Jump to content

Multi-scale camouflage: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Monkbot (talk | contribs)
m Task 20: replace {lang-??} templates with {langx|??} ‹See Tfd› (Replaced 1);
 
(175 intermediate revisions by 51 users not shown)
Line 1: Line 1:
{{Short description|Type of camouflage that combines patterns}}
[[File:CADPAT digital camouflage pattern (Temperate Woodland variant).jpg|upright|thumb|228px|The [[Canadian Forces]] were the first army to issue [[pixellated]] digital [[military camouflage|camouflage]] for all units with their disruptively patterned [[CADPAT]], shown here in its 'Temperate Woodland' variant.]]
{{Good article}}
[[File:CADPAT digital camouflage pattern (Temperate Woodland variant).jpg|upright|thumb|228px|The [[Canadian Forces]] were the first army to issue [[pixellated]] digital multi-scale [[military camouflage|camouflage]] for all units with their disruptively patterned [[CADPAT]], issued in 2002, shown here in its 'Temperate Woodland' variant.]]
{{Use British English|date=April 2014}}
{{Use British English|date=April 2014}}
{{Camouflage}}


'''Digital camouflage''' is a type of [[military camouflage|camouflage pattern]] combining micro- and macro patterns, often though not necessarily with a [[pixellated]] look created with computer assistance. The function is to provide [[military camouflage]] over a range of distances, or equivalently over a [[scale invariance|range of scales]], in the manner of [[fractals]]. Not all multiscale patterns are pixellated, and not all pixellated patterns work at different scales, so being pixelated does not of itself guarantee improved performance.
'''Multi-scale camouflage''' is a type of [[military camouflage]] combining patterns at two or more scales, often (though not necessarily) with a '''digital camouflage''' pattern created with computer assistance. The function is to provide [[camouflage]] over a range of distances, or equivalently over a [[scale invariance|range of scales]] (scale-invariant camouflage), in the manner of [[fractal]]s, so some approaches are called '''fractal camouflage'''. Not all multiscale patterns are composed of [[Pixelation|rectangular pixels]], even if they were designed using a computer. Further, not all pixellated patterns work at different scales, so being pixellated or digital does not of itself guarantee improved performance.


The root of the modern digital camouflage patterns can be traced back to 1930s experiments in Europe for the [[Bundeswehr|German]] and [[Soviet army|Soviet]] armies. Modern digital patterns date to the 1970s, first with Canadian development of [[CADPAT]] and then with [[U.S. Army]] work led by Timothy O'Neill which created [[MARPAT]].
The first standardized pattern to be issued was the single-scale Italian ''[[telo mimetico]]''. The root of the modern multi-scale camouflage patterns can be traced back to 1930s experiments in Europe for the [[Wehrmacht|German]] and [[Red Army|Soviet]] armies. This was followed by the Canadian development of the Canadian Disruptive Pattern ([[CADPAT]]), first issued in 2002, and then with US work which created the Marine pattern ([[MARPAT]]), launched between 2002 and 2004.


==Principles==
==Principle==
[[File:Army Combat Uniform.jpg|thumb|upright|left|The [[Universal Camouflage Pattern]] provided insufficient contrast to [[disruptive coloration|disrupt]] a soldier's outline effectively, appearing at a moderate distance as a single col<!--British English-->our.]]
The basis of digital camouflage are three basic principles:


===Scale invariance===
* ''Bi- or multi scale patterns'' - add high spatial frequency texture components that add concealment at closer ranges
The scale of camouflage patterns is related to their function. Large structures need larger patterns than individual soldiers to disrupt their shape. At the same time, large patterns are more effective from afar, while small scale patterns work better up close.<ref>{{cite web |last=Craemer |first=Guy |title=Dual Texture - U.S. Army digital camouflage |url=http://www.uniteddynamics.com/dualtex/ |url-status=usurped |archive-url=https://web.archive.org/web/20130927134901/http://www.uniteddynamics.com/dualtex/ |archive-date=27 September 2013 |access-date=27 September 2012 |publisher=United Dynamics Corp.}}</ref> Traditional single scale patterns work well in their optimal range from the observer, but an observer at other distances will not see the pattern optimally. Nature itself is very often [[fractal]], where plants and rock formations exhibit similar [[Patterns in nature|patterns]] across several magnitudes of scale. The idea behind multi-scale patterns is both to mimic the [[self-similar]]ity of nature, and also to offer [[scale invariance|scale invariant]] or so-called fractal camouflage.<ref name="Hambling2012">{{cite magazine |last1=Hambling |first1=David |title=Invisibility cloaks are almost a reality with fractal-camouflage clothing |url=https://www.wired.co.uk/article/hiding-in-plain-sight |magazine=Wired |issue=June 2012 |date=8 May 2012}}</ref><ref>{{cite web |last=Vergun |first=David |title=Army testing combat boots, camouflage patterns |url=http://www.army.mil/article/121866/Army_testing_combat_boots__camouflage_patterns/ |publisher=United States Army |access-date=28 April 2014}}</ref>
* ''Dithering'' - the production of intermediate colours where two fields of colour meet
* ''Edge effect'' - to modify visual processing of edges


