisher=[[InnoTrans]] Special: Bahnelektronik|date=2008-09-14|language=de|access-date=2011-09-16|archive-url=https://web.archive.org/web/20120402130127/http://www.all-electronics.de/media/file/4509|archive-date=2012-04-02|url-status=dead}}</ref>

MVB is similar to [[FlexRay]], both have the "process data", which is called "static segment" in [[FlexRay]], and "message data", which is the "dynamic segment" and are driven by a fixed [[Time-division multiple access|TDMA]] scheme. Running [[FlexRay]] with 2.5&nbsp;Mbit, an [[Rs485|RS-485]] physical layer and only one "coldstarter" would lead to a very similar behavior in respect to the application. Despite the similarities, no rail-manufacturer has considered [[FlexRay]], since they valuated a common solution higher than a multitude of better busses. Conversely, in 1999, the automotive industry evaluated MVB{{Citation needed|reason=|date=May 2021}} (in an extended 24&nbsp;Mbit/s version), but dropped it because of the costs, which should be unreasonably low for the mass-market of millions of vehicles.

== Wire train bus (WTB) ==
The wire train bus has been designed for international passenger trains with variable composition, consisting of up to 22 vehicles.

The medium consists of a duplicated [[twisted pair#STP|shielded twisted pair]] cable, which runs in the [[International Union of Railways|UIC]] cables between the vehicles.

The connector between the vehicles is the 18-pole UIC connector. Since connectors are exposed and can oxidize, a current pulse is applied at connection establishment to evaporate the [[Oxidation|oxide layer]], called '''fritting'''. The standard connector for the WTB nodes is a DIN 9 pin connector.

The physical level uses [[RS-485]] levels at 1&nbsp;Mbit/s [[Bit rate|data rate]]. The encoding uses a [[Manchester code|Manchester II code]] and a [[HDLC]] frame protocol with proper voltage balancing to avoid DC components in the [[galvanic isolation]] transformers. The Manchester decoder uses a phase/quadrature [[demodulation]] (not [[RS-485]], that operates with zero-crossings) which allows to span 750 m under worst-case conditions, especially when only the two extremity vehicles are equipped, as is the case with multiple traction for freight trains. No repeaters are foreseen since vehicles in between can have discharged batteries.

A unique property of the WTB is the '''train inauguration''' (In German: ''[[:de:Zugtaufe|Zugtaufe]]'') in which the newly connected vehicles receive an address in sequence and can identify the vehicle side (called ''port'' and ''starboard'' like in the marine) so that doors open on the correct side. Up to 32 addresses can be dynamically allocated. When two train compositions join, the addresses are reallocated to form a new composition of vehicles with a sequential address. Vehicles without WTB node ("c''onduction vehicles''") are not counted.

The frames have a maximum payload of 1024 bits.
The WTB operates cyclically to provide [[Deterministic (computing)|deterministic]] operation, with a period of 25 ms, used mainly for the traction control{{Citation needed|reason=|date=May 2021}}. The WTB also supports sporadic data transmission for diagnostics. The content of the periodic and sporadic frames is governed by the [[UIC 556]] standard.<ref>{{cite web|author=Prof. Dr. Hubert Kirrmann|date=1999-01-20|title=Train Communication Network IEC 61375 - 4 Wire Train Bus|url=http://lamspeople.epfl.ch/kirrmann/Pubs/TCN/IEC61375-4-WTB.ppt|url-status=dead|archive-url=https://web.archive.org/web/20110616204215/http://lamspeople.epfl.ch/kirrmann/Pubs/TCN/IEC61375-4-WTB.ppt|archive-date=2011-06-16|publisher=Ecole Polytechnique Fédérale de Lausanne (EPFL)|format=powerpoint}}</ref> Since frame size is limited, a version of [[Transmission Control Protocol|TCP]] with reduced overhead was used for message segmenting and reassembly, that at the same time allows to cope with changes in composition, called '''RTP''' ([[Real-Time Protocol]]).

=== Alternate train buses ===
{{Main|Ethernet train backbone}}

=== History ===
The WTB was derived from the German [[DIN]] bus developed by [[ABB Henschel]]{{Citation needed|reason=|date=May 2021}} (now [[Bombardier Transportation|Bombardier]]{{Citation needed|reason=|date=May 2021}}). It benefited from the phase/quadrature decoding provided by [[Italy]] and from an improved train inauguration provided by [[Switzerland]], based on the experience with the [[FSK multiple traction bus]] of [[ABB Secheron]], Geneva used in the [[Swiss Federal Railways|SBB freight trains]]{{Citation needed|reason=|date=May 2021}}. The physical layer of WTB shows similarities with the [[WorldFIP]] field bus ([[EN 50170|EN 50170 part 4]]) - its "voltage mode" did use 1&nbsp;Mbit/s and a maximum of 32 stations on the bus with a maximum length of 750&nbsp;meters, the use of [[Factory Instrumentation Protocol|FIP]] [[Transceiver|transceivers]] was studied early{{Citation needed|reason=|date=May 2021}} in the TCN evaluation, but the Phase/Quadrature decoding was used instead.


