Jump to content

Tak (function): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Naruyoko (talk | contribs)
+{{Interlanguage link}}, +{{Nihongo krt}}, tiny wikitext
 
(12 intermediate revisions by 11 users not shown)
Line 1: Line 1:
{{Short description|Recursive function}}
In [[computer science]], the '''Tak function''' is a [[Recursion (computer science)|recursive function]], named after [[Ikuo Takeuchi]] (竹内郁雄). It is defined as follows:
In [[computer science]], the '''Tak function''' is a [[Recursion (computer science)|recursive function]], named after {{Interlanguage link|Ikuo Takeuchi|ja|竹内郁雄|WD=}}. It is defined as follows:


<math>\tau (x,y,z) = \begin{cases}
<math display="block">
\tau (x,y,z) = \begin{cases}
\tau (\tau (x-1,y,z) ,\tau (y-1,z,x) ,\tau (z-1,x,y) ) & \text{if } y < x \\
\tau (\tau (x-1,y,z) ,\tau (y-1,z,x) ,\tau (z-1,x,y) ) & \text{if } y < x \\
z & \text{otherwise}
z & \text{otherwise}
Line 7: Line 9:
</math>
</math>


<syntaxhighlight lang="ruby">
<syntaxhighlight lang="python">
def tak( x, y, z)
def tak(x, y, z):
if y < x
if y < x:
tak(
return tak(
tak(x-1, y, z),
tak(x-1, y, z),
tak(y-1, z, x),
tak(y-1, z, x),
tak(z-1, x, y)
tak(z-1, x, y)
)
)
else
else:
z
return z
end
end
</syntaxhighlight>
</syntaxhighlight>


Line 26: Line 26:
[http://buildingblocksjava.com/recursive-methods/ "Recursive Methods"]
[http://buildingblocksjava.com/recursive-methods/ "Recursive Methods"]
by Elliotte Rusty Harold
by Elliotte Rusty Harold
</ref><ref name="acornuser198606">{{ cite news | url=https://archive.org/details/AcornUser047-Jun86/page/n180/mode/1up | title=Six of the Best Against the Clock | work=Acorn User | date=June 1986 | accessdate=28 October 2020 | last1=Johnson-Davies | first1=David | pages=179,181-182 }}</ref><ref name="acornuser198611">{{ cite news | url=https://archive.org/details/AcornUser052-Nov86/page/n198/mode/1up | title=Testing the Tak | work=Acorn User | date=November 1986 | accessdate=28 October 2020 | last1=Johnson-Davies | first1=David | pages=197,199 }}</ref>
</ref><ref name="acornuser198606">{{ cite news | url=https://archive.org/details/AcornUser047-Jun86/page/n180/mode/1up | title=Six of the Best Against the Clock | work=Acorn User | date=June 1986 | accessdate=28 October 2020 | last1=Johnson-Davies | first1=David | pages=179, 181–182 }}</ref><ref name="acornuser198611">{{ cite news | url=https://archive.org/details/AcornUser052-Nov86/page/n198/mode/1up | title=Testing the Tak | work=Acorn User | date=November 1986 | accessdate=28 October 2020 | last1=Johnson-Davies | first1=David | pages=197, 199 }}</ref>


==tak() vs. tarai()==
==tak() vs. tarai()==
{{more sources|section|date=September 2023}}

The original definition by Takeuchi was as follows:
The original definition by Takeuchi was as follows:


<syntaxhighlight lang="ruby">
<syntaxhighlight lang="python">
def tarai( x, y, z)
def tarai(x, y, z):
if y < x
if y < x:
tarai(
return tarai(
tarai(x-1, y, z),
tarai(x-1, y, z),
tarai(y-1, z, x),
tarai(y-1, z, x),
tarai(z-1, x, y)
tarai(z-1, x, y)
)
)
else
else:
y # not z!
return y # not z!
end
end
</syntaxhighlight>
</syntaxhighlight>


tarai is short for たらい回し ''tarai mawashi'', "to pass around" in Japanese.
tarai is short for {{Nihongo krt|"to pass around"|たらい回し|tarai mawashi}} in Japanese.


[[John McCarthy (computer scientist)|John McCarthy]] named this function tak() after Takeuchi.<ref>
[[John McCarthy (computer scientist)|John McCarthy]] named this function tak() after Takeuchi.<ref>
{{cite journal | author=John McCarthy | title=An Interesting LISP Function | journal=ACM Lisp Bulletin |date=December 1979 | issue=3 | pages=6–8 | doi=10.1145/1411829.1411833}}
{{cite journal | author=John McCarthy | title=An Interesting LISP Function | journal=ACM Lisp Bulletin |date=December 1979 | issue=3 | pages=6–8 | doi=10.1145/1411829.1411833| s2cid=31639459 }}
</ref>
</ref>


However, in certain later references, the y somehow got turned into the z.
However, in certain later references, the y somehow got turned into the z. This is a small, but significant difference because the original version benefits significantly from [[lazy evaluation]].

This is a small, but significant difference because the original version benefits significantly by [[lazy evaluation]].
Though written in exactly the same manner as others, the [[Haskell (programming language)|Haskell]] code below runs much faster.
Though written in exactly the same manner as others, the [[Haskell (programming language)|Haskell]] code below runs much faster.


