Jump to content

Bibi-binary: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Translated from the French, first pass
 
Monkbot (talk | contribs)
m Task 20: replace {lang-??} templates with {langx|??} ‹See Tfd› (Replaced 1);
 
(23 intermediate revisions by 16 users not shown)
Line 1: Line 1:
{{Short description|Hexadecimal number system}}
[[Image:Table de correspondance entre le Bibinaire et les autres notations.svg|520px|thumb|right|Note: each Bibi digit is formed from a square arranging the 1-bits in its binary representation. If only a single bit is 1 the line starts at the centre and ends in that bit's corner; otherwise it relies on the order of the positions of the 1-bits. When there are exactly two 1-bits, the line passes through the centre. The forms are rounded when there are less than three 1-bits, and use sharp corners when three or four of the bits are 1.]]The '''Bibi-binary''' system for numeric notation (in French '''système Bibi-binaire''', or abbreviated "'''système Bibi'''") was first described in 1968<ref>Brevet d'invention n° 1.569.028, ''Procédé de codification de l'information'', Robert Jean Lapointe, demandé le 28 mars 1968, délivré le 21 avril 1969. [http://bases-brevets.inpi.fr/fr/document/FR1569028/publications.html Downloaded] from [[Institut national de la propriété industrielle|INPI]].</ref> by [[Robert Lapointe|Robert "Boby" Lapointe]] (1922-1972), based on the concept of [[hexadecimal]] notation. At the time, it attracted the attention of [[André Lichnerowicz]], then engaged in studies at the [[University of Lyon]]. It found some use in a variety of unforeseen applications: stochastic poetry, stochastic art, colour classification, aleatory music, architectural symbolism, etc.{{ref?}}
[[Image:Table de correspondance entre le Bibinaire et les autres notations.svg|520px|thumb|right|Each Bibi digit is formed from a square arranging the 1-bits in its binary representation. If only a single bit is 1 a vertical line runs through the centre and ends in that bit's corner; otherwise it relies on the order of the positions of the 1-bits. When there are exactly two 1-bits, the line passes round the centre. The forms are rounded when there are less than three 1-bits, and use sharp corners when three or four of the bits are 1.]]


The '''Bibi-binary''' system for numeric notation ({{langx|fr|système Bibi-binaire}}, or abbreviated "'''{{lang|fr|système Bibi}}'''") is a [[hexadecimal]] numeral system first described in 1968<ref>Brevet d'invention n° 1.569.028, ''Procédé de codification de l'information'', Robert Jean Lapointe, demandé le 28 mars 1968, délivré le 21 avril 1969. [http://bases-brevets.inpi.fr/fr/document/FR1569028/publications.html Downloaded] from [[Institut national de la propriété industrielle|INPI]].</ref> by singer/mathematician [[Boby Lapointe|Robert "Boby" Lapointe]] (1922–1972). At the time, it attracted the attention of [[André Lichnerowicz]], then engaged in studies at the [[University of Lyon]].


The notational system directly and logically encodes the binary representations of the digits in a hexadecimal (base sixteen) numeral. In place of the Arabic numerals 0–9 and letters A–F currently used in writing hexadecimal numerals, it presents sixteen newly devised symbols (thus evading any risk of confusion with the decimal system). The graphical and phonetic conception of these symbols is meant to render the use of the Bibi-binary "language" simple and fast.
<!-- Translating this into English...


The description of the language first appeared in ''Les Cerveaux non-humains'' ("Non-human brains"),<ref>Jean-Marc Font, Jean-Claude Quiniou, Gérard Verroust, ''Les Cerveaux non-humains : introduction à l'Informatique'', Denoël, Paris, 1970.</ref> and the system can also be found in ''Boby Lapointe'' by Huguette Long Lapointe.<ref>Huguette Long Lapointe, ''Boby Lapointe'', Encre, Paris, 1980 {{ISBN|2-86418-148-7}}</ref>


== Name ==
Ce procédé, qui condense de façon simple, directe et logique le langage binaire, est appliqué au [[Système hexadécimal|système de numération hexadécimal]] (base seize). Mais, il utilise, au lieu des chiffres arabes et signes convenus couramment employés dans ces cas-là, des symboles spéciaux (évitant ainsi tout risque de confusion avec le système décimal). La conception graphique et phonétique de ces symboles rend l’utilisation du langage Bibi simple et rapide.


