Jump to content

Intelligence Advanced Research Projects Activity: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
AnomieBOT (talk | contribs)
m Dating maintenance tags: {{Cn}}
removing {{GOCEinuse}} and <!-- {{copy edit|date=June 2023}} (tagged 10:01, 13 June 2023, dated 10:24, 13 June 2023), starting copy edit 11/7/24 -->
 
(23 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Short description|American government agency}}
{{Short description|American government agency}}
{{distinguish|ARPA-I}}
{{distinguish|ARPA-I}}
{{copy edit|date=June 2023}}
{{update|date=June 2023}}
{{update|date=June 2023}}
{{Infobox government agency
{{Infobox government agency
| name = Intelligence Advanced Research Projects Activity
| name = Intelligence Advanced Research Projects Activity
| seal =
| seal =
| logo = Intelligence Advanced Research Projects Activity logo.svg
| logo = Intelligence Advanced Research Projects Activity logo.svg
| formed = 2006
| formed = 2006
| jurisdiction = [[United States Government]]
| jurisdiction = [[United States Government]]
| headquarters = [[Intelligence Community Campus-Bethesda]]
| headquarters = [[Intelligence Community Campus-Bethesda]]
| employees =
| employees =
| budget =
| budget =
| chief1_name = Catherine Marsh, Ph.D.
| chief1_name = Dr. Richard "Rick" Muller
| chief1_position = Director
| chief1_position = Director
| chief2_name =
| chief2_name =
| chief2_position =
| chief2_position =
| chief3_name =
| chief3_name =
| chief3_position =
| chief3_position =
| chief4_name =
| chief4_name =
| chief4_position =
| chief4_position =
| chief5_name =
| chief5_name =
| chief5_position =
| chief5_position =
| chief6_name =
| chief6_name =
| chief6_position =
| chief6_position =
| chief7_name =
| chief7_name =
| chief7_position =
| chief7_position =
| chief8_name =
| chief8_name =
| chief8_position =
| chief8_position =
| chief9_name =
| chief9_name =
| chief9_position =
| chief9_position =
| parent_department =
| parent_department =
| parent_agency = [[Office of the Director of National Intelligence]]
| parent_agency = [[Office of the Director of National Intelligence]]
| website = {{url|iarpa.gov|IARPA.gov}}
| website = {{url|iarpa.gov|IARPA.gov}}
}}
}}


The '''Intelligence Advanced Research Projects Activity''' ('''IARPA''') is an organization within the [[Office of the Director of National Intelligence]] responsible for leading research to overcome difficult challenges relevant to the [[United States Intelligence Community]].<ref name=":0">{{Cite web|url=http://www.iarpa.gov/index.php/about-iarpa|title=About IARPA|publisher=IARPA|access-date=2016-03-12|archive-date=2016-03-14|archive-url=https://web.archive.org/web/20160314202928/http://www.iarpa.gov/index.php/about-iarpa|url-status=dead}}</ref> IARPA characterizes its mission as follows: "To envision and lead high-risk, high-payoff research that delivers innovative technology for future overwhelming intelligence advantage."
The '''Intelligence Advanced Research Projects Activity''' ('''IARPA''') is an organization, within the [[Office of the Director of National Intelligence]] (ODNI), that is responsible for leading research to overcome difficult challenges facing the [[United States Intelligence Community]].<ref name=":0">{{Cite web|url=http://www.iarpa.gov/index.php/about-iarpa|title=About IARPA|publisher=IARPA|access-date=2016-03-12|archive-date=2016-03-14|archive-url=https://web.archive.org/web/20160314202928/http://www.iarpa.gov/index.php/about-iarpa|url-status=dead}}</ref> IARPA characterizes its mission as follows: "To envision and lead high-risk, high-payoff research that delivers innovative technology for future overwhelming intelligence advantage."


IARPA funds academic and industry research across a broad range of technical areas, including mathematics, computer science, physics, chemistry, biology, neuroscience, linguistics, political science, and [[cognitive psychology]]. Most IARPA research is unclassified and openly published. IARPA transfers successful research results and technologies to other government agencies. Notable IARPA investments include [[quantum computing]],<ref name="IARPAQuantum">{{cite web |url=https://www.iarpa.gov/index.php/research-programs/quantum-programs-at-iarpa |title=Quantum programs at IARPA |access-date=2017-06-20 |archive-date=2017-10-04 |archive-url=https://web.archive.org/web/20171004061750/https://www.iarpa.gov/index.php/research-programs/quantum-programs-at-iarpa |url-status=dead }}</ref> [[superconducting computing]], machine learning, and forecasting tournaments.
IARPA funds academic and industry research across a broad range of technical areas, including mathematics, computer science, physics, chemistry, biology, neuroscience, linguistics, political science, and [[cognitive psychology]]. Most IARPA research is unclassified and openly published. IARPA transfers successful research results and technologies to other government agencies. Notable IARPA investments include [[quantum computing]],<ref name="IARPAQuantum">{{cite web |url=https://www.iarpa.gov/index.php/research-programs/quantum-programs-at-iarpa |title=Quantum programs at IARPA |access-date=2017-06-20 |archive-date=2017-10-04 |archive-url=https://web.archive.org/web/20171004061750/https://www.iarpa.gov/index.php/research-programs/quantum-programs-at-iarpa |url-status=dead }}</ref> [[superconducting computing]], machine learning, and forecasting tournaments.


== Mission ==
== Mission ==
IARPA characterizes its mission as follows:
IARPA characterizes its mission as "to envision and lead high-risk, high-payoff research that delivers innovative technology for future overwhelming intelligence advantage".

To envision and lead high-risk, high-payoff research that delivers innovative technology for future overwhelming intelligence advantage.


== History ==
== History ==
In 1958, the first Advanced Research Projects Agency, or ARPA, was created in response to an unanticipated surprise—the [[Soviet Union]]'s successful launch of [[Sputnik 1|Sputnik]] on October 4, 1957. The ARPA model was designed to anticipate and pre-empt technological surprise. As then-Secretary of Defense [[Neil H. McElroy|Neil McElroy]] said, "I want an agency that makes sure no important thing remains undone because it doesn’t fit somebody's mission." The ARPA model has been characterized by ambitious technical goals, competitively awarded research led by term-limited staff, and independent testing and evaluation.
In 1958, the first Advanced Research Projects Agency, or ARPA, was created in response to an unanticipated surprise—the [[Soviet Union]]'s successful launch of [[Sputnik 1|Sputnik]] on October 4, 1957. The ARPA model was designed to anticipate and pre-empt such technological surprises. As then-Secretary of Defense [[Neil H. McElroy|Neil McElroy]] said, "I want an agency that makes sure no important thing remains undone because it doesn't fit somebody's mission." The ARPA model has been characterized by ambitious technical goals, competitively awarded research led by term-limited staff, and independent testing and evaluation.