== Usage ==
== Usage ==
The TCN is used in most of the modern train control systems usually connecting the vehicle parts with a 18-pin [[UIC 568|UIC 558]] connector cable.
The TCN is used in most of the modern train control systems usually connecting the vehicles with an 18-pin [[UIC 558]], including:

* [[Deutsche Bahn]]: [[ICE T]], [[ICE-TD]], [[ICE 3]] and [[TRAXX#TRAXX P160 AC2|TRAXX AC2 P160]]{{Citation needed|reason=|date=May 2021}}
* [[Swiss Federal Railways]]: [[IC2000]] and EW IV ([[:de:Einheitswagen (Schweiz, Normalspur)#Einheitswagen IV|de]])
* [[Austrian Federal Railways]]: All [[Railjet]] and [[Talent (train)|Talent trains]]{{Citation needed|reason=|date=May 2021}}


== IEC 61375 standards ==
* Deutsche Bahn: [[ICE T]], [[ICE-TD]] and [[ICE 3]]
IEC 61375 is a suite of standards.
* Swiss Federal Railways: [[IC2000]] and [[EW IV]]
* Austrian Federal Railways: All Railjet and Talent trains


{| class=wikitable
== Wire Train Bus ==
|+ IEC 61375 suite of standards
The Wire Train Bus interconnect can be performed by an electric Twisted Pair cable or by an optical glas fiber. The standard connection is done with the UIC connector using a [[twisted pair#STP|Shielded Twisted Pair]] cable. The physical level is using digital [[RS-485]] transmission at 1 Mbit/s [[data rate]]. The encoding uses a[[manchester code|Manchester II code]] and a [[HDLC]] frame protocol. There is a maximum of 32 nodes on a maximum length of 860 meters (without repeaters). With a maximum of 1024 bit payload per telegram the system allows response times of typically 100µs.<ref>{{cite web|url=http://lamspeople.epfl.ch/kirrmann/Pubs/TCN/IEC61375-4-WTB.ppt|format=powerpoint|language=english|title=Train Communication Network IEC 61375 - 4 Wire Train Bus|date=1999-01-20|author=Prof. Dr. Hubert Kirrmann|publisher=Ecole Polytechnique Fédérale de Lausanne (EPFL)}}</ref>
! Code
! Title
! Abstract
|-
! IEC 61375-2-1:2012
| Electronic railway equipment - Train communication network (TCN) - Part 2-1: Wire Train Bus (WTB) || IEC 61375-2-1:2012 applies to data communication in Open Trains, i.e. it covers data communication between consists of the said open trains and data communication within the consists of the said open trains.
|-
! IEC 61375-2-2:2012
| Electronic railway equipment - Train communication network (TCN) - Part 2-2: Wire Train Bus conformance testing
| IEC 61375-2-2:2012 applies to all equipment and devices implemented according to IEC 61375-2-1, i.e. it covers the procedures to be applied to such equipment and devices when the conformance should be proven. The applicability of this standard to a TCN implementation allows for individual conformance checking of the implementation itself and is a pre-requisite for further interoperability checking between different TCN implementations.
|-
! IEC 61375-2-3:2015
| Electronic railway equipment - Train communication network (TCN) - Part 2-3: TCN communication profile
| IEC 61375-2-3:2015 specifies rules for the data exchange between consists in trains. The aggregation of these rules defines the TCN communication profile. The objective of the communication profile is to ensure interoperability between consists of the said trains with respect to the exchange of information. For this purpose it defines all items which are necessary for communication interoperability:


* an architecture with defined train directions related to different train views;
The Wire Train Bus shares some similarities with the earlier [[WorldFIP]] field bus (EN 50170 part 4) - it's "voltage mode" did use 1 Mbit/s and a maximum of 32 stations on the bus with a maximum length of 750 meters. The WorldFIP was based on the earlier work on the FIP field bus (originally "Flux d'Information vers le Processus", relabeled as Factory Instrumentation Protocol and later Flux Information Protocol) that was developed in the French NFC 46602 standard series.<ref>http://www.datenschutz-praxis.de/lexikon/enwiki/w/worldfip.html</ref> (The FIP standard effort is the French analogue of the German Profibus standard effort that ran both in the 1990ies where eventually the Profibus did prevail the market down the road). The WorldFIP connectors found usage in train equipment in France and North America until a joined effort on a common UIC train bus was started.
* a common functional addressing concept;
* common communication protocol for data exchange between functions;
* a set of services for train communication control.