Animals such as the [[flounder]] have the ability to [[active camouflage|adapt their camouflage patterns]] to suit the background, and they do so extremely effectively,<ref name=Akkaynak/> selecting patterns that match the spatial scales of the current background.<ref name=Akkaynak>{{cite journal |last1=Akkaynak |first1=Derek|display-authors=etal |title=Changeable camouflage: how well can flounder resemble the colour and spatial scale of substrates in their natural habitats? |journal=Royal Society Open Science |date=March 2017 |volume=4 |page=160824 |doi=10.1098/rsos.160824 |quote=Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. |pmc=5383827 |pmid=28405370 |issue=3|bibcode=2017RSOS....460824A}}</ref>
Of the three points, the last is somewhat speculative.


<gallery mode=packed heights=160>
===Multi scalar patterns===
File:Flecktarn.jpg|Modern German [[Flecktarn]] 1990, developed from a 1938 pattern, is a non-digital pattern which [[scale invariance|works at different distances]].
[[File:Waffen-SS Camouflage.jpg|left|right|The [[Waffen-SS]] standard 1944 pattern showing the combination of large and small scale pattern combined in a single scheme]]
File:Flounder camo md (cropped).jpg|A [[flounder]]'s [[disruptive coloration|disruptive]] and [[active camouflage]]
The idea of a multi-scale pattern extends back to the [[interwar period]] in Europe. Early printed patterns of camouflage, like the 1929 Italian ''[[telo mimetico]]'' has larger and smaller elements in the patterns, but it was not until German experiments during the 2nd World War that true complex multi-scale patterns wars developed. Traditional single scale patterns work well in their optimal range from the observer, however an observer at too close or too far away will not see the pattern optimally. Nature itself too is very often fractal, where plants and rock formation exhibit similar patterns across several magnitudes of scale. The idea behind multi scale patterns is both to mimic the cross-scale [[self-similar]]ity of nature, and also to offer camouflage and close-range in addition to the traditional combat range camouflage.<ref>{{cite web|last=Vergun|first=David|title=Army testing combat boots, camouflage patterns|url=http://www.army.mil/article/121866/Army_testing_combat_boots__camouflage_patterns/|work=News|publisher=United States Army|accessdate=28 April 2014}}</ref>
</gallery>


===Dithering===
===Design trade-offs===
[[File:Scorpion W2, Operational Camouflage Pattern (OCP) swatch.png|thumb|left|[[Operational Camouflage Pattern]], a disruptive but non-pixellated pattern, replaced the Universal Camouflage Pattern beginning in 2015.]]
For the multi scalar effect to work, patterns need to have fields that will blend together, creating the visual effect of a single solid colour field at a distance. This is referred to as the dithering effect, and is achieved by having rough outlines on the fields. The zigzag or blocky look of many digital camouflage patterns is meant to blur the colours at a distance.
A pattern being called digital most often means that it is visibly composed of computer-generated [[pixel]]s.<ref name="Hyperstealth">{{cite web |author=Craemer, Guy |title=CADPAT or MARPAT Camouflage |publisher=Hyperstealth |work=Who did it first; Canada or the US? |url=http://www.hyperstealth.com/CADPAT-MARPAT.htm |year=2007 |access-date=February 3, 2012}}</ref> The term is sometimes also used of computer generated patterns like the non-pixellated [[MultiCam]] and the Italian fractal ''Vegetato'' pattern.<ref>{{cite web |last=Strikehold |title=Making Sense of Digital Camouflage |year=2010 |url=http://www.strikehold.net/2010/04/04/making-sense-of-digital-camouflage/ |publisher=Strikehold |access-date=2 September 2012 |url-status=dead |archive-url=https://web.archive.org/web/20121130142620/http://www.strikehold.net/2010/04/04/making-sense-of-digital-camouflage/ |archive-date=30 November 2012 }}</ref> Neither pixellation nor digitization contributes to the camouflaging effect. The pixellated style, however, simplifies design and eases printing on fabric, compared to traditional patterns. While digital patterns are becoming widespread, critics maintain that the pixellated look is a question of fashion rather than function.<ref>{{cite news |author=Engber, D. |title=Lost in the Wilderness, the military's misadventures in pixellated camouflage |url=http://www.slate.com/articles/health_and_science/science/2012/07/camouflage_problems_in_the_army_the_ucp_and_the_future_of_digital_camo_.single.html |access-date=27 September 2012 |newspaper=Slate |date=5 July 2012}}</ref>