The central observation driving this system is that sixteen can be written as 2 to the power of 2, to the power of 2. As we use the term [[binary number|binary]] for numbers written in base two, Lapointe reasoned that one could also say "bi-binary" for base four, and thus "bibi-binary" for base 16. Its name may also be a pun, as the word ''bibi'' in French is slang for "me" or "myself";<ref>{{citation|url=https://madd-bordeaux.fr/sites/BOR-MADD-DRUPAL/files/2020-12/documents/Livret%20anglais_IMPRESSION.pdf|title=Bibi-binaire code|work=Phenomena: Design lifts the veil on the invisible technologies of everyday life|type=Guide booklet|pages=8–9|publisher=Musée des arts décoratifs et du design, Bordeaux|date=November 2018 – March 2019}}</ref> various forms of word play were at the centre of Lapointe's artistic œuvre.
La description de ce langage est apparue initialement dans ''Les Cerveaux non-humains''<ref>Jean-Marc Font, Jean-Claude Quiniou, Gérard Verroust, ''Les Cerveaux non-humains : introduction à l'Informatique'', Denoël, Paris, 1970.</ref>, et on la retrouve aussi dans ''Boby Lapointe'' de Huguette Long Lapointe<ref>Huguette Long Lapointe, ''Boby Lapointe'', Encre, Paris, 1980 {{ISBN|2-86418-148-7}}</ref>.


== Pourquoi ''Bibi'' ==
== Pronunciation ==
Parce que seize peut s'écrire « 2 exposant 2, exposant 2 ». Il s'agit également probablement d'un calembour{{refsou}} (le mot ''bibi'', signifiant « moi ») : les jeux de mots sont en effet au centre de son œuvre artistique.


In addition to unique graphical representations, Lapointe also devised a pronunciation for each of the sixteen digits. Using four consonants (HBKD) and four vowels (OAEI), one obtains sixteen combinations:
Comme on parle de [[système binaire|binaire]] pour la base 2, [[Boby Lapointe]] estimait qu'on pourrait parler de « Bi-Binaire » pour la base 4, et de « BiBi-Binaire » pour la base 16, terme qu'il abrège en « bibi ».


HO, HA, HE, HI, BO, BA, BE, BI, KO, KA, KE, KI, DO, DA, DE, DI.
À partir de ce postulat, [[Boby Lapointe]] inventa la notation et la prononciation de seize chiffres. À l'aide de quatre consonnes et de quatre voyelles, on obtient les seize combinaisons nécessaires :


To express any number, it suffices to enumerate the (hexadecimal) digits that make it up. For example: the number written as "2000" in decimal, which translates to "7D0" in conventionally-written hexadecimal, would in Bibi-binary be spoken aloud as "BIDAHO".
HO, HA, HE, HI, BO, BA, BE, BI, KO, KA, KE, KI, DO, DA, DE, DI.


== References ==
Pour définir un nombre, il suffit d'énumérer les chiffres (hexadécimaux) qui le composent.
{{reflist|30em}}

Exemple : en Bibi, le nombre ''2000'' (en base décimale), qui se traduit, en hexadécimal, par ''7D0'', est appelé ''BIDAHO''.

== Nombres négatifs ==

Contrairement à la numération retenue dans les ordinateurs actuels, le Bibi représente les nombres négatifs en [[complément à un]]{{refsou}}, et non [[Complément à deux|à deux]].

Ainsi :
* +7 s'écrit 0 0111
* -7 s'écrit 1 1000
et leur addition donne :

1 1111 (une des 2 représentations de « zéro » dans ce système ; « zéro » y est aussi représenté par 0 0000).

