Beryllium-10: Difference between revisions
m Disambiguating links to Solution (link changed to Solution (chemistry)) using DisamAssist. |
Fix Linter errors. |
||
(15 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Isotope of beryllium}} |
{{Short description|Isotope of beryllium}} |
||
{{Infobox isotope |
{{Infobox isotope |
||
|image= |
|image= |
||
|num_neutrons = 6 |
|num_neutrons = 6 |
||
|num_protons = 4 |
|num_protons = 4 |
||
Line 9: | Line 9: | ||
|symbol=Be |
|symbol=Be |
||
|decay_product = '''<sup>10</sup>B''' (bold for stable nuclides) |
|decay_product = '''<sup>10</sup>B''' (bold for stable nuclides) |
||
|halflife= 1. |
|halflife= {{val|1.39|e=6|u=years}} |
||
|error_halflife = |
|||
|mass= |
|mass= |
||
|excess_energy = |
|excess_energy = |
||
|binding_energy = {{val|64,976.3|0.08}}<!-- keV, per WD, ame2016 --> |
|||
|error1 = |
|||
|binding_energy = 6497.631''8'' |
|||
|error2 = |
|||
|spin =0+ |
|spin =0+ |
||
|decay_mode1= β<sup>−</sup> |
|decay_mode1= β<sup>−</sup> |
||
Line 21: | Line 18: | ||
}} |
}} |
||
'''Beryllium-10''' (<sup>10</sup>Be) is a [[radioactivity|radioactive]] [[Isotopes of beryllium|isotope]] of [[beryllium]]. It is formed in the Earth's atmosphere mainly by [[cosmic ray spallation]] of nitrogen and oxygen.<ref name="Kov10">{{cite journal|author1=G.A. Kovaltsov|author2=I.G. Usoskin|journal=Earth Planet. Sci. Lett.| volume=291|issue=1–4| year=2010| pages=182–199|title=A new 3D numerical model of cosmogenic nuclide <sup>10</sup>Be production in the atmosphere|doi=10.1016/j.epsl.2010.01.011|bibcode=2010E&PSL.291..182K}}</ref><ref name="Beer12">{{cite book|author1=J. Beer|author2=K. McCracken|author3 = R. von Steiger|year=2012| |
'''Beryllium-10''' (<sup>10</sup>Be) is a [[radioactivity|radioactive]] [[Isotopes of beryllium|isotope]] of [[beryllium]]. It is formed in the Earth's atmosphere mainly by [[cosmic ray spallation]] of nitrogen and oxygen.<ref name="Kov10">{{cite journal|author1=G.A. Kovaltsov|author2=I.G. Usoskin|journal=Earth Planet. Sci. Lett.| volume=291|issue=1–4| year=2010| pages=182–199|title=A new 3D numerical model of cosmogenic nuclide <sup>10</sup>Be production in the atmosphere|doi=10.1016/j.epsl.2010.01.011|bibcode=2010E&PSL.291..182K}}</ref><ref name="Beer12">{{cite book|author1=J. Beer|author2=K. McCracken|author3 = R. von Steiger|year=2012|publisher = Physics of Earth and Space Environments, Springer, Berlin |title=Cosmogenic radionuclides: theory and applications in the terrestrial and space environments| volume= 26| doi=10.1007/978-3-642-14651-0|series=Physics of Earth and Space Environments|isbn=978-3-642-14650-3|s2cid=55739885}}</ref><ref name="Pol16">{{cite journal|author1=S.V. Poluianov|author2=G.A. Kovaltsov|author3=A.L. Mishev|author4=I.G. Usoskin|journal=J. Geophys. Res. Atmos.| volume=121|issue=13| year=2016| pages=8125–8136|title= Production of cosmogenic isotopes <sup>7</sup>Be, <sup>10</sup>Be, <sup>14</sup>C, <sup>22</sup>Na, and <sup>36</sup>Cl in the atmosphere: Altitudinal profiles of yield functions|doi=10.1002/2016JD025034|arxiv=1606.05899|bibcode=2016JGRD..121.8125P|s2cid=119301845}}</ref> Beryllium-10 has a [[half-life]] of 1.39 × 10<sup>6</sup> years,<ref name="Korschinek">{{cite journal|author1=G. Korschinek|author2=A. Bergmaier|author3=T. Faestermann|author4=U. C. Gerstmann|journal=Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms| volume=268|issue=2| year=2010| pages=187–191|title=A new value for the half-life of <sup>10</sup>Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting|doi=10.1016/j.nimb.2009.09.020|bibcode=2010NIMPB.268..187K}}</ref><ref name="Chmeleff">{{cite journal|author1=J. Chmeleff|author2=F. von Blanckenburg|author3=K. Kossert|author4=D. Jakob|journal=Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms| volume=268|issue=2| year=2010| pages=192–199|title=Determination of the <sup>10</sup>Be half-life by multicollector ICP-MS and liquid scintillation counting| doi=10.1016/j.nimb.2009.09.012|bibcode=2010NIMPB.268..192C|url=http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:239521}}</ref> and decays by [[beta decay]] to stable [[isotopes of boron|boron-10]] with a maximum energy of 556.2 keV. It decays through the reaction <sup>10</sup>Be→<sup>10</sup>B + e<sup>−</sup>. Light elements in the atmosphere react with high energy [[galactic cosmic ray]] particles. The [[spallation]] of the reaction products is the source of <sup>10</sup>Be (t, u particles like n or p): |