The design process involves trading-off different factors, including colour, contrast, and overall disruptive effect. A failure to consider all elements of pattern design tends to result in poor results. The US Army's [[Universal Camouflage Pattern]] (UCP), for example, adopted after limited testing in 2003 and 2004, performed poorly because of low pattern contrast (''isoluminance''—beyond very close range, the design looks like a field of solid light grey, failing to [[disruptive coloration|disrupt]] an object's outlines) and arbitrary colour selection, neither of which could be saved by quantizing (digitizing) the pattern geometry.<ref name=WTW>{{cite journal |last1=Hu |first1=Caitlin |title=The Art and Science of Military Camouflage |url=https://worksthatwork.com/7/the-art-and-science-of-military-camouflage |journal=Works That Work |issue=7 |date=2016 |access-date=8 March 2017}}</ref><ref name="Kennedy2013"/> The design was replaced from 2015 with the [[Operational Camouflage Pattern]], a non-pixellated pattern.<ref>{{cite web |url=http://www.army.mil/article/121866/Army_testing_combat_boots__camouflage_patterns/ |title=Army testing combat boots, camouflage patterns |publisher=U.S. Army |date=31 March 2014 |access-date=22 April 2014 |author=Vergun, David}}</ref><ref name="Army396739">{{cite web |title=Army Combat Uniform Summary of Changes |url=https://www.army.mil/e2/c/downloads/396739.pdf |publisher=US Army |access-date=1 April 2017}}</ref>


==History==
==History==
[[File:Wartime Italian M1929.jpg|thumb|upright|Italian ''[[Telo mimetico]]'', first used in 1929]]


===Interwar development in Europe===
===European experiments===
[[Image:Flecktarn.jpg|upright|thumb|left|Modern German [[Flecktarn]] 1990, developed from a 1938 pattern, is a non-digital pattern which works at different distances ([[scale invariance]]).]]


The scale of camouflage patterns has an obvious effect on their use. Large structures need larger patterns than smaller vehicles and single soldiers to disrupt their shape. At the same time, large patterns are more effective from afar, while small scale patterns work better up close.<ref>{{cite web | last=Craemer | first=Guy | title=Dual Texture - U.S. Army digital camouflage | url=http://www.uniteddynamics.com/dualtex/ | publisher=United Dynamics Corp. | accessdate=27 September 2012}}</ref>
The idea of patterned camouflage extends back to the [[interwar period]] in Europe. The first printed camouflage pattern was the 1929 Italian ''[[telo mimetico]]'', which used irregular areas of three colours at a single scale.<ref name=Verny>{{cite web |last1=Verny |first1=Eric |last2=Bocek |first2=Jonathan |title=Italian Camouflage |url=http://www.dererstezug.com/italiancamo.htm |publisher=Der Erste Zug |access-date=14 September 2016}}</ref>


===German WWII experiments===
During the Second World War, Johann Georg Otto Schick{{efn|Schick was a professor in Munich in the 1930s, and from 1935 director of the newly formed camouflage department (named "T" for "Tarnung", camouflage).}} designed a number of patterns for the [[Waffen-SS]], combining micro- and macro-patterns in one scheme.<ref>{{cite book | last=Peterson | first=D. | title=Waffen-SS Camouflage Uniforms and Post-war Derivatives |year=2001 |publisher=Crowood. | isbn=978-1-86126-474-9 |page=64}}</ref> The [[Bundeswehr|German Army]] developed the idea further in the 1970s into [[Flecktarn]], which combines smaller shapes with dithering; this softens the edges of the large scale pattern, making the underlying objects harder to discern.<ref>{{cite web | last=Turner | first=B. | title=1938 amoeba pattern, green base | url=http://www.kamouflage.net/camouflage/00068.php | publisher=Kamouflage.net | accessdate=28 September 2012}}</ref>
[[File:Waffen-SS Camouflage.jpg|thumb|[[Waffen-SS]] 1944 ''[[Erbsenmuster]]'' (pea-dot pattern) combines large and small scale patterns.]]
{{main|German World War II camouflage patterns}}


