Jump to content

Adaptive system: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
clean out apparent COI / selfpromo / pushing of neologism
Silenuss (talk | contribs)
clean out COI / selfpromo
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|System that can adapt to the environment}}
{{Refimprove|date=November 2008}}
{{Refimprove|date=November 2008}}


Line 27: Line 28:
==Benefit of self-adjusting systems==
==Benefit of self-adjusting systems==
In an adaptive system, a parameter changes slowly and has no preferred value. In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”. One of the most important qualities of ''self-adjusting systems'' is its “[[edge of chaos|adaptation to the edge of chaos]]” or ability to avoid [[chaos theory|chaos]]. Practically speaking, by heading to the [[edge of chaos]] without going further, a leader may act spontaneously yet without disaster. A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications.<ref>Hübler, A. & Wotherspoon, T.: "Self-Adjusting Systems Avoid Chaos". Complexity. 14(4), 8 – 11. 2008</ref> Physicists have shown that [[adaptation]] to the [[edge of chaos]] occurs in almost all systems with [[feedback]].<ref>{{cite journal|last1=Wotherspoon|first1=T.|last2=Hubler|first2=A.|title=Adaptation to the edge of chaos with random-wavelet feedback|journal=J Phys Chem A|volume=113|issue=1|pages=19–22|doi=10.1021/jp804420g|pmid=19072712|year=2009|bibcode=2009JPCA..113...19W}}</ref>
In an adaptive system, a parameter changes slowly and has no preferred value. In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”. One of the most important qualities of ''self-adjusting systems'' is its “[[edge of chaos|adaptation to the edge of chaos]]” or ability to avoid [[chaos theory|chaos]]. Practically speaking, by heading to the [[edge of chaos]] without going further, a leader may act spontaneously yet without disaster. A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications.<ref>Hübler, A. & Wotherspoon, T.: "Self-Adjusting Systems Avoid Chaos". Complexity. 14(4), 8 – 11. 2008</ref> Physicists have shown that [[adaptation]] to the [[edge of chaos]] occurs in almost all systems with [[feedback]].<ref>{{cite journal|last1=Wotherspoon|first1=T.|last2=Hubler|first2=A.|title=Adaptation to the edge of chaos with random-wavelet feedback|journal=J Phys Chem A|volume=113|issue=1|pages=19–22|doi=10.1021/jp804420g|pmid=19072712|year=2009|bibcode=2009JPCA..113...19W}}</ref>



==See also==
==See also==
Line 67: Line 67:
{{Wiktionary | practopoiesis}}
{{Wiktionary | practopoiesis}}
[[Category:Control engineering]]
[[Category:Control engineering]]
[[Category:Cybernetics]]
[[Category:Organizational cybernetics]]
[[Category:Systems theory]]

Latest revision as of 08:22, 30 October 2024

An adaptive system is a set of interacting or interdependent entities, real or abstract, forming an integrated whole that together are able to respond to environmental changes or changes in the interacting parts, in a way analogous to either continuous physiological homeostasis or evolutionary adaptation in biology. Feedback loops represent a key feature of adaptive systems, such as ecosystems and individual organisms; or in the human world, communities, organizations, and families. Adaptive systems can be organized into a hierarchy.

Artificial adaptive systems include robots with control systems that utilize negative feedback to maintain desired states.

The law of adaptation

[edit]

The law of adaptation may be stated informally as:

Every adaptive system converges to a state in which all kind of stimulation ceases.[1]

Formally, the law can be defined as follows:

Given a system , we say that a physical event is a stimulus for the system if and only if the probability that the system suffers a change or be perturbed (in its elements or in its processes) when the event occurs is strictly greater than the prior probability that suffers a change independently of :

Let be an arbitrary system subject to changes in time and let be an arbitrary event that is a stimulus for the system : we say that is an adaptive system if and only if when t tends to infinity the probability that the system change its behavior in a time step given the event is equal to the probability that the system change its behavior independently of the occurrence of the event . In mathematical terms:

  1. -
  2. -

Thus, for each instant will exist a temporal interval such that:

Benefit of self-adjusting systems

[edit]

In an adaptive system, a parameter changes slowly and has no preferred value. In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”. One of the most important qualities of self-adjusting systems is its “adaptation to the edge of chaos” or ability to avoid chaos. Practically speaking, by heading to the edge of chaos without going further, a leader may act spontaneously yet without disaster. A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications.[2] Physicists have shown that adaptation to the edge of chaos occurs in almost all systems with feedback.[3]

See also

[edit]

Notes

[edit]
  1. ^ José Antonio Martín H., Javier de Lope and Darío Maravall: "Adaptation, Anticipation and Rationality in Natural and Artificial Systems: Computational Paradigms Mimicking Nature" Natural Computing, December, 2009. Vol. 8(4), pp. 757-775. doi
  2. ^ Hübler, A. & Wotherspoon, T.: "Self-Adjusting Systems Avoid Chaos". Complexity. 14(4), 8 – 11. 2008
  3. ^ Wotherspoon, T.; Hubler, A. (2009). "Adaptation to the edge of chaos with random-wavelet feedback". J Phys Chem A. 113 (1): 19–22. Bibcode:2009JPCA..113...19W. doi:10.1021/jp804420g. PMID 19072712.

References

[edit]
[edit]