Authorized by the [[Director of National Intelligence|ODNI]] in 2006, IARPA was modeled after [[DARPA]] but focused on national intelligence needs, rather than military needs. The agency was a consolidation of the [[National Security Agency]]'s [[Disruptive Technology Office]], the [[National Geospatial-Intelligence Agency]]'s National Technology Alliance, and the [[Central Intelligence Agency]]'s Intelligence Technology Innovation Center.<ref>{{cite news |url=http://www.afcea.org/signal/articles/templates/SIGNAL_Article_Template.asp?articleid=1399 |title=Igniting a Technical Renaissance |first=Maryann |last=Lawlor |newspaper=Afcea International |date=October 2007 |publisher=[[AFCEA]]}}</ref> IARPA operations began on October 1, 2007 with [[Lisa Porter]] as founding Director. Its headquarters, a new building in M Square, the [[University System of Maryland|University of Maryland]]'s research park in [[Riverdale Park, Maryland]], was dedicated in April 2009.<ref name=HQdedication>{{cite press release |url=http://www.homelandsecuritynewswire.com/iarpa-dedicates-permanent-home-campus-u-maryland |title=IARPA dedicates a permanent home on the campus of U Maryland |date=2009-04-29 |access-date=2015-12-15 |publisher=Homeland Security News Wire}}</ref>
Authorized by the ODNI in 2006, IARPA was modeled after [[DARPA]] but focused on national intelligence, rather than military, needs. The agency was formed from a consolidation of the [[National Security Agency]]'s [[Disruptive Technology Office]], the [[National Geospatial-Intelligence Agency]]'s National Technology Alliance, and the [[Central Intelligence Agency]]'s Intelligence Technology Innovation Center.<ref>{{cite news |url=http://www.afcea.org/signal/articles/templates/SIGNAL_Article_Template.asp?articleid=1399 |title=Igniting a Technical Renaissance |first=Maryann |last=Lawlor |newspaper=Afcea International |date=October 2007 |publisher=[[AFCEA]]}}</ref> IARPA operations began on October 1, 2007 with [[Lisa Porter]] as founding director. Its headquarters, a new building in M Square, the [[University System of Maryland|University of Maryland]]'s research park in [[Riverdale Park, Maryland]], was dedicated in April 2009.<ref name=HQdedication>{{cite press release |url=http://www.homelandsecuritynewswire.com/iarpa-dedicates-permanent-home-campus-u-maryland |title=IARPA dedicates a permanent home on the campus of U Maryland |date=2009-04-29 |access-date=2015-12-15 |publisher=Homeland Security News Wire}}</ref>


IARPA's quantum computing research was named [[Science (magazine)|''Science'' magazine]]'s Breakthrough of the Year in 2010.<ref name=":8" /><ref name=":9" /> In 2015, IARPA was named to lead foundational research and development in the [[National Strategic Computing Initiative]].{{cn|date=July 2023}} IARPA is also a part of other White House science and technology efforts, including the U.S. [[BRAIN Initiative]], and the [[Nanotechnology]]-Inspired Grand Challenge for Future Computing.<ref name=":11" /><ref name=":12" /> In 2013, [[The New York Times|''New York Times'']] op-ed columnist [[David Brooks (journalist)|David Brooks]] called IARPA "one of the government's most creative agencies."<ref>{{cite news|url=https://www.nytimes.com/2013/03/22/opinion/brooks-forecasting-fox.html|title=Forecasting Fox|last=Brooks|first=David|date=2013-03-21|newspaper=The New York Times|issn=0362-4331|access-date=2016-03-12}}</ref>
In 2010, IARPA's quantum computing research was named ''[[Science (magazine)|Science]]'' magazine's Breakthrough of the Year.<ref name=":8" /><ref name=":9" /> In 2015, IARPA was named to lead foundational research and development for the [[National Strategic Computing Initiative]].{{cn|date=July 2023}} IARPA is also a part of other White House science and technology efforts, including the U.S. [[BRAIN Initiative]], and the [[nanotechnology]]-inspired Grand Challenge for Future Computing.<ref name=":11" /><ref name=":12" /> In 2013, ''[[The New York Times]]''{{'}}s op-ed columnist [[David Brooks (journalist)|David Brooks]] called IARPA "one of the government's most creative agencies."<ref>{{cite news|url=https://www.nytimes.com/2013/03/22/opinion/brooks-forecasting-fox.html|title=Forecasting Fox|last=Brooks|first=David|date=2013-03-21|newspaper=The New York Times|issn=0362-4331|access-date=2016-03-12}}</ref>


== Approach ==
== Approach ==
IARPA invests in multi-year research programs, in which academic and industry teams compete to solve a well-defined set of technical problems, regularly scored on a shared set of metrics and milestones. Each program is led by an IARPA Program Manager (PM) who is a term-limited Government employee. IARPA programs are meant to enable researchers to pursue ideas that are potentially disruptive to the status quo.
IARPA invests in multi-year research programs, in which academic and industry teams compete to solve a well-defined set of technical problems, regularly scored on a shared set of metrics and milestones. Each program is led by an IARPA Program Manager (PM) who is a term-limited Government employee. IARPA programs are meant to enable researchers to pursue ideas that are potentially disruptive to the status quo.


Most IARPA research is unclassified and openly published.<ref name="tri">{{Triangulation|276|Jason Matheny}}</ref> Former director [[Jason Gaverick Matheny|Jason Matheny]] has stated the agency's goals of openness and external engagement to draw in expertise from academia and industry, or even individuals who "might be working in their basement on some [[Data science|data-science]] project and might have an idea for how to solve an important problem".<ref name=":42">{{Cite web|url=https://spectrum.ieee.org/computing/networks/iarpas-new-director-wants-you-to-surprise-him|title=IARPA's New Director Wants You to Surprise Him|last=Harbert|first=Tam|date=2015-10-19|website=IEEE Spectrum|access-date=2016-03-31}}</ref> IARPA transfers successful research results and technologies to other government agencies.
Most IARPA research is unclassified and openly published.<ref name="tri">{{Triangulation|276|Jason Matheny}}</ref> Former director [[Jason Gaverick Matheny|Jason Matheny]] has stated that the agency's goals of openness and external engagement serve to draw in expertise from academia and industry, or even individuals who "might be working in their basement on some [[Data science|data-science]] project and might have an idea for how to solve an important problem".<ref name=":42">{{Cite web|url=https://spectrum.ieee.org/iarpas-new-director-wants-you-to-surprise-him|title=IARPA's New Director Wants You to Surprise Him|last=Harbert|first=Tam|date=2015-10-19|website=IEEE Spectrum|access-date=2016-03-31}}</ref> IARPA transfers successful research results and technologies to other government agencies.