During the Second World War, [[Johann Georg Otto Schick]]{{efn|Schick (1882–) was a professor in Munich in the 1930s, and from 1935 director of the newly formed camouflage department (named "T" for "Tarnung", camouflage).}} designed [[German World War II camouflage patterns|a series of patterns]] such as ''[[Platanenmuster]]'' (plane tree pattern) and ''[[Erbsenmuster]]'' (pea-dot pattern) for the [[Waffen-SS]], combining micro- and macro-patterns in one scheme.<ref>{{cite book | last=Peterson | first=D. | title=Waffen-SS Camouflage Uniforms and Post-war Derivatives |year=2001 |publisher=Crowood. | isbn=978-1-86126-474-9 |page=64}}</ref><ref>{{cite web|title=Schick, Johann Georg Otto (1882-)|url=http://kalliope-verbund.info/de/eac?eac.id=1047595591|publisher=Kalliope-Verbund|access-date=29 March 2016}}</ref>
Pixellated shapes pre-date [[computer aided design]] by many years, already being used in Soviet Union experiments with camouflage patterns, such as "TTsMKK"{{efn|TTsMKK is short for "TryokhTsvetniy Maskirovochniy Kamuflirovanniy Kombinezon", three colour disguise camouflage overalls.}} developed in 1944 or 1945. The pattern uses areas of olive green, sand, and black pixels running together in broken patches at a range of scales.<ref>{{cite web | url=http://www.kamouflage.net/camouflage/00070.php | title=1944/45 3-colour deceptive camouflage pattern (TTsMKK) | publisher=Kamouflage.net | date=2004–2010 | accessdate=24 January 2013 | author=Turner, Brad}}* {{cite web |last=Turner |first=B. | title=Bundeswehr Flecktarn, Federal Republic of Germany | url=http://www.kamouflage.net/camouflage/00009.php |work=Camouflage.net |accessdate=28 September 2012}}</ref>
<!--The [[Bundeswehr|German Army]] developed the idea further in the 1970s into [[Flecktarn]], which combines smaller shapes with dithering; this softens the edges of the large scale pattern, making the underlying objects harder to discern.-->


===Tank camouflage in the 1970s===
===Soviet WWII experiments===
In the 1970s, US Army officer Timothy R. O'Neill suggested that patterns consisting of square blocks of colour would provide camouflage that was more effective than traditional patches of brown and green.<ref name=Gye>{{cite news | author=Gye, H. | title=How U.S. Army spent $5BILLION on 'failed' pixel camouflage&nbsp;... because they 'wanted to look cooler than Marines' | url=http://www.dailymail.co.uk/news/article-2164686/How-U-S-Army-spent-5BILLION-failed-pixel-camouflage--wanted-look-cooler-Marines.html|accessdate=21 November 2012 | newspaper=Daily Mail | date=25 June 2012 | quote='Brand identity trumped camouflage utility,' according to military journalist Eric Graves. 'That's what this really comes down to: we can't allow the Marine Corps to look more cool than the Army.'}}</ref> Large patches of colour worked well at long range, and small patches at short range, but neither scheme worked well at all ranges. O'Neill's idea was to create a complex pattern of small (2 inch) squares, in modern terms pixels, so that at short range an observer would see a woodland pattern, while at long range the small pixels would merge into larger patches, giving the appearance of a woodland pattern at a larger scale also.<ref name=OMS>{{cite journal | title=Human Factors Issues in Combat Identification | author=O'Neill, Timothy R.; Matthews, M; Swiergosz, M. | journal=Physical Review E | volume=60 | year=2004 | pages=4637–4644}}</ref>


Pixel-like shapes pre-date [[computer-aided design]] by many years, already being used in Soviet Union experiments with camouflage patterns, such as "TTsMKK"{{efn|TTsMKK ({{langx|ru|ТЦМКК}}) is short for "three-colour disguise camouflage suit" ("трёхцветный маскировочный камуфлированный костюм", ''tryokhtsvetniy maskirovochniy kamuflirovanniy kostyum'').<ref name="Dougherty 2017">{{cite book |last=Dougherty |first=Martin J. |year=2017 |chapter=Chapter 2: Infantry Camouflage in the Modern Era |chapter-url=https://books.google.com/books?id=W7h2DgAAQBAJ&pg=PA69 |editor-last=Spilling |editor-first=Michael |title=Camouflage At War: An Illustrated Guide from 1914 to the Present Day |location=London |publisher=Amber Books |page=69 |isbn=978-1-78274-498-6}}</ref>}} developed in 1944 or 1945. The pattern uses areas of olive green, sand, and black running together in broken patches at a range of scales.<ref name="Dougherty 2017"/>
===The CADPAT and MARPAT===
By 2000, O'Neill's idea was combined with patterns like the German ''[[Flecktarn]]'' to create pixellated patterns for [[battledress]] like the [[Canadian Forces]]' [[CADPAT]] and then the US Marines' [[MARPAT]]. The [[CADPAT]] and [[MARPAT]] patterns were somewhat [[self-similarity|self-similar]] (in the manner of [[fractals]] and [[patterns in nature]] such as vegetation), being designed to work at two different scales; a genuinely fractal pattern would be statistically similar at all scales.<ref name=Andrews>{{cite book | url=http://books.google.co.uk/books?id=arPl5bUyIVoC&pg=PA100&lpg=PA100&dq=self-similarity+in+digital+camouflage&source=bl&ots=DIoLO2MS6E&sig=LuzW2PEkWoiADKlmwJJ2XMkQp7Y&hl=en&sa=X&ei=iUtSU9OIIMn0OZKbgaAK&ved=0CEAQ6AEwAw#v=onepage&q=self-similarity%20in%20digital%20camouflage&f=false | work=What Visual Discrimination of Fractal Textures Can Tell Us about Discrimination of Camouflaged Targets | title=Human Factors Issues in Combat Identification | publisher=Ashgate | author=Billock, Vincent A; Cunningham, Douglas W.; Tsou, Brian H. Edited by Andrews, Dee H.; Herz, Robert P.; Wolf, Mark B. | year=2010 | pages=99–101}}</ref> A target camouflaged with MARPAT takes about 2.5 times longer to detect than older NATO camouflage which worked at only one scale, while recognition, which begins after detection, was delayed by 20 percent.<ref name=OMS/><ref name=Andrews/> Fractal-like patterns work because the human visual system efficiently discriminates images which have different fractal dimension or other second-order statistics like Fourier spatial amplitude spectra; objects simply appear to 'pop out' from the background.<ref name=Andrews/>
O'Neill helped the Marine Corps to develop first a digital pattern for vehicles, then fabric for uniforms, which had two colour schemes, one designed for woodland, one for desert.<ref name=NYT>{{cite web | url=http://www.nytimes.com/2013/05/12/magazine/who-made-that-digital-camouflage.html?_r=1& | title=Who Made That Digital Camouflage? | publisher=New York Times | date=10 May 2013 | accessdate=18 April 2014 | author=Kennedy, Pagan}}</ref>