||
:<sup>14</sup>N(t,5u)<sup>10</sup>Be; Example: <sup>14</sup>N(n,p α)<sup>10</sup>Be |
:<sup>14</sup>N(t,5u)<sup>10</sup>Be; Example: <sup>14</sup>N(n,p α)<sup>10</sup>Be |
||
:<sup>16</sup>O(t,7u)<sup>10</sup>Be |
:<sup>16</sup>O(t,7u)<sup>10</sup>Be |
||
Line 29: | Line 26: | ||
Because beryllium tends to exist in [[Solution (chemistry)|solution]]s below about [[pH]] 5.5 (and rainwater above many industrialized areas can have a pH less than 5), it will dissolve and be transported to the Earth's surface via rainwater. As the [[precipitation (chemistry)|precipitation]] quickly becomes more [[alkaline]], beryllium drops out of solution. Cosmogenic <sup>10</sup>Be thereby accumulates at the [[soil]] surface, where its relatively long [[half-life]] (1.387 million years) permits a long residence time before decaying to <sup>10</sup>[[boron|B]]. |
Because beryllium tends to exist in [[Solution (chemistry)|solution]]s below about [[pH]] 5.5 (and rainwater above many industrialized areas can have a pH less than 5), it will dissolve and be transported to the Earth's surface via rainwater. As the [[precipitation (chemistry)|precipitation]] quickly becomes more [[alkaline]], beryllium drops out of solution. Cosmogenic <sup>10</sup>Be thereby accumulates at the [[soil]] surface, where its relatively long [[half-life]] (1.387 million years) permits a long residence time before decaying to <sup>10</sup>[[boron|B]]. |
||
<sup>10</sup>Be and its daughter product have been used to examine [[soil erosion]], [[soil formation]] from [[regolith]], the development of [[laterite|lateritic soils]] and the age of [[ice core]]s.<ref name="BalcoShuster2009">{{cite journal|last1= Balco|first1= Greg|last2= Shuster|first2= David L.|year= 2009|title= <sup>26</sup>Al-<sup>10</sup>Be–<sup>21</sup>Ne burial dating|journal= [[Earth and Planetary Science Letters]]|volume= 286|issue= 3–4|pages= 570–575|doi= 10.1016/j.epsl.2009.07.025|url= http://www.bgc.org/shuster/BalcoShuster(2009b)_Al_Be_Ne_burial_dating.pdf|bibcode= 2009E&PSL.286..570B|access-date= 2012-12-10|archive-date= 2015-09-23|archive-url= https://web.archive.org/web/20150923184215/http://www.bgc.org/shuster/BalcoShuster(2009b)_Al_Be_Ne_burial_dating.pdf|url-status= dead}}</ref> It is also formed in nuclear explosions by a reaction of [[fast neutron]]s with [[carbon-13|<sup>13</sup>C]] in the carbon dioxide in air, and is one of the historical indicators of past activity at nuclear test sites. |
<sup>10</sup>Be and its daughter product have been used to examine [[soil erosion]], [[soil formation]] from [[regolith]], the development of [[laterite|lateritic soils]] and the age of [[ice core]]s.<ref name="BalcoShuster2009">{{cite journal|last1= Balco|first1= Greg|last2= Shuster|first2= David L.|year= 2009|title= <sup>26</sup>Al-<sup>10</sup>Be–<sup>21</sup>Ne burial dating|journal= [[Earth and Planetary Science Letters]]|volume= 286|issue= 3–4|pages= 570–575|doi= 10.1016/j.epsl.2009.07.025|url= http://www.bgc.org/shuster/BalcoShuster(2009b)_Al_Be_Ne_burial_dating.pdf|bibcode= 2009E&PSL.286..570B|access-date= 2012-12-10|archive-date= 2015-09-23|archive-url= https://web.archive.org/web/20150923184215/http://www.bgc.org/shuster/BalcoShuster(2009b)_Al_Be_Ne_burial_dating.pdf|url-status= dead}}</ref> It is also formed in nuclear explosions by a reaction of [[fast neutron]]s with [[carbon-13|<sup>13</sup>C]] in the carbon dioxide in air, and is one of the historical indicators of past activity at nuclear test sites. <sup>10</sup>Be decay is a significant isotope used as a [[proxy data]] measure for [[cosmogenic nuclide]]s to characterize solar and extra-solar attributes of the past from terrestrial samples.