Line 59: Line 59:
tarai x y z
tarai x y z
| x <= y = y
| x <= y = y
| otherwise = tarai(tarai (x-1) y z)
| otherwise = tarai (tarai (x-1) y z)
(tarai (y-1) z x)
(tarai (y-1) z x)
(tarai (z-1) x y)
(tarai (z-1) x y)
</syntaxhighlight>
</syntaxhighlight>


You can easily accelerate this function via [[memoization]] yet lazy evaluation still wins.
One can easily accelerate this function via [[memoization]] yet lazy evaluation still wins.


The best known way to optimize tarai is to use mutually recursive helper function as follows.
The best known way to optimize tarai is to use a mutually recursive helper function as follows.


<syntaxhighlight lang="ruby">
<syntaxhighlight lang="ruby">
def laziest_tarai(x, y, zx, zy, zz)
def laziest_tarai(x, y, zx, zy, zz):
unless y < x
if not y < x:
y
return y
else
else:
return laziest_tarai(
laziest_tarai(tarai(x-1, y, z),
tarai(y-1, z, x),
tarai(x-1, y, z),
tarai(zx, zy, zz)-1, x, y)
tarai(y-1, z, x),
tarai(zx, zy, zz)-1, x, y)
end
end


def tarai(x, y, z)
def tarai(x, y, z):
unless y < x
if not y < x:
y
return y
else
else:
return laziest_tarai(
laziest_tarai(tarai(x-1, y, z),
tarai(y-1, z, x),
tarai(x-1, y, z),
z-1, x, y)
tarai(y-1, z, x),
z-1, x, y)
end
end
</syntaxhighlight>
</syntaxhighlight>


Line 104: Line 102:
}
}
</syntaxhighlight>
</syntaxhighlight>
Note the additional check for (x <= y) before z (the third argument) is evaluated, avoiding unnecessary recursive evaluation.
Note the additional check for (<code>x <= y</code>) before z (the third argument) is evaluated, avoiding unnecessary recursive evaluation.


==References==
==References==
Line 114: Line 112:


{{Benchmark}}
{{Benchmark}}

[[Category:Functions and mappings]]
[[Category:Functions and mappings]]
[[Category:Special functions]]
[[Category:Special functions]]

Latest revision as of 21:12, 24 October 2024

In computer science, the Tak function is a recursive function, named after Ikuo Takeuchi [ja]. It is defined as follows:

def tak(x, y, z):
    if y < x:
        return tak( 
            tak(x-1, y, z),
            tak(y-1, z, x),
            tak(z-1, x, y)
        )
    else:
        return z

This function is often used as a benchmark for languages with optimization for recursion.[1][2][3][4]

tak() vs. tarai()

[edit]

The original definition by Takeuchi was as follows:

def tarai(x, y, z):
    if y < x:
        return tarai( 
            tarai(x-1, y, z),
            tarai(y-1, z, x),
            tarai(z-1, x, y)
        )
    else:
        return y  # not z!

tarai is short for たらい回し (tarai mawashi, "to pass around") in Japanese.

John McCarthy named this function tak() after Takeuchi.[5]

However, in certain later references, the y somehow got turned into the z. This is a small, but significant difference because the original version benefits significantly from lazy evaluation.

Though written in exactly the same manner as others, the Haskell code below runs much faster.

tarai :: Int -> Int -> Int -> Int
tarai x y z
    | x <= y    = y
    | otherwise = tarai (tarai (x-1) y z)
                        (tarai (y-1) z x)
                        (tarai (z-1) x y)

One can easily accelerate this function via memoization yet lazy evaluation still wins.

The best known way to optimize tarai is to use a mutually recursive helper function as follows.

def laziest_tarai(x, y, zx, zy, zz):
    if not y < x:
        return y
    else:
        return laziest_tarai(
            tarai(x-1, y, z),
            tarai(y-1, z, x),
            tarai(zx, zy, zz)-1, x, y)

def tarai(x, y, z):
    if not y < x:
        return y
    else:
        return laziest_tarai(
            tarai(x-1, y, z),
            tarai(y-1, z, x),
            z-1, x, y)

Here is an efficient implementation of tarai() in C:

int tarai(int x, int y, int z)
{
    while (x > y) {
        int oldx = x, oldy = y;
        x = tarai(x - 1, y, z);
        y = tarai(y - 1, z, oldx);
        if (x <= y) break;
        z = tarai(z - 1, oldx, oldy);
    }
    return y;
}

Note the additional check for (x <= y) before z (the third argument) is evaluated, avoiding unnecessary recursive evaluation.

References

[edit]
  1. ^ Peter Coffee (1996). "Tak test stands the test of time". PC Week. 13 (39).
  2. ^ "Recursive Methods" by Elliotte Rusty Harold
  3. ^ Johnson-Davies, David (June 1986). "Six of the Best Against the Clock". Acorn User. pp. 179, 181–182. Retrieved 28 October 2020.
  4. ^ Johnson-Davies, David (November 1986). "Testing the Tak". Acorn User. pp. 197, 199. Retrieved 28 October 2020.
  5. ^ John McCarthy (December 1979). "An Interesting LISP Function". ACM Lisp Bulletin (3): 6–8. doi:10.1145/1411829.1411833. S2CID 31639459.
[edit]