===1976 research by Timothy O'Neill===
==Digital patterns for uniforms==
{{further|List of military clothing camouflage patterns}}
[[Image:Army Combat Uniform.jpg|thumb|upright|The [[Universal Camouflage Pattern]] provides insufficient contrast to [[disruptive coloration|disrupt]] a soldier's outline effectively.<ref name=OMS/>]]


In 1976, [[Timothy O'Neill (camoufleur)|Timothy O'Neill]] created a pixellated pattern named "Dual-Tex". He called the digital approach "texture match". The initial work was done by hand on a retired M113 [[armoured personnel carrier]]; O'Neill painted the pattern on with a {{convert|2|in|cm|adj=on}} roller, forming squares of colour by hand. Field testing showed that the result was good compared to the U. S. Army's existing [[List of military clothing camouflage patterns|camouflage patterns]], and O'Neill went on to become an instructor and camouflage researcher at [[West Point]] military academy.<ref name=Fusco2010>{{cite web |last1=Fusco |first1=Vincent |title=West Point explores science of camouflage |url=https://www.army.mil/article/40245/West_Point_explores_science_of_camouflage |publisher=U. S. Army |date=3 June 2010 |access-date=24 August 2017}}</ref><ref name="Kennedy2013">{{cite news |last1=Kennedy |first1=Pagan |title=Who Made That Digital Camouflage? |url=https://www.nytimes.com/2013/05/12/magazine/who-made-that-digital-camouflage.html |url-access=subscription |work=The New York Times |date=10 May 2013 |url-status=live |archive-url=https://web.archive.org/web/20240105180631/https://www.nytimes.com/2013/05/12/magazine/who-made-that-digital-camouflage.html |archive-date= Jan 5, 2024 }}</ref>
The "digital" refers to the coordinates of the pattern, which are digitally defined.<ref name="Hyperstealth">{{cite web | author=Craemer, Guy | title=CADPAT or MARPAT Camouflage | publisher=Hyperstealth | work=Who did it first; Canada or the US? | url=http://www.hyperstealth.com/CADPAT-MARPAT.htm | year=2007 | accessdate=February 3, 2012}}</ref> The term is also used of computer generated patterns like the non-pixellated [[Multicam]] and the Italian [[fractal]] ''Vegetato'' pattern.<ref>{{cite web | last=Strikehold | title=Making Sense of Digital Camouflage | year=2010 | url=http://www.strikehold.net/2010/04/04/making-sense-of-digital-camouflage/| publisher=Strikehold | accessdate=2 September 2012}}</ref>


===2000s fractal-like digital patterns===
According to the patent for MARPAT, pixellation does not in itself contribute to the camouflaging effect. The pixellated style, however, simplifies design and eases printing on fabric, compared to traditional patterns. While digital patterns are becoming widespread, critics maintain that the pixellated look is a question of fashion rather than function.<ref name=Gye/><ref>{{cite news | author=Engber, D. | title=Lost in the Wilderness, the military's misadventures in pixellated camouflage | year=2007 | url=http://www.slate.com/articles/health_and_science/science/2012/07/camouflage_problems_in_the_army_the_ucp_and_the_future_of_digital_camo_.single.html | accessdate=27 September 2012 | newspaper=State | date=5 July 2012}}</ref>
[[File:Buxus sempervirens foliage 1.jpg|thumb|left|[[Patterns in nature]], like the [[foliage]] of this ''[[Buxus sempervirens]]'' bush, are often broken into visual elements with small and large scales, such as branches and leaves.]]