<ref name="Paleari">{{cite journal | last = Paleari | first = Chiara I. | author2 = F. Mekhaldi |author3 = F. Adolphi |author4 = M. Christl |author5 = C. Vockenhuber |author6 = P. Gautschi |author7 = J. Beer |author8 = N. Brehm |author9 = T. Erhardt |author10 = H.-A. Synal |author11 = L. Wacker |author12 = F. Wilhelms |author13 = R. Muscheler | title = Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP | journal = Nat. Commun. | volume = 13 | issue = 214 | date = 2022 | page = 214 | doi = 10.1038/s41467-021-27891-4 | pmid = 35017519 | pmc = 8752676 | bibcode = 2022NatCo..13..214P |doi-access = free }}</ref> |
||
The rate of production of beryllium-10 depends on the activity of the sun. When solar activity is low (low numbers of [[sunspot]]s and low [[solar wind]]), the barrier against cosmic rays that exists beyond the [[termination shock]] is weakened (see [[Cosmic ray#Cosmic-ray flux]]). This means more beryllium-10 is produced, and it can be detected millennia later. Beryllium-10 can thus serve as a marker of [[Miyake event]]s, such as the [[774-775 carbon-14 spike]]. There can be an effect on climate<ref>{{cite journal |last1=Philip Ball |title=Flickering sun switched climate |journal=Nature |date=Dec 19, 2001 |doi=10.1038/news011220-9}}</ref> (see [[Homeric Minimum]]). |
|||
==See also== |
==See also== |
||
*[[Surface exposure dating]] |
* [[Surface exposure dating]] |
||
{{Isotope|element=beryllium |
{{Isotope sequence |
||
|element=beryllium |
|||
|lighter=[[Beryllium-9]] |
|lighter=[[Beryllium-9]] |
||
|heavier=[[Beryllium-11]] |
|heavier=[[Beryllium-11]] |
||
|before=[[lithium-11]] '''([[Beta decay|β<sup>−</sup>]], [[neutron emission|n]]) |
|before=[[lithium-11]] '''([[Beta decay|β<sup>−</sup>]], [[neutron emission|n]])''' |
||
|after=[[boron-10]] |
|after=[[boron-10]] |
||
}} |
}} |
||
==References== |
==References== |
||
{{Reflist}} |
{{Reflist|2}} |
||
{{Authority control}} |
{{Authority control}} |
||
[[Category:Isotopes of beryllium]] |
[[Category:Isotopes of beryllium]] |
||
[[Category:Radionuclides used in radiometric dating]] |
Latest revision as of 04:59, 22 October 2024
General | |
---|---|
Symbol | 10Be |
Names | beryllium-10, 10Be, Be-10 |
Protons (Z) | 4 |
Neutrons (N) | 6 |
Nuclide data | |
Natural abundance | trace |
Half-life (t1/2) | 1.39×106 years |
Spin | 0+ |
Binding energy | 64976.3±0.08 keV |
Decay modes | |
Decay mode | Decay energy (MeV) |
β− | 0.5560[1][2] |
Isotopes of beryllium Complete table of nuclides |
Beryllium-10 (10Be) is a radioactive isotope of beryllium. It is formed in the Earth's atmosphere mainly by cosmic ray spallation of nitrogen and oxygen.[3][4][5] Beryllium-10 has a half-life of 1.39 × 106 years,[6][7] and decays by beta decay to stable boron-10 with a maximum energy of 556.2 keV. It decays through the reaction 10Be→10B + e−. Light elements in the atmosphere react with high energy galactic cosmic ray particles. The spallation of the reaction products is the source of 10Be (t, u particles like n or p):
- 14N(t,5u)10Be; Example: 14N(n,p α)10Be
- 16O(t,7u)10Be
Because beryllium tends to exist in solutions below about pH 5.5 (and rainwater above many industrialized areas can have a pH less than 5), it will dissolve and be transported to the Earth's surface via rainwater. As the precipitation quickly becomes more alkaline, beryllium drops out of solution. Cosmogenic 10Be thereby accumulates at the soil surface, where its relatively long half-life (1.387 million years) permits a long residence time before decaying to 10B.