== Research fields ==
== Research fields ==
IARPA is known for its programs to fund research into anticipatory intelligence, using [[data science]] to make predictions about future events ranging from political elections to disease outbreaks to [[Cyberattack|cyberattacks]], some of which focus on [[open-source intelligence]].<ref name=":5">{{Cite web|url=http://www.federaltimes.com/story/government/interview/one-one/2015/11/02/how-iarpa-predicts-unpredictable/75040142/|title=How IARPA predicts the unpredictable|last=Corrin|first=Amber|date=2015-11-02|website=Federal Times|access-date=2016-03-31}}</ref><ref name=":6">{{Cite web|url=http://www.c4isrnet.com/story/military-tech/it/2015/09/23/iarpa-anticipating-surprise/72632204/|title=IARPA's high-stakes intelligence experiment|last=Corrin|first=Amber|date=2015-09-23|website=C4ISR & Networks|access-date=2016-03-31|archive-date=2017-06-21|archive-url=https://web.archive.org/web/20170621170049/http://www.c4isrnet.com/story/military-tech/it/2015/09/23/iarpa-anticipating-surprise/72632204/|url-status=dead}}</ref><ref>{{Cite magazine|url=https://www.wired.com/2010/10/u-s-spies-want-algorithms-to-spot-hot-trends/|title=U.S. Spies Want Algorithms to Spot Hot Trends|last=Drummond|first=Katie|date=2010-10-01|magazine=WIRED|access-date=2016-03-31}}</ref> IARPA has pursued these objectives not only through traditional funding programs but also through tournaments<ref name=":5" /><ref name=":6" /> and prizes.<ref name=":42"/> c is an example of one such program.<ref name=":42"/><ref name=":6" /> Other projects involve analysis of images or video that lacks [[metadata]] by directly analyzing the media's content itself. Examples given by IARPA include determining the location of an image by analyzing features such as placement of trees or a mountain skyline, or determining whether a video is of a baseball game or a traffic jam.<ref name=":42"/> Another program focuses on developing [[speech recognition]] tools that can transcribe arbitrary languages.<ref name=":7">{{Cite web|url=http://www.popularmechanics.com/technology/security/a17451/iarpa-americas-secret-spy-lab/|title=What They're Building Inside America's Secret Spy Lab|last=Belfiore|first=Michael|date=2015-09-23|website=Popular Mechanics|access-date=2016-03-31}}</ref>
IARPA is known for its programs to fund research into anticipatory intelligence, using [[data science]] to make predictions about future events ranging from political elections to disease outbreaks to [[Cyberattack|cyberattacks]], some of which focus on [[open-source intelligence]].<ref name=":5">{{Cite web|url=http://www.federaltimes.com/story/government/interview/one-one/2015/11/02/how-iarpa-predicts-unpredictable/75040142/|title=How IARPA predicts the unpredictable|last=Corrin|first=Amber|date=2015-11-02|website=Federal Times|access-date=2016-03-31}}</ref><ref name=":6">{{Cite web|url=http://www.c4isrnet.com/story/military-tech/it/2015/09/23/iarpa-anticipating-surprise/72632204/|title=IARPA's high-stakes intelligence experiment|last=Corrin|first=Amber|date=2015-09-23|website=C4ISR & Networks|access-date=2016-03-31|archive-date=2017-06-21|archive-url=https://web.archive.org/web/20170621170049/http://www.c4isrnet.com/story/military-tech/it/2015/09/23/iarpa-anticipating-surprise/72632204/|url-status=dead}}</ref><ref>{{Cite magazine|url=https://www.wired.com/2010/10/u-s-spies-want-algorithms-to-spot-hot-trends/|title=U.S. Spies Want Algorithms to Spot Hot Trends|last=Drummond|first=Katie|date=2010-10-01|magazine=WIRED|access-date=2016-03-31}}</ref> IARPA has pursued these objectives not only through traditional funding programs but also through tournaments<ref name=":5" /><ref name=":6" /> and prizes.<ref name=":42"/> [[Aggregative Contingent Estimation]] (ACE) is an example of one such program.<ref name=":42"/><ref name=":6" /> Other projects involve the analysis of images or videos that lack [[metadata]] by directly analyzing the media's content itself. Examples given by IARPA include determining the location of an image by analyzing features such as the placement of trees or a mountain skyline, or determining whether a video is of a baseball game or a traffic jam.<ref name=":42"/> Another program focuses on developing [[speech recognition]] tools that can transcribe arbitrary languages.<ref name=":7">{{Cite web|url=http://www.popularmechanics.com/technology/security/a17451/iarpa-americas-secret-spy-lab/|title=What They're Building Inside America's Secret Spy Lab|last=Belfiore|first=Michael|date=2015-09-23|website=Popular Mechanics|access-date=2016-03-31}}</ref>


IARPA is also involved in [[high-performance computing]] and alternative computing methods. In 2015, IARPA was named as one of two foundational research and development agencies in the [[National Strategic Computing Initiative]], with the specific charge of "future computing paradigms offering an alternative to standard [[semiconductor]] computing technologies".{{cn|date=July 2023}} One such approach is cryogenic [[superconducting computing]], which seeks to use [[Superconductivity|superconductors]] such as [[niobium]] rather than [[semiconductor]]s to reduce the energy consumption of future [[Exascale computing|exascale supercomputers]].<ref name=":42"/><ref name=":7"/>
IARPA is also involved in [[high-performance computing]] and alternative computing methods. In 2015, IARPA was named one of two foundational research and development agencies in the [[National Strategic Computing Initiative]], with the specific charge of finding "future computing paradigms offering an alternative to standard [[semiconductor]] computing technologies".{{cn|date=July 2023}} One such approach is cryogenic [[superconducting computing]], which seeks to use [[Superconductivity|superconductors]] such as [[niobium]], rather than [[semiconductor]]s, to reduce the energy consumption of future [[Exascale computing|exascale supercomputers]].<ref name=":42"/><ref name=":7"/>