By 2000, development was underway to create pixellated camouflage patterns for [[combat uniform]]s like the [[Canadian Forces]]' [[CADPAT]], which was developed in 1997 and later issued in 2002, and then the US Marines' [[MARPAT]], rolled out between 2002 and 2004. The CADPAT and MARPAT patterns were somewhat [[self-similarity|self-similar]] (in the manner of fractals and patterns in nature such as vegetation), designed to work at two different scales. A genuinely fractal pattern would be statistically similar at all scales. A target camouflaged with MARPAT takes about 2.5 times longer to detect than older [[NATO]] camouflage which worked at only one scale, while recognition, which begins after detection, took 20 percent longer than with older camouflage.<ref name=Andrews>{{cite book | url=https://books.google.com/books?id=arPl5bUyIVoC&pg=PA100 | series=What Visual Discrimination of Fractal Textures Can Tell Us about Discrimination of Camouflaged Targets | title=Human Factors Issues in Combat Identification | publisher=Ashgate | author=Billock, Vincent A | author2=Cunningham, Douglas W. | author3=Tsou, Brian H | editor=Andrews, Dee H. | editor2=Herz, Robert P. | editor3=Wolf, Mark B. | year=2010 | pages=99–101| isbn=9781409486206 }}</ref><ref>{{citation |last1=Billock |first1=Vincent A. |last2=Cunningham |first2=Douglas W. |last3=Tsou|first3=Brian H. |title=What Visual Discrimination Of Fractal Textures Can Tell Us About Discrimination Of Camouflaged Targets |pages=99–112 |citeseerx=10.1.1.570.3015 }} Presented at the Human Factors Issues in Combat Identification Workshop, Gold Canyon, Arizona, May 13, 2008.</ref><ref>O’Neill, T., Matthews, M., & Swiergosz, M. (2004). Marine Corps innovative camouflage. Midyear meeting of the American Psychological Association, Divisions 19 & 21. Supplementary data at http://www.hyperstealth.com/digital-design/index.htm</ref>
"Digitizing" a pattern does not of itself improve performance; the design process involves trading-off different factors, including colour, contrast and overall disruptive effect. A failure to consider all elements of pattern design tends to result in poor results. The US Army's [[Universal Camouflage Pattern]] (UCP), for example, performed poorly because of low pattern contrast ("isoluminance"&nbsp;— beyond very close range, the design looks like a field of solid light grey, failing to [[disruptive coloration|disrupt]] an object's outlines) and arbitrary colour selection, neither of which could be saved by quantizing (digitizing) the pattern geometry.<ref name=OMS/> According to the [[New York Times]], O'Neill was "dismayed"<ref name=NYT/> when the U.S. Army issued digital camouflage uniforms in only one colour range "to hide soldiers anywhere in the world, from sand dunes to jungles. 'I had 10 cat fits and a dog fit'"<ref name=NYT/> as he considered that a single 'universal' scheme would be "useless everywhere".<ref name=NYT/> In 2014, however, the U.S. Army tested new patterns to replace the single UCP for the same uniform, including woodland, semi-woodland and arid variants.<ref>{{cite web | url=http://www.army.mil/article/121866/Army_testing_combat_boots__camouflage_patterns/ | title=Army testing combat boots, camouflage patterns | publisher=U.S. Army | date=31 March 2014 | accessdate=22 April 2014 | author=Vergun, David}}</ref>

Fractal-like patterns work because the human visual system efficiently discriminates images that have different [[fractal dimension]] or other second-order statistics like [[Fourier analysis|Fourier]] [[spatial frequency|spatial amplitude]] spectra; objects simply appear to pop out from the background.<ref name=Andrews/> Timothy O'Neill helped the [[United States Marine Corps|Marine Corps]] to develop first a digital pattern for vehicles, then fabric for uniforms, which had two colour schemes, one designed for woodland, one for desert.<ref name="Kennedy2013"/>{{Clear}}


==Notes==
==Notes==


{{notelist}}
{{Notelist}}


==References==
==References==


{{reflist|33em}}
{{Reflist|30em}}

{{Camouflage}}


[[Category:Camouflage]]
[[Category:Camouflage mechanisms]]
[[Category:Military camouflage]]
[[Category:Military camouflage types]]
[[Category:Military technology]]
[[Category:Military technology]]
[[Category:Camouflage patterns]]
[[Category:Camouflage patterns]]

Latest revision as of 21:05, 24 October 2024

The Canadian Forces were the first army to issue pixellated digital multi-scale camouflage for all units with their disruptively patterned CADPAT, issued in 2002, shown here in its 'Temperate Woodland' variant.

Multi-scale camouflage is a type of military camouflage combining patterns at two or more scales, often (though not necessarily) with a digital camouflage pattern created with computer assistance. The function is to provide camouflage over a range of distances, or equivalently over a range of scales (scale-invariant camouflage), in the manner of fractals, so some approaches are called fractal camouflage. Not all multiscale patterns are composed of rectangular pixels, even if they were designed using a computer. Further, not all pixellated patterns work at different scales, so being pixellated or digital does not of itself guarantee improved performance.