The contents of the corrigendum of December 2015 and October 2016 have been included in this copy.
== Multifunction Vehicle Bus ==
|-
The Multifunction Vehicle Bus interconnect can be performed by an electric Twisted Pair cable or by an optical glas fiber. Unlike the WTB there is no requirement on an single international connector standard for the [[vehicle bus]] inside a coach, locomotive or train set - instead there are three predefined connector classes for OGF, EMD and ESD media. Using optical glas fibres (OGF) a line distance of 2000 meter is possible, using shielded twisted pair with RS 485 (EMD, electrical medium distance) the allowable length reaches 200 meter and with a simple backplane wiring (ESD, electrical short distance without galvanic isolation) the cable may be up to 20 meter in length. The plugs and sockets are the same as used by [[Profibus]] (with two 9-pin Sub-D sockets per electrical device).<ref name="clause3" />
! IEC TS 61375-2-4:2017
| Electronic railway equipment - Train communication network (TCN) - Part 2-4: TCN application profile
| IEC TS 61375-2-4:2017(E) applies to the applications in trains, i.e. it covers the application profile for functions belonging to the Train Control and Monitoring System (TCMS). The application profile is based on the TCN communication system for the data communication between consists of the said trains. This document provides for a data interface with parameters and addressing of TCMS functions based on the communication profile laid out in IEC 61375-2-3. This document is applicable in rolling stock requiring interoperable coupling and uncoupling. This part of IEC 61375 may be additionally applicable to closed trains and multiple unit trains when so agreed between purchaser and supplier.
|-
! IEC 61375-2-5:2014
| Electronic railway equipment - Train communication network (TCN) - Part 2-5: Ethernet train backbone
| IEC 61375-2-5:2014 defines Ethernet Train Backbone (ETB) requirements to fulfil open train data communication system based on Ethernet technology. Respect of this standard ensures interoperability between local Consist subnets whatever Consist network technology (see IEC 61375-1 for more details). All Consist network definitions should take into account this standard to preserve interoperability. This standard may be additionally applicable to closed trains and multiple-unit trains when so agreed between purchaser and supplier.
|-
! IEC 61375-2-6:2018
| Electronic railway equipment - Train communication network (TCN) - Part 2-6: On-board to ground communication
| IEC 61375-2-6:2018 establishes the specification for the communication between the on-board subsystems and the ground subsystems. The communication system, interfaces and protocols are specified as a mobile communication function, using any available wireless technology. This document provides requirements in order to:
a) select the wireless network on the basis of QoS parameters requested by the application;
b) allow TCMS and/or OMTS applications, installed on-board and communicating on the on-board communication network, to have a remote access to applications running on ground installations;
c) allow applications running on ground installations to have a remote access to the TCMS and/or OMTS applications installed on-board.
|-
! IEC TR 61375-2-7:2014
| Electronic railway equipment - Train communication network (TCN) - Part 2-7: Wireless Train Backbone (WLTB)
| IEC TR 61375-2-7:2014 describes the protocols stack of a radio based wireless train backbone which is used in distributed power freight trains. This part provides information on the physical layer, the data link layer, the application layer and distributed power application.
|-
! IEC 61375-2-8:2021
| Electronic railway equipment - Train communication network (TCN) - Part 2-8: TCN conformance test
| IEC 61375-2-8:2021 applies to all equipment and devices implemented according to IEC 61375-2-3:2015, IEC 61375-2-5:2014 and IEC 61375-3-4:2014, i.e. it covers the procedures to be applied to such equipment and devices when the conformance should be proven. The applicability of this document to a TCN implementation allows for individual conformance checking of the implementation itself, and is a pre-requisite for further interoperability checking between different TCN implementations.
|-
! IEC 61375-3-1:2012
| Electronic railway equipment - Train communication network (TCN) - Part 3-1: Multifunction Vehicle Bus (MVB)
| IEC 61375-3-1:2012 applies where MVB is required.
|-
! IEC 61375-3-2:2012
| Electronic railway equipment - Train communication network (TCN) - Part 3-2: MVB (Multifunction Vehicle Bus) conformance testing
| IEC 61375-3-2:2012 applies to all equipment and devices implemented according to IEC 61375-3-1, i.e. it covers the procedures to be applied to such equipment and devices when the conformance should be proven. The applicability of this standard to a TCN implementation allows for individual conformance checking of the implementation itself and is a pre-requisite for further interoperability checking between different TCN implementations.
|-
! IEC 61375-3-3
| Electronic railway equipment - Train communication network (TCN) - Part 3-3: CANopen Consist Network (CCN)
| IEC 61375-3-3:2012 specifies the data communication bus inside consists that are based on CANopen. CANopen was developed for use in, but is not limited to, industrial automation applications. These applications may include devices such as input/output modules, motion controllers, human machine interfaces, sensors, closed-loop controllers, encoders, hydraulic valves or programmable controllers. This part of IEC 61375 applies to all equipment and devices operated on a CANopen-based consist network within TCN architecture as described in IEC 61375-1.
|-
! IEC 61375-3-4:2014
| Electronic railway equipment - Train communication network (TCN) - Part 3-4: Ethernet Consist Network (ECN)
| IEC 61375-3-4:2014 specifies the data communication network inside a Consist based on Ethernet technology, the Ethernet Consist Network (ECN). The applicability of this part of IEC 61375 to the Consist Network allows for interoperability of individual vehicles within Open Trains in international traffic. This part of IEC 61375 may be additionally applicable to closed trains and Multiple Unit Trains when so agreed between purchaser and supplier.
|}