Several programs at IARPA focus on [[quantum computing]]<ref name="IARPAQuantum" /> and [[neuroscience]].<ref>{{Cite web|url=http://www.iarpa.gov/index.php/research-programs/neuroscience-programs-at-iarpa|title=Neuroscience Programs at IARPA|website=IARPA|access-date=2016-03-31|archive-date=2016-03-20|archive-url=https://web.archive.org/web/20160320132019/http://www.iarpa.gov/index.php/research-programs/neuroscience-programs-at-iarpa|url-status=dead}}</ref> IARPA is a major funder of quantum computing research due to its applications in [[quantum cryptography]]. As of 2009, IARPA was said to provide a large portion of quantum computing funding resources in the United States.<ref>{{Cite journal|last=Weinberger|first=Sharon|date=2009-06-03|title=Spooky research cuts|journal=Nature|volume=459|issue=7247|pages=625|doi=10.1038/459625a|pmid=19494878|doi-access=free}}</ref> Quantum computing research funded by IARPA was named Science Magazine's Breakthrough of the Year in 2010,<ref name=":8">{{Cite web|url=https://arstechnica.com/science/2010/12/sciences-breakthrough-of-2010-a-macro-scale-quantum-device/|title=Science's breakthrough of 2010: A visible quantum device|last=Ford|first=Matt|date=2010-12-23|website=Ars Technica|access-date=2016-03-31}}</ref><ref name=":9">{{Cite journal|last1=O’Connell|first1=A. D.|last2=Hofheinz|first2=M.|last3=Ansmann|first3=M.|last4=Bialczak|first4=Radoslaw C.|last5=Lenander|first5=M.|last6=Lucero|first6=Erik|last7=Neeley|first7=M.|last8=Sank|first8=D.|last9=Wang|first9=H.|title=Quantum ground state and single-phonon control of a mechanical resonator|journal=Nature|volume=464|issue=7289|pages=697–703|doi=10.1038/nature08967|pmid=20237473|date=April 2010|bibcode=2010Natur.464..697O|s2cid=4412475}}</ref> and physicist [[David J. Wineland|David Wineland]] was a winner of the 2012 [[Nobel Prize in Physics]] for quantum computing research funded by IARPA.<ref name=":42"/> IARPA is also involved in [[Neuromorphic engineering|neuromorphic computation]] efforts as part of the U.S. [[BRAIN Initiative]] and the [[National Nanotechnology Initiative]]'s Grand Challenge for Future Computing. IARPA's [[MICrONS]] project seeks to [[Reverse engineering|reverse engineer]] one cubic millimeter of [[Human brain|brain tissue]] and use insights from its study to improve [[machine learning]] and [[artificial intelligence]].<ref name=":11">{{Cite web|url=http://www.scientificamerican.com/article/the-u-s-government-launches-a-100-million-apollo-project-of-the-brain/|title=The U.S. Government Launches a $100-Million "Apollo Project of the Brain"|last=Cepelewicz|first=Jordana|date=2016-03-08|website=Scientific American|access-date=2016-03-12}}</ref><ref name=":12">{{Cite web|url=https://obamawhitehouse.archives.gov/blog/2015/10/15/nanotechnology-inspired-grand-challenge-future-computing|title=A Nanotechnology-Inspired Grand Challenge for Future Computing|last1=Whitman|first1=Lloyd|last2=Bryant|first2=Randy|date=2015-10-30|access-date=2016-05-01|last3=Kalil|via=[[NARA|National Archives]]|work=[[whitehouse.gov]]|first3=Tom}}</ref>
Several programs at IARPA focus on [[quantum computing]]<ref name="IARPAQuantum" /> and [[neuroscience]].<ref>{{Cite web|url=http://www.iarpa.gov/index.php/research-programs/neuroscience-programs-at-iarpa|title=Neuroscience Programs at IARPA|website=IARPA|access-date=2016-03-31|archive-date=2016-03-20|archive-url=https://web.archive.org/web/20160320132019/http://www.iarpa.gov/index.php/research-programs/neuroscience-programs-at-iarpa|url-status=dead}}</ref> IARPA is a major funder of quantum computing research, due to its applications in [[quantum cryptography]]. As of 2009, IARPA was said to provide a large portion of quantum computing funding resources in the United States.<ref>{{Cite journal|last=Weinberger|first=Sharon|date=2009-06-03|title=Spooky research cuts|journal=Nature|volume=459|issue=7247|pages=625|doi=10.1038/459625a|pmid=19494878|doi-access=free}}</ref> Quantum computing research funded by IARPA was named Science Magazine's Breakthrough of the Year in 2010,<ref name=":8">{{Cite web|url=https://arstechnica.com/science/2010/12/sciences-breakthrough-of-2010-a-macro-scale-quantum-device/|title=Science's breakthrough of 2010: A visible quantum device|last=Ford|first=Matt|date=2010-12-23|website=Ars Technica|access-date=2016-03-31}}</ref><ref name=":9">{{Cite journal|last1=O’Connell|first1=A. D.|last2=Hofheinz|first2=M.|last3=Ansmann|first3=M.|last4=Bialczak|first4=Radoslaw C.|last5=Lenander|first5=M.|last6=Lucero|first6=Erik|last7=Neeley|first7=M.|last8=Sank|first8=D.|last9=Wang|first9=H.|title=Quantum ground state and single-phonon control of a mechanical resonator|journal=Nature|volume=464|issue=7289|pages=697–703|doi=10.1038/nature08967|pmid=20237473|date=April 2010|bibcode=2010Natur.464..697O|s2cid=4412475}}</ref> and physicist [[David J. Wineland|David Wineland]] was a winner of the 2012 [[Nobel Prize in Physics]] for quantum computing research funded by IARPA.<ref name=":42"/> IARPA is also involved in [[Neuromorphic engineering|neuromorphic computation]] efforts as part of the U.S. [[BRAIN Initiative]] and the [[National Nanotechnology Initiative]]'s Grand Challenge for Future Computing. IARPA's [[MICrONS]] project seeks to [[Reverse engineering|reverse engineer]] one cubic millimeter of [[Human brain|brain tissue]] and use insights from its study to improve [[machine learning]] and [[artificial intelligence]].<ref name=":11">{{Cite web|url=http://www.scientificamerican.com/article/the-u-s-government-launches-a-100-million-apollo-project-of-the-brain/|title=The U.S. Government Launches a $100-Million "Apollo Project of the Brain"|last=Cepelewicz|first=Jordana|date=2016-03-08|website=Scientific American|access-date=2016-03-12}}</ref><ref name=":12">{{Cite web|url=https://obamawhitehouse.archives.gov/blog/2015/10/15/nanotechnology-inspired-grand-challenge-future-computing|title=A Nanotechnology-Inspired Grand Challenge for Future Computing|last1=Whitman|first1=Lloyd|last2=Bryant|first2=Randy|date=2015-10-30|access-date=2016-05-01|last3=Kalil|via=[[NARA|National Archives]]|work=[[whitehouse.gov]]|first3=Tom}}</ref>


== Research programs ==
== Research programs ==
Line 67: Line 64:


=== Past research ===
=== Past research ===
* [[Aggregative Contingent Estimation (ACE) Program]] aimed "to dramatically enhance the accuracy, precision, and timeliness of intelligence forecasts for a broad range of event types, through the development of advanced techniques that elicit, weight, and combine the judgments of many intelligence analysts."<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/ace|title=ACE|website=www.iarpa.gov|access-date=2017-03-12}}</ref>
* [[Aggregative Contingent Estimation Program|Aggregative Contingent Estimation (ACE) Program]] aimed "to dramatically enhance the accuracy, precision, and timeliness of intelligence forecasts for a broad range of event types, through the development of advanced techniques that elicit, weight, and combine the judgments of many intelligence analysts."<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/ace|title=ACE|website=www.iarpa.gov|access-date=2017-03-12}}</ref>
* ATHENA Program was a research program about cybersecurity.<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/athena|title=ATHENA|website=www.iarpa.gov|access-date=2017-03-12}}</ref> It aimed "to provide an early warning system for detecting precursors to cyberattacks".<ref>{{Cite web|url=https://lifeboat.com/blog/2016/09/iarpa-to-develop-early-warning-system-for-cyberattacks|title=Lifeboat News: The Blog|website=lifeboat.com|date=29 September 2016 |access-date=2017-03-12}}</ref>
* ATHENA Program was a research program about cybersecurity.<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/athena|title=ATHENA|website=www.iarpa.gov|access-date=2017-03-12}}</ref> It aimed "to provide an early warning system for detecting precursors to cyberattacks".<ref>{{Cite web|url=https://lifeboat.com/blog/2016/09/iarpa-to-develop-early-warning-system-for-cyberattacks|title=Lifeboat News: The Blog|website=lifeboat.com|date=29 September 2016 |access-date=2017-03-12}}</ref>
* [[Babel program|Babel Program]] developed "agile and robust speech recognition technology that can be rapidly applied to any human language in order to provide effective search capability for analysts to efficiently process massive amounts of real-world recorded speech".<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/babel|title=Babel|website=www.iarpa.gov|access-date=2017-03-13}}</ref> The program tries to develop a software that can transcribe and search among all the languages.<ref>{{Cite news|url=http://www.popularmechanics.com/technology/security/a17451/iarpa-americas-secret-spy-lab/|title=What They're Building Inside America's Secret Spy Lab|date=2015-09-23|work=Popular Mechanics|access-date=2017-03-13}}</ref><ref>{{Cite news|url=http://www.defenseone.com/technology/2014/12/what-happens-when-spies-can-eavesdrop-any-conversation/100142/|title=What Happens When Spies Can Eavesdrop on Any Conversation?|work=Defense One|access-date=2017-03-13}}</ref>
* [[Babel program|Babel Program]] developed "agile and robust speech recognition technology that can be rapidly applied to any human language in order to provide effective search capability for analysts to efficiently process massive amounts of real-world recorded speech".<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/babel|title=Babel|website=www.iarpa.gov|access-date=2017-03-13}}</ref> The program tried to develop software that could transcribe and search among all the languages.<ref>{{Cite news|url=http://www.popularmechanics.com/technology/security/a17451/iarpa-americas-secret-spy-lab/|title=What They're Building Inside America's Secret Spy Lab|date=2015-09-23|work=Popular Mechanics|access-date=2017-03-13}}</ref><ref>{{Cite news|url=http://www.defenseone.com/technology/2014/12/what-happens-when-spies-can-eavesdrop-any-conversation/100142/|title=What Happens When Spies Can Eavesdrop on Any Conversation?|work=Defense One|access-date=2017-03-13}}</ref>
* Biometrics Exploitation Science & Technology (BEST) Program focused on "significantly advance the state-of-the-science for [[biometrics]] technologies".<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/best|title=BEST|website=www.iarpa.gov|access-date=2017-03-12}}</ref> It was to discover techniques on utilising biometric from a subject in a less controlled environment which could produce a similar result to that in a controlled environment.<ref>{{Cite journal|date=2009-02-01|title=IARPA seeks BEST biometrics|journal=Biometric Technology Today|volume=17|issue=2|pages=3–4|doi=10.1016/S0969-4765(09)70045-1}}</ref>
* Biometrics Exploitation Science & Technology (BEST) Program focused on trying to "significantly advance the state-of-the-science for [[biometrics]] technologies".<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/best|title=BEST|website=www.iarpa.gov|access-date=2017-03-12}}</ref> It was to discover techniques on utilizing biometrics from a subject in a less controlled environment which could produce a similar result to that in a controlled environment.<ref>{{Cite journal|date=2009-02-01|title=IARPA seeks BEST biometrics|journal=Biometric Technology Today|volume=17|issue=2|pages=3–4|doi=10.1016/S0969-4765(09)70045-1}}</ref>
* [[Computer-generated holography|Synthetic Holographic Observation (SHO)]] Program's stated goal was "to enable full-parallax, full-color, high-resolution display of dynamic 3D data without head-gear, and possessing visually continuous perspectives without artifacts over wide viewing angles."<ref>{{cite web|title=Synthetic Holographic Observation (SHO)|url=https://www.iarpa.gov/index.php/research-programs/sho|publisher=Office of the Director of National Intelligence|access-date=December 3, 2020|date=2011}}</ref>
* [[Computer-generated holography|Synthetic Holographic Observation (SHO)]] Program's stated goal was "to enable full-parallax, full-color, high-resolution display of dynamic 3D data without head-gear, and possessing visually continuous perspectives without artifacts over wide viewing angles."<ref>{{cite web|title=Synthetic Holographic Observation (SHO)|url=https://www.iarpa.gov/index.php/research-programs/sho|publisher=Office of the Director of National Intelligence|access-date=December 3, 2020|date=2011}}</ref>