The first standardized pattern to be issued was the single-scale Italian telo mimetico. The root of the modern multi-scale camouflage patterns can be traced back to 1930s experiments in Europe for the German and Soviet armies. This was followed by the Canadian development of the Canadian Disruptive Pattern (CADPAT), first issued in 2002, and then with US work which created the Marine pattern (MARPAT), launched between 2002 and 2004.

Principle

[edit]
The Universal Camouflage Pattern provided insufficient contrast to disrupt a soldier's outline effectively, appearing at a moderate distance as a single colour.

Scale invariance

[edit]

The scale of camouflage patterns is related to their function. Large structures need larger patterns than individual soldiers to disrupt their shape. At the same time, large patterns are more effective from afar, while small scale patterns work better up close.[1] Traditional single scale patterns work well in their optimal range from the observer, but an observer at other distances will not see the pattern optimally. Nature itself is very often fractal, where plants and rock formations exhibit similar patterns across several magnitudes of scale. The idea behind multi-scale patterns is both to mimic the self-similarity of nature, and also to offer scale invariant or so-called fractal camouflage.[2][3]

Animals such as the flounder have the ability to adapt their camouflage patterns to suit the background, and they do so extremely effectively,[4] selecting patterns that match the spatial scales of the current background.[4]

Design trade-offs

[edit]
Operational Camouflage Pattern, a disruptive but non-pixellated pattern, replaced the Universal Camouflage Pattern beginning in 2015.

A pattern being called digital most often means that it is visibly composed of computer-generated pixels.[5] The term is sometimes also used of computer generated patterns like the non-pixellated MultiCam and the Italian fractal Vegetato pattern.[6] Neither pixellation nor digitization contributes to the camouflaging effect. The pixellated style, however, simplifies design and eases printing on fabric, compared to traditional patterns. While digital patterns are becoming widespread, critics maintain that the pixellated look is a question of fashion rather than function.[7]

The design process involves trading-off different factors, including colour, contrast, and overall disruptive effect. A failure to consider all elements of pattern design tends to result in poor results. The US Army's Universal Camouflage Pattern (UCP), for example, adopted after limited testing in 2003 and 2004, performed poorly because of low pattern contrast (isoluminance—beyond very close range, the design looks like a field of solid light grey, failing to disrupt an object's outlines) and arbitrary colour selection, neither of which could be saved by quantizing (digitizing) the pattern geometry.[8][9] The design was replaced from 2015 with the Operational Camouflage Pattern, a non-pixellated pattern.[10][11]

History

[edit]
Italian Telo mimetico, first used in 1929

Interwar development in Europe

[edit]

The idea of patterned camouflage extends back to the interwar period in Europe. The first printed camouflage pattern was the 1929 Italian telo mimetico, which used irregular areas of three colours at a single scale.[12]

German WWII experiments

[edit]
Waffen-SS 1944 Erbsenmuster (pea-dot pattern) combines large and small scale patterns.

During the Second World War, Johann Georg Otto Schick[a] designed a series of patterns such as Platanenmuster (plane tree pattern) and Erbsenmuster (pea-dot pattern) for the Waffen-SS, combining micro- and macro-patterns in one scheme.[13][14]

Soviet WWII experiments

[edit]

Pixel-like shapes pre-date computer-aided design by many years, already being used in Soviet Union experiments with camouflage patterns, such as "TTsMKK"[b] developed in 1944 or 1945. The pattern uses areas of olive green, sand, and black running together in broken patches at a range of scales.[15]

1976 research by Timothy O'Neill

[edit]

In 1976, Timothy O'Neill created a pixellated pattern named "Dual-Tex". He called the digital approach "texture match". The initial work was done by hand on a retired M113 armoured personnel carrier; O'Neill painted the pattern on with a 2-inch (5.1 cm) roller, forming squares of colour by hand. Field testing showed that the result was good compared to the U. S. Army's existing camouflage patterns, and O'Neill went on to become an instructor and camouflage researcher at West Point military academy.[16][9]

2000s fractal-like digital patterns

[edit]
Patterns in nature, like the foliage of this Buxus sempervirens bush, are often broken into visual elements with small and large scales, such as branches and leaves.