The media sources are usually connected by repeaters (signal generators) being joined on a central star coupler - the repeator is also responsible for the transition from one medium to another. The number of addressable devices depends on the configuration of the vehicle bus - there may be up to 4095 simple sensors/actuators (Class I) and up to 255 programmable stations (Class 2, with configuration slots). The physical level is using transmissions at a 1.5 Mbit/s [[data rate]] using [[manchester code|Manchester II encoding]]. The maximum distance is determined on the restriction of a maximum allowed reply delay of 42.7&nbsp;µs (where for longer distances a second mode is used that allows up to 83.4 with reduced throughput) while most system parts communicate with a response time of a typical 10µs.<ref name="clause3">{{cite web|url=http://lamspeople.epfl.ch/kirrmann/Pubs/TCN/IEC61375-3-MVB.ppt|format=powerpoint|language=english|title=Train Communication Network IEC 61375 - 3 Multifunction Vehicle Bus|date=1999-01-20|author=Prof. Dr. Hubert Kirrmann|publisher=Ecole Polytechnique Fédérale de Lausanne (EPFL)}}</ref>


=== Alternate Vehicle Buses ===
== Further reading ==
* [[Ethernet Train Backbone]]
The MVB frames are not compatible with [[IEC 61158|IEC 61158-2]] fieldbus frames as it omits most of the preamble synchronization and mute spacing times.<ref name="clause3" /> However most the modern development and test equipment can equally communicate WTB/MVB frames as well as Profibus frames on the line<!-- atleast that is what the device manufacturers say --> as the telegram structure is derived from Profibus.
* [[Ethernet Consist Network]]
* [[WorldFIP]]
* [[CANopen]]
* [[LonWorks|Lonworks]]
* [[PROFINET|Profinet]]
* [[FlexRay]]


== Notes and references ==
The MVB standard was introduced to replace the multitude of field buses in the train equipment. This was noted to be not the case for several reasons. While the CANopen and Profinet are controlled by international manufacturer associations targeting wide compatibility this is not the case for MVB such that even for the two main manufacturers some incompatibilities have been noticed. Unlike other standards the MVB standard is missing usage profiles for specific applications. And reality has shown that MVB modules are more expensive as much as ten times the price for [[CANopen|CANopen components]]. This has lead to the observation that - despite the advantages of the MVB field bus - many train vehicle buses are still built from CANopen and Profibus components. Additionally more and more components are added to rail vehicles that need far more bandwidth than any of the field buses can provide to the effect that Ethernet IP is found in some modern train sets (according to the EN 501555 profile). Still all the alternate vehicle buses are connected to the Wire Train Bus.<ref>{{cite web|url=http://www.all-electronics.de/media/file/4509|title=Informations- und Steuerungstechnik auf Schienenfahrzeugen - Bussysteme im Zug|work=elektronik industrie 8/9 2008|publisher=[[InnoTrans]] Special: Bahnelektronik|date=2008-09-14|language=de|quote= <!-- Ungeachtet seiner technischen Überlegenheit zeigt zum Beispiel der MVB drei praktische Schwächen. Es gibt erstens keine Nutzerorganisation wie bei CANopen oder Profinet, welche als Gralshüter den Bus pflegt. Dementsprechend gibt es zwischen den zwei Hauptanwendern Implementierungsunterschiede, welche die Interoperabilität erschweren. Es gibt zweitens keine verabschiedeten Anwendungsprofile und drittens ist der Preis pro Knoten im Vergleich zu CANopen etwa zehnmal höher. Deshalb hat sich neben MVB auch CANopen als Fahrzeugbus insbesondere in Reisezugwagen etabliert. Preis- und Bandbreitenprobleme zusammen lassen den Ruf nach leistungsfähigen standardisierten Transportprotokollen wie TCP/IP und UDP/IP laut werden. Ähnliche wie im industriellen Umfeld scheint sich damit Ethernet als robuster Backbone auch im Zug durchsetzen zu können. --> }}</ref>
{{reflist|2}}