=== Current research ===
=== Current research ===
* Creation of Operationally Realistic 3-D Environments (CORE3D) aims to "develop rapid automated systems for [[3D modeling|3-D models]] which are designed with complex physical properties and automated methods that will pull commercial, satellite, and airborne imagery."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1844-iarpa-launches-core3d-program-to-build-accurate-3-d-models-from-satellite-imagery|title=CORE3D|website=www.dni.gov|access-date=2018-04-04}}</ref>
* Creation of Operationally Realistic 3-D Environments (CORE3D) aims to "develop rapid automated systems for [[3D modeling|3-D models]] which are designed with complex physical properties and automated methods that will pull commercial, satellite, and airborne imagery."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1844-iarpa-launches-core3d-program-to-build-accurate-3-d-models-from-satellite-imagery|title=CORE3D|website=www.dni.gov|access-date=2018-04-04}}{{Dead link|date=September 2024 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
* Crowdsourcing Evidence, Argumentation, Thinking and Evaluation (CREATE) Program is about "to develop, and experimentally test, systems that use crowdsourcing and structured analytic techniques to improve [[analytic reasoning]]".<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/create|title=CREATE|website=www.iarpa.gov|access-date=2017-03-13}}</ref> It hopes to improve the intelligence community's ability on better understanding evidence and sources in order to produce accurate information.<ref>{{Cite web|url=https://gcn.com/articles/2017/02/14/iarpa-create.aspx|title=Leveraging the wisdom (and ignorance) of crowds|website=GCN|access-date=2017-03-13|archive-date=2017-03-13|archive-url=https://web.archive.org/web/20170313213934/https://gcn.com/articles/2017/02/14/iarpa-create.aspx|url-status=dead}}</ref><ref>{{Cite web|url=https://www.meritalk.com/articles/data-analytics-intelligence-iarpa-jason-matheny-sensors-iot/|title=Data Analytics Key to Complex Intelligence Decisions, Says IARPA Director – MeriTalk|website=www.meritalk.com|access-date=2017-03-13}}</ref>
* Crowdsourcing Evidence, Argumentation, Thinking and Evaluation (CREATE) Program is about "to develop, and experimentally test, systems that use crowdsourcing and structured analytic techniques to improve [[analytic reasoning]]".<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/create|title=CREATE|website=www.iarpa.gov|access-date=2017-03-13}}</ref> It hopes to improve the intelligence community's ability to better understand evidence and sources in order to produce accurate information.<ref>{{Cite web|url=https://gcn.com/articles/2017/02/14/iarpa-create.aspx|title=Leveraging the wisdom (and ignorance) of crowds|website=GCN|access-date=2017-03-13|archive-date=2017-03-13|archive-url=https://web.archive.org/web/20170313213934/https://gcn.com/articles/2017/02/14/iarpa-create.aspx|url-status=dead}}</ref><ref>{{Cite web|url=https://www.meritalk.com/articles/data-analytics-intelligence-iarpa-jason-matheny-sensors-iot/|title=Data Analytics Key to Complex Intelligence Decisions, Says IARPA Director – MeriTalk|website=www.meritalk.com|access-date=2017-03-13}}</ref>
* Deep Intermodal Video Analytics (DIVA) aims to "advance state-of-the-art artificial visual perception, and automate video monitoring."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1834-iarpa-launches-diva-program-to-automatically-detect-complex-activities-from-video|title=DIVA|website=www.dni.gov|access-date=2018-04-04}}</ref>
* Deep Intermodal Video Analytics (DIVA) aims to "advance state-of-the-art artificial visual perception, and automate video monitoring."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1834-iarpa-launches-diva-program-to-automatically-detect-complex-activities-from-video|title=DIVA|website=www.dni.gov|access-date=2018-04-04|archive-date=2018-04-05|archive-url=https://web.archive.org/web/20180405024348/https://www.dni.gov/index.php/newsroom/press-releases/item/1834-iarpa-launches-diva-program-to-automatically-detect-complex-activities-from-video|url-status=dead}}</ref>
* Functional Genomic and Computational Assessment of Threats (Fun GCAT) aims to "develop next-generation biological data tools to improve [[DNA sequencing|DNA sequence]] screening, augment biodefense capabilities through the characterization of threats, and advance our understanding of the relative risks posed by unknown sequences."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1831-iarpa-launches-program-to-develop-new-biosecurity-tools|title=FunGCAT|website=www.dni.gov|access-date=2018-04-04}}</ref>
* Functional Genomic and Computational Assessment of Threats (Fun GCAT) aims to "develop next-generation biological data tools to improve [[DNA sequencing|DNA sequence]] screening, augment biodefense capabilities through the characterization of threats, and advance our understanding of the relative risks posed by unknown sequences."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1831-iarpa-launches-program-to-develop-new-biosecurity-tools|title=FunGCAT|website=www.dni.gov|access-date=2018-04-04|archive-date=2018-04-05|archive-url=https://web.archive.org/web/20180405024416/https://www.dni.gov/index.php/newsroom/press-releases/item/1831-iarpa-launches-program-to-develop-new-biosecurity-tools|url-status=dead}}</ref>
* Hybrid Forecasting Competition (HFC) aims to "improve accuracy in predicting worldwide geopolitical issues, including foreign political elections, interstate conflict, disease outbreaks, and economic indicators by leveraging the relative strengths of humans and machines."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1785-iarpa-launches-hybrid-forecasting-competition-to-improve-predictions-through-human-machine-integration|title=HFC|website=www.dni.gov|access-date=2018-04-04}}</ref>
* Hybrid Forecasting Competition (HFC) aims to "improve accuracy in predicting worldwide geopolitical issues, including foreign political elections, interstate conflict, disease outbreaks, and economic indicators by leveraging the relative strengths of humans and machines."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1785-iarpa-launches-hybrid-forecasting-competition-to-improve-predictions-through-human-machine-integration|title=HFC|website=www.dni.gov|access-date=2018-04-04|archive-date=2018-04-05|archive-url=https://web.archive.org/web/20180405024248/https://www.dni.gov/index.php/newsroom/press-releases/item/1785-iarpa-launches-hybrid-forecasting-competition-to-improve-predictions-through-human-machine-integration|url-status=dead}}</ref>
* Machine Translation for English Retrieval of Information in Any Language (MATERIAL) aims to "develop and deploy fully automatic systems that will allow English-only speakers to accurately and efficiently identify foreign language documents of interest."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1829-iarpa-launches-material-program|title=MATERIAL|website=www.dni.gov|access-date=2018-04-04}}</ref>
* Machine Translation for English Retrieval of Information in Any Language (MATERIAL) aims to "develop and deploy fully automatic systems that will allow English-only speakers to accurately and efficiently identify foreign language documents of interest."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1829-iarpa-launches-material-program|title=MATERIAL|website=www.dni.gov|access-date=2018-04-04|archive-date=2018-04-05|archive-url=https://web.archive.org/web/20180405024439/https://www.dni.gov/index.php/newsroom/press-releases/item/1829-iarpa-launches-material-program|url-status=dead}}</ref>
* Molecular Analyzer for Efficient Gas-phase Low-power Interrogation (MAEGLIN) aims to "develop a compact system capable of unattended environmental sampling and chemical identification with minimal (preferably no) consumables."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1753-iarpa-launches-maeglin-program-to-develop-low-power-autonomous-chemical-identification-systems|title=MAEGLIN|website=www.dni.gov|access-date=2018-04-04}}</ref>
* Molecular Analyzer for Efficient Gas-phase Low-power Interrogation (MAEGLIN) aims to "develop a compact system capable of unattended environmental sampling and chemical identification with minimal (preferably no) consumables."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1753-iarpa-launches-maeglin-program-to-develop-low-power-autonomous-chemical-identification-systems|title=MAEGLIN|website=www.dni.gov|access-date=2018-04-04|archive-date=2018-04-05|archive-url=https://web.archive.org/web/20180405024246/https://www.dni.gov/index.php/newsroom/press-releases/item/1753-iarpa-launches-maeglin-program-to-develop-low-power-autonomous-chemical-identification-systems|url-status=dead}}</ref>
* Multimodal Objective Sensing to Assess Individuals with Context (MOSAIC) Program aims to develop "unobtrusive, passive, and persistent measurement to predict an individual’s job performance".<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/mosaic|title=MOSAIC|website=www.iarpa.gov|access-date=2017-03-13}}</ref> It designs and tests [[Sensor|sensors]] which can collect data about monitoring employees' work performance.<ref>{{Cite web|url=https://fcw.com/blogs/the-spec/2016/07/iarpa-sensors-evaluation.aspx|title=IC wants sensors to evaluate personnel performance|website=FCW|access-date=2017-03-13|archive-date=2017-03-13|archive-url=https://web.archive.org/web/20170313124752/https://fcw.com/blogs/the-spec/2016/07/iarpa-sensors-evaluation.aspx|url-status=dead}}</ref><ref>{{Cite news|url=http://www.nextgov.com/emerging-tech/2016/06/intelligence-community-will-monitor-wearables-find-perfect-spy/129555/|title=The Intelligence Community Will Monitor Wearables to Find the Perfect Spy|work=Nextgov|access-date=2017-03-13}}</ref><ref>{{Cite news|url=https://thestack.com/big-data/2016/10/19/u-s-government-proposes-the-permanent-job-interview/|title=U.S. government proposes the permanent job interview|date=2016-10-19|work=The Stack|access-date=2017-03-13}}</ref>
* Multimodal Objective Sensing to Assess Individuals with Context (MOSAIC) Program aims to develop "unobtrusive, passive, and persistent measurement to predict an individual’s job performance".<ref>{{Cite web|url=https://www.iarpa.gov/index.php/research-programs/mosaic|title=MOSAIC|website=www.iarpa.gov|access-date=2017-03-13}}</ref> It designs and tests [[Sensor|sensors]] that can collect data about monitoring employees' work performance.<ref>{{Cite web|url=https://fcw.com/blogs/the-spec/2016/07/iarpa-sensors-evaluation.aspx|title=IC wants sensors to evaluate personnel performance|website=FCW|access-date=2017-03-13|archive-date=2017-03-13|archive-url=https://web.archive.org/web/20170313124752/https://fcw.com/blogs/the-spec/2016/07/iarpa-sensors-evaluation.aspx|url-status=dead}}</ref><ref>{{Cite news|url=http://www.nextgov.com/emerging-tech/2016/06/intelligence-community-will-monitor-wearables-find-perfect-spy/129555/|title=The Intelligence Community Will Monitor Wearables to Find the Perfect Spy|work=Nextgov|access-date=2017-03-13}}</ref><ref>{{Cite news|url=https://thestack.com/big-data/2016/10/19/u-s-government-proposes-the-permanent-job-interview/|title=U.S. government proposes the permanent job interview|date=2016-10-19|work=The Stack|access-date=2017-03-13|archive-date=2017-03-13|archive-url=https://web.archive.org/web/20170313124731/https://thestack.com/big-data/2016/10/19/u-s-government-proposes-the-permanent-job-interview/|url-status=dead}}</ref>
* Rapid Analysis of Various Emerging Nano-electronics (RAVEN) aims to "develop tools to rapidly image current and future [[Integrated circuit|integrated circuit chips]]."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1754-iarpa-launches-raven-program-to-develop-rapid-integrated-circuit-imaging-tools|title=RAVEN|website=www.dni.gov|access-date=2018-04-04}}</ref>
* Rapid Analysis of Various Emerging Nano-electronics (RAVEN) aims to "develop tools to rapidly image current and future [[Integrated circuit|integrated circuit chips]]."<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/1754-iarpa-launches-raven-program-to-develop-rapid-integrated-circuit-imaging-tools|title=RAVEN|website=www.dni.gov|access-date=2018-04-04|archive-date=2018-04-05|archive-url=https://web.archive.org/web/20180405024311/https://www.dni.gov/index.php/newsroom/press-releases/item/1754-iarpa-launches-raven-program-to-develop-rapid-integrated-circuit-imaging-tools|url-status=dead}}</ref>
* Space-based Machine Automated Recognition Technique (SMART) program<ref>{{cite web|url=https://www.satellitetoday.com/government-military/2022/07/14/blacksky-wins-iarpa-award-to-support-analysis-automation-project-smart/ |title=BlackSky Wins IARPA Award to Support Analysis Automation Project SMART |date=2022-07-14 |work=Via Satellite |access-date=2022-07-15}}</ref>
* Space-based Machine Automated Recognition Technique (SMART) program.<ref>{{cite web|url=https://www.satellitetoday.com/government-military/2022/07/14/blacksky-wins-iarpa-award-to-support-analysis-automation-project-smart/ |title=BlackSky Wins IARPA Award to Support Analysis Automation Project SMART |date=2022-07-14 |work=Via Satellite |access-date=2022-07-15}}</ref>