10Be and its daughter product have been used to examine soil erosion, soil formation from regolith, the development of lateritic soils and the age of ice cores.[8] It is also formed in nuclear explosions by a reaction of fast neutrons with 13C in the carbon dioxide in air, and is one of the historical indicators of past activity at nuclear test sites. 10Be decay is a significant isotope used as a proxy data measure for cosmogenic nuclides to characterize solar and extra-solar attributes of the past from terrestrial samples.[9]
The rate of production of beryllium-10 depends on the activity of the sun. When solar activity is low (low numbers of sunspots and low solar wind), the barrier against cosmic rays that exists beyond the termination shock is weakened (see Cosmic ray#Cosmic-ray flux). This means more beryllium-10 is produced, and it can be detected millennia later. Beryllium-10 can thus serve as a marker of Miyake events, such as the 774-775 carbon-14 spike. There can be an effect on climate[10] (see Homeric Minimum).
See also
[edit]
References
[edit]- ^ "Decay Radiation: 10Be". National Nuclear Data Center. Brookhaven National Laboratory. Retrieved 2013-10-16.
- ^ Tilley, D.R.; Kelley, J.H.; Godwin, J.L.; Millener, D.J.; Purcell, J.E.; Sheu, C.G.; Weller, H.R. (2004). "Energy levels of light nuclei". Nuclear Physics A. 745 (3–4): 155–362. doi:10.1016/j.nuclphysa.2004.09.059.
- ^ G.A. Kovaltsov; I.G. Usoskin (2010). "A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere". Earth Planet. Sci. Lett. 291 (1–4): 182–199. Bibcode:2010E&PSL.291..182K. doi:10.1016/j.epsl.2010.01.011.
- ^ J. Beer; K. McCracken; R. von Steiger (2012). Cosmogenic radionuclides: theory and applications in the terrestrial and space environments. Physics of Earth and Space Environments. Vol. 26. Physics of Earth and Space Environments, Springer, Berlin. doi:10.1007/978-3-642-14651-0. ISBN 978-3-642-14650-3. S2CID 55739885.
- ^ S.V. Poluianov; G.A. Kovaltsov; A.L. Mishev; I.G. Usoskin (2016). "Production of cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl in the atmosphere: Altitudinal profiles of yield functions". J. Geophys. Res. Atmos. 121 (13): 8125–8136. arXiv:1606.05899. Bibcode:2016JGRD..121.8125P. doi:10.1002/2016JD025034. S2CID 119301845.
- ^ G. Korschinek; A. Bergmaier; T. Faestermann; U. C. Gerstmann (2010). "A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 268 (2): 187–191. Bibcode:2010NIMPB.268..187K. doi:10.1016/j.nimb.2009.09.020.
- ^ J. Chmeleff; F. von Blanckenburg; K. Kossert; D. Jakob (2010). "Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 268 (2): 192–199. Bibcode:2010NIMPB.268..192C. doi:10.1016/j.nimb.2009.09.012.
- ^ Balco, Greg; Shuster, David L. (2009). "26Al-10Be–21Ne burial dating" (PDF). Earth and Planetary Science Letters. 286 (3–4): 570–575. Bibcode:2009E&PSL.286..570B. doi:10.1016/j.epsl.2009.07.025. Archived from the original (PDF) on 2015-09-23. Retrieved 2012-12-10.
- ^ Paleari, Chiara I.; F. Mekhaldi; F. Adolphi; M. Christl; C. Vockenhuber; P. Gautschi; J. Beer; N. Brehm; T. Erhardt; H.-A. Synal; L. Wacker; F. Wilhelms; R. Muscheler (2022). "Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP". Nat. Commun. 13 (214): 214. Bibcode:2022NatCo..13..214P. doi:10.1038/s41467-021-27891-4. PMC 8752676. PMID 35017519.
- ^ Philip Ball (Dec 19, 2001). "Flickering sun switched climate". Nature. doi:10.1038/news011220-9.