== External Links ==
== External links ==
* {{cite journal|url=http://www.dca.ufrn.br/~affonso/DCA_STR/trabalhos/rt-diversos/The%20IEC-IEEE%20train%20communication%20network.pdf|format=PDF|title=The IEC/IEEE Train Communication Network|id=0272-1732/01|journal=IEEE Micro|volume=March–April 2001|pages=81–92|author=Hubert Kirrmann (ABB Corporate Research)|author2=Pierre A. Zuber (DaimlerChrysler Rail Systems)}}
<references/>
* {{cite web|url=http://www.tsd.org/papers/apta2002zuber.pps|format=powerpoint|title=The IEC / IEEE / UIC Train Communication Network for time-critical and safe on-board communication|publisher=Bombardier Transportation|date=2002-06-10|access-date=2011-09-11|archive-date=2009-12-22|archive-url=https://web.archive.org/web/20091222021401/http://www.tsd.org/papers/apta2002zuber.pps|url-status=dead}}
* {{cite journal|url=http://www.dca.ufrn.br/~affonso/DCA_STR/trabalhos/rt-diversos/The%20IEC-IEEE%20train%20communication%20network.pdf|format=pdf|title=The IEC/IEEE Train Communication Network|id=0272-1732/01|journal=IEEE Micro|volume=March-April 2001|pages=81-92|author1=Hubert Kirrmann (ABB Corporate Research)|author2=Pierre A. Zuber (DaimlerChrysler Rail Systems)}}
* {{cite web|url=http://www.tsd.org/papers/apta2002zuber.pps|format=powerpoint|language=en|title=The IEC / IEEE / UIC Train Communication Network for time-critical and safe on-board communication|publisher=Bombardier Transportation|date=2002-06-10}}


{{Automation protocols}}
[[de:Train Communication Network]]
{{Computer-bus}}
[[cs:Train Communication Network]]


[[Category:Rail technologies]]
[[Category:Rail technologies]]
[[Category:Serial buses]]
[[Category:Automated track-bound traffic]]

Latest revision as of 14:47, 20 October 2024

Train communication network (TCN)
Governing bodyTrainCom
Protocol information
Type of networkDevice bus, process control
Physical mediaTwisted pair, glass fiber
Network topologyBus
Device addressinghardware/software

The train communication network (TCN) is a hierarchical combination of two fieldbus networks for data transmission within trains. It consists of the Multifunction Vehicle Bus (MVB) inside each vehicle and of the Wire Train Bus (WTB) to connect the different vehicles. The TCN components have been standardized in IEC 61375.

Multifunction vehicle bus (MVB)

[edit]

The MVB connects individual nodes within a vehicle or closed train set. Unlike the WTB, there is no single connector standard for the MVB – instead, there are 3 defined media and connector classes:

  • OGF (Optical Glass Fibre) uses 240 micron fiber up to 2000 m
  • EMD (Electrical Medium Distance) uses shielded twisted pair with RS-485 transmitters and transformers for galvanic isolation, up to 200 m
  • ESD (Electrical Short Distance) uses simple backplane wiring without galvanic isolation, up to 20 m

The plugs and sockets are the same as used by Profibus, with 2 x DE-9 sockets per device.[1]

For OGF, the media sources are connected by repeaters[citation needed] (signal generators) being joined on a central star coupler. A repeater is also used for the transition between mediums.

There is no inauguration, the addresses are statically allocated. The number of addressable devices depends on the configuration of the vehicle bus – there may be up to 4095 simple sensors/actuators (Class I) and up to 255 programmable stations (Class 2, with configuration slots). The physical level is using transmissions at a 1.5 Mbit/s data rate using Manchester II encoding. The maximum distance is determined on the restriction of a maximum allowed reply delay of 42.7 μs (where for longer distances a second mode is used that allows up to 83.4 μs with reduced throughput, in case MVB is used for switchgear on the track side) while most system parts communicate with a response time of a typical 10 μs.[1]

History

[edit]