==Directors==
== Directors ==
* [[Steven Nixon]] (acting, 2007)<ref name=":2">{{Cite web|url=https://gcn.com/articles/2007/08/14/master-spy-agency-promotes-nixon.aspx|title=Master spy agency promotes Nixon|last=Dizard III|first=Wilson P.|date=2007-08-14|website=GCN|access-date=2016-03-15|archive-date=2016-03-15|archive-url=https://web.archive.org/web/20160315171044/https://gcn.com/articles/2007/08/14/master-spy-agency-promotes-nixon.aspx|url-status=dead}}</ref>
* [[Steven Nixon]] (acting, 2007)<ref name=":2">{{Cite web|url=https://gcn.com/articles/2007/08/14/master-spy-agency-promotes-nixon.aspx|title=Master spy agency promotes Nixon|last=Dizard III|first=Wilson P.|date=2007-08-14|website=GCN|access-date=2016-03-15|archive-date=2016-03-15|archive-url=https://web.archive.org/web/20160315171044/https://gcn.com/articles/2007/08/14/master-spy-agency-promotes-nixon.aspx|url-status=dead}}</ref>
* Tim Murphy (acting, 2007–2008)<ref name=":2" /><ref name=":3">{{Cite web|url=https://defensesystems.com/Articles/2008/03/The-future-of-intelligence.aspx|title=The Future of Intelligence|last=Lais|first=Sami|date=2008-03-24|website=Defense Systems|access-date=2016-03-15|archive-date=2016-03-15|archive-url=https://web.archive.org/web/20160315182748/https://defensesystems.com/Articles/2008/03/The-future-of-intelligence.aspx|url-status=dead}}</ref>
* Tim Murphy (acting, 2007–2008)<ref name=":2" /><ref name=":3">{{Cite web|url=https://defensesystems.com/Articles/2008/03/The-future-of-intelligence.aspx|title=The Future of Intelligence|last=Lais|first=Sami|date=2008-03-24|website=Defense Systems|access-date=2016-03-15|archive-date=2016-03-15|archive-url=https://web.archive.org/web/20160315182748/https://defensesystems.com/Articles/2008/03/The-future-of-intelligence.aspx|url-status=dead}}</ref>
Line 91: Line 88:
* Peter Highnam (2012–2015)<ref>{{Cite web|url=http://fedscoop.com/highnam-named-iarpa-director/|title=Highnam named IARPA director|last=Stegon|first=David|date=2012-09-04|website=FedScoop|access-date=2016-03-15}}</ref>
* Peter Highnam (2012–2015)<ref>{{Cite web|url=http://fedscoop.com/highnam-named-iarpa-director/|title=Highnam named IARPA director|last=Stegon|first=David|date=2012-09-04|website=FedScoop|access-date=2016-03-15}}</ref>
* [[Jason Gaverick Matheny|Jason Matheny]] (2015–2018)<ref>{{Cite web|url=http://fedscoop.com/jason-matheny-named-iarpa-director|title=Jason Matheny named IARPA director|last=Otto|first=Greg|date=2015-08-03|website=FedScoop|access-date=2016-03-15}}</ref>
* [[Jason Gaverick Matheny|Jason Matheny]] (2015–2018)<ref>{{Cite web|url=http://fedscoop.com/jason-matheny-named-iarpa-director|title=Jason Matheny named IARPA director|last=Otto|first=Greg|date=2015-08-03|website=FedScoop|access-date=2016-03-15}}</ref>
*[[Stacey Dixon]] (2018–2019)<ref>{{Cite web|url=https://www.odni.gov/index.php/newsroom/press-releases/press-releases-2018/item/1898-dni-coats-names-new-iarpa-director|title=DNI Coats Names New IARPA Director|website=www.odni.gov|access-date=2019-01-26}}</ref>
* [[Stacey Dixon]] (2018–2019)<ref>{{Cite web|url=https://www.odni.gov/index.php/newsroom/press-releases/press-releases-2018/item/1898-dni-coats-names-new-iarpa-director|title=DNI Coats Names New IARPA Director|website=www.odni.gov|access-date=2019-01-26|archive-date=2019-01-27|archive-url=https://web.archive.org/web/20190127095702/https://www.odni.gov/index.php/newsroom/press-releases/press-releases-2018/item/1898-dni-coats-names-new-iarpa-director|url-status=dead}}</ref>
*Catherine Marsh (2019–present)<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/2075-odni-welcomes-dr-catherine-marsh-as-director-of-iarpa|title=ODNI Welcomes Dr. Catherine Marsh as Director of IARPA|website=www.odni.gov|access-date=2019-11-26}}</ref>
*Catherine Marsh (2019–April 2024)<ref>{{Cite web|url=https://www.dni.gov/index.php/newsroom/press-releases/item/2075-odni-welcomes-dr-catherine-marsh-as-director-of-iarpa|title=ODNI Welcomes Dr. Catherine Marsh as Director of IARPA|website=www.odni.gov|access-date=2019-11-26}}</ref>
*Dr. Richard "Rick" Muller (April 2024–present)<ref>{{Cite web |title=DNI Haines Welcomes Dr. Richard Muller as IARPA Director |url=https://www.iarpa.gov/newsroom/article/dni-haines-welcomes-dr-richard-muller-as-iarpa-director |access-date=2024-06-13 |website=www.iarpa.gov |language=en-gb}}</ref>