Sur les ordinateurs contemporains, en notation binaire classique, -7 s'écrit 1 1001 (on propage le « 1 » dans les bits supérieurs) ; et l'addition de -7 et 7 donnera 0 0000. Il n'y a ainsi qu'une seule notation pour le chiffre zéro.


{{Palette|Base de numération positionnelle}}
{{Portail|mathématiques|informatique théorique}}

{{DEFAULTSORT:Bibi, numeration, système bibi-binaire}}
-->


== External links ==
== External links ==


* [http://www.graner.net/nicolas/nombres/bibibinaire.php Conversion en ligne décimal ↔ bibi-binaire] (in French)
* [http://www.graner.net/nicolas/nombres/bibibinaire.php Conversion en ligne décimal ↔ bibi-binaire] (in French)


== References ==
<references />


[[Category:Hexadecimal numeral system]]
[[Category:Hexadecimal numeral system]]

Latest revision as of 18:14, 3 November 2024

Each Bibi digit is formed from a square arranging the 1-bits in its binary representation. If only a single bit is 1 a vertical line runs through the centre and ends in that bit's corner; otherwise it relies on the order of the positions of the 1-bits. When there are exactly two 1-bits, the line passes round the centre. The forms are rounded when there are less than three 1-bits, and use sharp corners when three or four of the bits are 1.

The Bibi-binary system for numeric notation (French: système Bibi-binaire, or abbreviated "système Bibi") is a hexadecimal numeral system first described in 1968[1] by singer/mathematician Robert "Boby" Lapointe (1922–1972). At the time, it attracted the attention of André Lichnerowicz, then engaged in studies at the University of Lyon.

The notational system directly and logically encodes the binary representations of the digits in a hexadecimal (base sixteen) numeral. In place of the Arabic numerals 0–9 and letters A–F currently used in writing hexadecimal numerals, it presents sixteen newly devised symbols (thus evading any risk of confusion with the decimal system). The graphical and phonetic conception of these symbols is meant to render the use of the Bibi-binary "language" simple and fast.

The description of the language first appeared in Les Cerveaux non-humains ("Non-human brains"),[2] and the system can also be found in Boby Lapointe by Huguette Long Lapointe.[3]

Name

[edit]

The central observation driving this system is that sixteen can be written as 2 to the power of 2, to the power of 2. As we use the term binary for numbers written in base two, Lapointe reasoned that one could also say "bi-binary" for base four, and thus "bibi-binary" for base 16. Its name may also be a pun, as the word bibi in French is slang for "me" or "myself";[4] various forms of word play were at the centre of Lapointe's artistic œuvre.

Pronunciation

[edit]

In addition to unique graphical representations, Lapointe also devised a pronunciation for each of the sixteen digits. Using four consonants (HBKD) and four vowels (OAEI), one obtains sixteen combinations:

HO, HA, HE, HI, BO, BA, BE, BI, KO, KA, KE, KI, DO, DA, DE, DI.

To express any number, it suffices to enumerate the (hexadecimal) digits that make it up. For example: the number written as "2000" in decimal, which translates to "7D0" in conventionally-written hexadecimal, would in Bibi-binary be spoken aloud as "BIDAHO".

References

[edit]
  1. ^ Brevet d'invention n° 1.569.028, Procédé de codification de l'information, Robert Jean Lapointe, demandé le 28 mars 1968, délivré le 21 avril 1969. Downloaded from INPI.
  2. ^ Jean-Marc Font, Jean-Claude Quiniou, Gérard Verroust, Les Cerveaux non-humains : introduction à l'Informatique, Denoël, Paris, 1970.
  3. ^ Huguette Long Lapointe, Boby Lapointe, Encre, Paris, 1980 ISBN 2-86418-148-7
  4. ^ "Bibi-binaire code" (PDF), Phenomena: Design lifts the veil on the invisible technologies of everyday life (Guide booklet), Musée des arts décoratifs et du design, Bordeaux, pp. 8–9, November 2018 – March 2019
[edit]