MVB was derived from the P215 bus developed by Brown Boveri Cie, Switzerland (now ABB), incorporating the publisher/subscriber principle from early field busses (DATRAS)[citation needed]. Back in 1984, IEC TC 57 defined the requirement specifications for busses to be used in electrical substation in collaboration with IEC SC65C. MVB presents many similarities with the FIP field bus (originally from French "Flux d'Information vers le Processus", relabeled as Factory Instrumentation Protocol or some references also use the hybrid "Flux Information Protocol") that was developed in the French NFC 46602 standard series.[2] Since both stemmed from the same IEC TC 57 specifications. This explains why MVB and FIP have similar operation (cyclic and event-driven), only the arbitration method in case of multiple access differs, as MVB used a binary bisection mode relying of collision detection while FIP piggy-backed a "look-at-me" bit over periodic data. Efforts to merge FIP and MVB failed at the stubbornness of the two parties[citation needed]. MVB, Profibus and WorldFIP were proposed as a substation bus in IEC TC 57, but to avoid parallel solutions, IEC TC 57 decided that none will be used and favored Ethernet as a common denominator[citation needed].

The MVB frames are not compatible with IEC 61158-2 fieldbus frames as it omits most of the preamble synchronization (which is not required if zero-crossing detection is possible).[1] The paradox situation is that the IEC 61158 field bus and MVB physical layer were developed by the same persons in IEC TC 57. The difference came from the fieldbus physical layer which assumes a phase-locked loop to decode the Manchester data, requiring a preamble to synthonize the decoder, while MVB operated principally with optical fibres[citation needed] where this method is useless, MVB's decoding relies on zero-crossing detectors and Manchester pattern recognition.

However most of the modern development and test equipment can equally communicate WTB/MVB frames as well as Profibus frames on the line[citation needed] as the telegram structure similar to Profibus.

The WorldFIP connectors found usage in train equipment in France and North America (by Bombardier) until a joined effort on a common UIC train bus was started (with Siemens and other industry partners) that led to the WTB/MVB standard in late 1999[citation needed].

Alternate vehicle buses

[edit]

The MVB standard was introduced to replace the multitude of field buses in the train equipment. Despite the advantages of the MVB field bus, many vehicle buses are still built from CANopen, WorldFIP (in France), LonWorks (in the USA) and Profibus components. While the WorldFIP, CANopen, Lonworks and Profinet are controlled by international manufacturer associations targeting a wide range of application, MVB was tailored to the rolling stock application, with the goal of plug-compatibility, and therefore allows no options. This was intentional as the fight between the field busses raged in the 1990s[citation needed] and the decision of the IEC that any of the eight[citation needed] field busses was a standard did not help plug-compatibility.

MVB modules are more expensive than for instance CANopen or LonWorks components. This is not due to the communication technology: most devices implement the MVB protocol machine in a small area of an FPGA which is today anyhow present, and the costliest component remains the connector[citation needed]. But railways certification is costly and not always needed for uncritical applications such as comfort and passenger information. When total cost of ownership is considered, the cost of the hardware elements can easily be outweighed by additional engineering costs in the railways market with its small series.

In the USA, the IEEE RTVISC evaluated both MVB and LON as vehicle and train bus. The IEEE finally decided to standardize both in IEEE 1374, with a clear separation of tasks[citation needed]:

  • MVB for critical operation such as traction control and signalling in the driver's cab,
  • LON for uncritical and slow data transfer, but low-cost connections such as passenger displays and diagnostics. This separation is not always observed[citation needed].

Additionally more and more components are added to rail vehicles that need far more bandwidth than any field bus can provide (e.g. for video surveillance), so switched Ethernet IEEE 802.3 with 100 Mbit/s is being introduced into train sets (according to the EN 50155 profile). Still all the alternate vehicle buses are connected to the Wire Train Bus.[3]

MVB is similar to FlexRay, both have the "process data", which is called "static segment" in FlexRay, and "message data", which is the "dynamic segment" and are driven by a fixed TDMA scheme. Running FlexRay with 2.5 Mbit, an RS-485 physical layer and only one "coldstarter" would lead to a very similar behavior in respect to the application. Despite the similarities, no rail-manufacturer has considered FlexRay, since they valuated a common solution higher than a multitude of better busses. Conversely, in 1999, the automotive industry evaluated MVB[citation needed] (in an extended 24 Mbit/s version), but dropped it because of the costs, which should be unreasonably low for the mass-market of millions of vehicles.

Wire train bus (WTB)

[edit]

The wire train bus has been designed for international passenger trains with variable composition, consisting of up to 22 vehicles.

The medium consists of a duplicated shielded twisted pair cable, which runs in the UIC cables between the vehicles.

The connector between the vehicles is the 18-pole UIC connector. Since connectors are exposed and can oxidize, a current pulse is applied at connection establishment to evaporate the oxide layer, called fritting. The standard connector for the WTB nodes is a DIN 9 pin connector.