By 2000, development was underway to create pixellated camouflage patterns for combat uniforms like the Canadian Forces' CADPAT, which was developed in 1997 and later issued in 2002, and then the US Marines' MARPAT, rolled out between 2002 and 2004. The CADPAT and MARPAT patterns were somewhat self-similar (in the manner of fractals and patterns in nature such as vegetation), designed to work at two different scales. A genuinely fractal pattern would be statistically similar at all scales. A target camouflaged with MARPAT takes about 2.5 times longer to detect than older NATO camouflage which worked at only one scale, while recognition, which begins after detection, took 20 percent longer than with older camouflage.[17][18][19]

Fractal-like patterns work because the human visual system efficiently discriminates images that have different fractal dimension or other second-order statistics like Fourier spatial amplitude spectra; objects simply appear to pop out from the background.[17] Timothy O'Neill helped the Marine Corps to develop first a digital pattern for vehicles, then fabric for uniforms, which had two colour schemes, one designed for woodland, one for desert.[9]

Notes

[edit]
  1. ^ Schick (1882–) was a professor in Munich in the 1930s, and from 1935 director of the newly formed camouflage department (named "T" for "Tarnung", camouflage).
  2. ^ TTsMKK (Russian: ТЦМКК) is short for "three-colour disguise camouflage suit" ("трёхцветный маскировочный камуфлированный костюм", tryokhtsvetniy maskirovochniy kamuflirovanniy kostyum).[15]

References

[edit]
  1. ^ Craemer, Guy. "Dual Texture - U.S. Army digital camouflage". United Dynamics Corp. Archived from the original on 27 September 2013. Retrieved 27 September 2012.
  2. ^ Hambling, David (8 May 2012). "Invisibility cloaks are almost a reality with fractal-camouflage clothing". Wired. No. June 2012.
  3. ^ Vergun, David. "Army testing combat boots, camouflage patterns". United States Army. Retrieved 28 April 2014.
  4. ^ a b Akkaynak, Derek; et al. (March 2017). "Changeable camouflage: how well can flounder resemble the colour and spatial scale of substrates in their natural habitats?". Royal Society Open Science. 4 (3): 160824. Bibcode:2017RSOS....460824A. doi:10.1098/rsos.160824. PMC 5383827. PMID 28405370. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast.
  5. ^ Craemer, Guy (2007). "CADPAT or MARPAT Camouflage". Who did it first; Canada or the US?. Hyperstealth. Retrieved February 3, 2012.
  6. ^ Strikehold (2010). "Making Sense of Digital Camouflage". Strikehold. Archived from the original on 30 November 2012. Retrieved 2 September 2012.
  7. ^ Engber, D. (5 July 2012). "Lost in the Wilderness, the military's misadventures in pixellated camouflage". Slate. Retrieved 27 September 2012.
  8. ^ Hu, Caitlin (2016). "The Art and Science of Military Camouflage". Works That Work (7). Retrieved 8 March 2017.
  9. ^ a b c Kennedy, Pagan (10 May 2013). "Who Made That Digital Camouflage?". The New York Times. Archived from the original on Jan 5, 2024.
  10. ^ Vergun, David (31 March 2014). "Army testing combat boots, camouflage patterns". U.S. Army. Retrieved 22 April 2014.
  11. ^ "Army Combat Uniform Summary of Changes" (PDF). US Army. Retrieved 1 April 2017.
  12. ^ Verny, Eric; Bocek, Jonathan. "Italian Camouflage". Der Erste Zug. Retrieved 14 September 2016.
  13. ^ Peterson, D. (2001). Waffen-SS Camouflage Uniforms and Post-war Derivatives. Crowood. p. 64. ISBN 978-1-86126-474-9.
  14. ^ "Schick, Johann Georg Otto (1882-)". Kalliope-Verbund. Retrieved 29 March 2016.
  15. ^ a b Dougherty, Martin J. (2017). "Chapter 2: Infantry Camouflage in the Modern Era". In Spilling, Michael (ed.). Camouflage At War: An Illustrated Guide from 1914 to the Present Day. London: Amber Books. p. 69. ISBN 978-1-78274-498-6.
  16. ^ Fusco, Vincent (3 June 2010). "West Point explores science of camouflage". U. S. Army. Retrieved 24 August 2017.
  17. ^ a b Billock, Vincent A; Cunningham, Douglas W.; Tsou, Brian H (2010). Andrews, Dee H.; Herz, Robert P.; Wolf, Mark B. (eds.). Human Factors Issues in Combat Identification. What Visual Discrimination of Fractal Textures Can Tell Us about Discrimination of Camouflaged Targets. Ashgate. pp. 99–101. ISBN 9781409486206.
  18. ^ Billock, Vincent A.; Cunningham, Douglas W.; Tsou, Brian H., What Visual Discrimination Of Fractal Textures Can Tell Us About Discrimination Of Camouflaged Targets, pp. 99–112, CiteSeerX 10.1.1.570.3015 Presented at the Human Factors Issues in Combat Identification Workshop, Gold Canyon, Arizona, May 13, 2008.
  19. ^ O’Neill, T., Matthews, M., & Swiergosz, M. (2004). Marine Corps innovative camouflage. Midyear meeting of the American Psychological Association, Divisions 19 & 21. Supplementary data at http://www.hyperstealth.com/digital-design/index.htm