The physical level uses RS-485 levels at 1 Mbit/s data rate. The encoding uses a Manchester II code and a HDLC frame protocol with proper voltage balancing to avoid DC components in the galvanic isolation transformers. The Manchester decoder uses a phase/quadrature demodulation (not RS-485, that operates with zero-crossings) which allows to span 750 m under worst-case conditions, especially when only the two extremity vehicles are equipped, as is the case with multiple traction for freight trains. No repeaters are foreseen since vehicles in between can have discharged batteries.

A unique property of the WTB is the train inauguration (In German: Zugtaufe) in which the newly connected vehicles receive an address in sequence and can identify the vehicle side (called port and starboard like in the marine) so that doors open on the correct side. Up to 32 addresses can be dynamically allocated. When two train compositions join, the addresses are reallocated to form a new composition of vehicles with a sequential address. Vehicles without WTB node ("conduction vehicles") are not counted.

The frames have a maximum payload of 1024 bits.

The WTB operates cyclically to provide deterministic operation, with a period of 25 ms, used mainly for the traction control[citation needed]. The WTB also supports sporadic data transmission for diagnostics. The content of the periodic and sporadic frames is governed by the UIC 556 standard.[4] Since frame size is limited, a version of TCP with reduced overhead was used for message segmenting and reassembly, that at the same time allows to cope with changes in composition, called RTP (Real-Time Protocol).

Alternate train buses

[edit]

History

[edit]

The WTB was derived from the German DIN bus developed by ABB Henschel[citation needed] (now Bombardier[citation needed]). It benefited from the phase/quadrature decoding provided by Italy and from an improved train inauguration provided by Switzerland, based on the experience with the FSK multiple traction bus of ABB Secheron, Geneva used in the SBB freight trains[citation needed]. The physical layer of WTB shows similarities with the WorldFIP field bus (EN 50170 part 4) - its "voltage mode" did use 1 Mbit/s and a maximum of 32 stations on the bus with a maximum length of 750 meters, the use of FIP transceivers was studied early[citation needed] in the TCN evaluation, but the Phase/Quadrature decoding was used instead.

Usage

[edit]

The TCN is used in most of the modern train control systems usually connecting the vehicles with an 18-pin UIC 558, including:

IEC 61375 standards

[edit]

IEC 61375 is a suite of standards.

IEC 61375 suite of standards
Code Title Abstract
IEC 61375-2-1:2012 Electronic railway equipment - Train communication network (TCN) - Part 2-1: Wire Train Bus (WTB) IEC 61375-2-1:2012 applies to data communication in Open Trains, i.e. it covers data communication between consists of the said open trains and data communication within the consists of the said open trains.
IEC 61375-2-2:2012 Electronic railway equipment - Train communication network (TCN) - Part 2-2: Wire Train Bus conformance testing IEC 61375-2-2:2012 applies to all equipment and devices implemented according to IEC 61375-2-1, i.e. it covers the procedures to be applied to such equipment and devices when the conformance should be proven. The applicability of this standard to a TCN implementation allows for individual conformance checking of the implementation itself and is a pre-requisite for further interoperability checking between different TCN implementations.
IEC 61375-2-3:2015 Electronic railway equipment - Train communication network (TCN) - Part 2-3: TCN communication profile IEC 61375-2-3:2015 specifies rules for the data exchange between consists in trains. The aggregation of these rules defines the TCN communication profile. The objective of the communication profile is to ensure interoperability between consists of the said trains with respect to the exchange of information. For this purpose it defines all items which are necessary for communication interoperability:
  • an architecture with defined train directions related to different train views;
  • a common functional addressing concept;
  • common communication protocol for data exchange between functions;
  • a set of services for train communication control.

The contents of the corrigendum of December 2015 and October 2016 have been included in this copy.

IEC TS 61375-2-4:2017 Electronic railway equipment - Train communication network (TCN) - Part 2-4: TCN application profile IEC TS 61375-2-4:2017(E) applies to the applications in trains, i.e. it covers the application profile for functions belonging to the Train Control and Monitoring System (TCMS). The application profile is based on the TCN communication system for the data communication between consists of the said trains. This document provides for a data interface with parameters and addressing of TCMS functions based on the communication profile laid out in IEC 61375-2-3. This document is applicable in rolling stock requiring interoperable coupling and uncoupling. This part of IEC 61375 may be additionally applicable to closed trains and multiple unit trains when so agreed between purchaser and supplier.
IEC 61375-2-5:2014 Electronic railway equipment - Train communication network (TCN) - Part 2-5: Ethernet train backbone IEC 61375-2-5:2014 defines Ethernet Train Backbone (ETB) requirements to fulfil open train data communication system based on Ethernet technology. Respect of this standard ensures interoperability between local Consist subnets whatever Consist network technology (see IEC 61375-1 for more details). All Consist network definitions should take into account this standard to preserve interoperability. This standard may be additionally applicable to closed trains and multiple-unit trains when so agreed between purchaser and supplier.
IEC 61375-2-6:2018 Electronic railway equipment - Train communication network (TCN) - Part 2-6: On-board to ground communication IEC 61375-2-6:2018 establishes the specification for the communication between the on-board subsystems and the ground subsystems. The communication system, interfaces and protocols are specified as a mobile communication function, using any available wireless technology. This document provides requirements in order to:

a) select the wireless network on the basis of QoS parameters requested by the application; b) allow TCMS and/or OMTS applications, installed on-board and communicating on the on-board communication network, to have a remote access to applications running on ground installations; c) allow applications running on ground installations to have a remote access to the TCMS and/or OMTS applications installed on-board.

IEC TR 61375-2-7:2014 Electronic railway equipment - Train communication network (TCN) - Part 2-7: Wireless Train Backbone (WLTB) IEC TR 61375-2-7:2014 describes the protocols stack of a radio based wireless train backbone which is used in distributed power freight trains. This part provides information on the physical layer, the data link layer, the application layer and distributed power application.
IEC 61375-2-8:2021 Electronic railway equipment - Train communication network (TCN) - Part 2-8: TCN conformance test IEC 61375-2-8:2021 applies to all equipment and devices implemented according to IEC 61375-2-3:2015, IEC 61375-2-5:2014 and IEC 61375-3-4:2014, i.e. it covers the procedures to be applied to such equipment and devices when the conformance should be proven. The applicability of this document to a TCN implementation allows for individual conformance checking of the implementation itself, and is a pre-requisite for further interoperability checking between different TCN implementations.
IEC 61375-3-1:2012 Electronic railway equipment - Train communication network (TCN) - Part 3-1: Multifunction Vehicle Bus (MVB) IEC 61375-3-1:2012 applies where MVB is required.
IEC 61375-3-2:2012 Electronic railway equipment - Train communication network (TCN) - Part 3-2: MVB (Multifunction Vehicle Bus) conformance testing IEC 61375-3-2:2012 applies to all equipment and devices implemented according to IEC 61375-3-1, i.e. it covers the procedures to be applied to such equipment and devices when the conformance should be proven. The applicability of this standard to a TCN implementation allows for individual conformance checking of the implementation itself and is a pre-requisite for further interoperability checking between different TCN implementations.
IEC 61375-3-3 Electronic railway equipment - Train communication network (TCN) - Part 3-3: CANopen Consist Network (CCN) IEC 61375-3-3:2012 specifies the data communication bus inside consists that are based on CANopen. CANopen was developed for use in, but is not limited to, industrial automation applications. These applications may include devices such as input/output modules, motion controllers, human machine interfaces, sensors, closed-loop controllers, encoders, hydraulic valves or programmable controllers. This part of IEC 61375 applies to all equipment and devices operated on a CANopen-based consist network within TCN architecture as described in IEC 61375-1.
IEC 61375-3-4:2014 Electronic railway equipment - Train communication network (TCN) - Part 3-4: Ethernet Consist Network (ECN) IEC 61375-3-4:2014 specifies the data communication network inside a Consist based on Ethernet technology, the Ethernet Consist Network (ECN). The applicability of this part of IEC 61375 to the Consist Network allows for interoperability of individual vehicles within Open Trains in international traffic. This part of IEC 61375 may be additionally applicable to closed trains and Multiple Unit Trains when so agreed between purchaser and supplier.


Further reading

[edit]

Notes and references

[edit]
  1. ^ a b c Prof. Dr. Hubert Kirrmann (1999-01-20). "Train Communication Network IEC 61375 – 3 Multifunction Vehicle Bus". Ecole Polytechnique Fédérale de Lausanne (EPFL). Archived from the original (powerpoint) on 2017-04-13.
  2. ^ WorldFIP Archived 2012-08-03 at archive.today
  3. ^ "Informations – und Steuerungstechnik auf Schienenfahrzeugen – Bussysteme im Zug". elektronik industrie 8/9 2008 (in German). InnoTrans Special: Bahnelektronik. 2008-09-14. Archived from the original on 2012-04-02. Retrieved 2011-09-16.
  4. ^ Prof. Dr. Hubert Kirrmann (1999-01-20). "Train Communication Network IEC 61375 - 4 Wire Train Bus". Ecole Polytechnique Fédérale de Lausanne (EPFL). Archived from the original (powerpoint) on 2011-06-16.
[edit]