==See also==
== See also ==
* [[DARPA|Defense Advanced Research Projects Agency (DARPA)]]
* [[DARPA|Defense Advanced Research Projects Agency (DARPA)]]
* [[Advanced Research Projects Agency–Energy|Advanced Research Projects Agency–Energy (ARPA-E)]]
* [[Advanced Research Projects Agency–Energy|Advanced Research Projects Agency–Energy (ARPA-E)]]
Line 101: Line 99:
* [[Infrastructure Investment and Jobs Act#Overview|Advanced Research Projects Agency–Infrastructure (ARPA-I)]]
* [[Infrastructure Investment and Jobs Act#Overview|Advanced Research Projects Agency–Infrastructure (ARPA-I)]]


==References==
== References ==
{{Reflist}}
{{Reflist}}


==Further reading==
== Further reading ==
* Signal. (2015). ''[http://www.afcea.org/content/?q=Article-data-analytics-programs-help-predict-global-unrest Data Analytics Programs Help Predict Global Unrest]''. Retrieved December 1, 2015.
* {{cite web |title=Data Analytics Programs Help Predict Global Unrest |url=http://www.afcea.org/content/?q=Article-data-analytics-programs-help-predict-global-unrest |website=Signal |access-date=December 1, 2015 |date=2015}}
* CS4ISR & Networks. (2015). ''[http://www.c4isrnet.com/story/military-tech/it/2015/09/23/iarpa-anticipating-surprise/72632204/ IARPA's high-stakes intelligence experiment.] {{Webarchive|url=https://web.archive.org/web/20170621170049/http://www.c4isrnet.com/story/military-tech/it/2015/09/23/iarpa-anticipating-surprise/72632204/ |date=2017-06-21 }}'' Retrieved September 23, 2015.
* {{cite web |title=IARPA's high-stakes intelligence experiment |url= http://www.c4isrnet.com/story/military-tech/it/2015/09/23/iarpa-anticipating-surprise/72632204/ |website=CS4ISR & Networks |publisher= |access-date=September 23, 2015 |archive-url=https://web.archive.org/web/20170621170049/http://www.c4isrnet.com/story/military-tech/it/2015/09/23/iarpa-anticipating-surprise/72632204/ |archive-date=2017-06-21 |date=2015}}
* Executive Gov (2015). ''[http://www.executivegov.com/2015/10/jason-matheny-iarpa-seeks-automated-methods-to-identify-cyber-attack-indicators/ Jason Matheny: IARPA Seeks Automated Methods to Identify Cyber Attack Indicators]''[http://www.executivegov.com/2015/10/jason-matheny-iarpa-seeks-automated-methods-to-identify-cyber-attack-indicators/ .] Retrieved October 14, 2015.
* {{cite web | last=Hoffman | first=Mary-Louise | title=Jason Matheny: IARPA Seeks Automated Methods to Identify Cyber Attack Indicators | website=Executive Gov | date=14 Oct 2015 | url=http://www.executivegov.com/2015/10/jason-matheny-iarpa-seeks-automated-methods-to-identify-cyber-attack-indicators/ | access-date=October 14, 2015}}
* Federal Times (2015). ''[http://www.federaltimes.com/story/government/interview/one-one/2015/11/02/how-iarpa-predicts-unpredictable/75040142/ How IARPA Predicts the Unpredictable]''[http://www.federaltimes.com/story/government/interview/one-one/2015/11/02/how-iarpa-predicts-unpredictable/75040142/ .] Retrieved November 2, 2015.
* {{cite web | last=Corrin | first=Amber | title=How IARPA predicts the unpredictable | website=Federal Times | date=2 Nov 2015 | url=http://www.federaltimes.com/story/government/interview/one-one/2015/11/02/how-iarpa-predicts-unpredictable/75040142/ | access-date=November 2, 2015}}
* Fedscoop. (2013). ''[http://fedscoop.com/iarpa-wants-know-makes-tick/ Intelligence agency wants to know what makes you tick] {{Webarchive|url=https://web.archive.org/web/20160530021014/http://fedscoop.com/iarpa-wants-know-makes-tick |date=2016-05-30 }}''[http://fedscoop.com/iarpa-wants-know-makes-tick/ .] {{Webarchive|url=https://web.archive.org/web/20160530021014/http://fedscoop.com/iarpa-wants-know-makes-tick |date=2016-05-30 }} Retrieved January 17, 2014.
* {{cite web |title=Intelligence agency wants to know what makes you tick |url=http://fedscoop.com/iarpa-wants-know-makes-tick/ |website=Fedscoop |access-date=January 17, 2014 |archive-url=https://web.archive.org/web/20160530021014/http://fedscoop.com/iarpa-wants-know-makes-tick |archive-date=2016-05-30 |date=2013}}
* Harvard Business Review (2015). ''[https://hbr.org/2015/10/how-a-video-game-helped-people-make-better-decisions How a Video Game Helped People Make Better Decisions]''[https://hbr.org/2015/10/how-a-video-game-helped-people-make-better-decisions .] Retrieved October 13, 2015.
* {{cite journal | last=Morewedge | first=Carey K. | title=How a Video Game Helped People Make Better Decisions | date=13 Oct 2015 |journal=Harvard Business Review | issn=0017-8012 | url=https://hbr.org/2015/10/how-a-video-game-helped-people-make-better-decisions | access-date=October 13, 2015}}
* IEEE Spectrum (2015). ''[https://spectrum.ieee.org/computing/networks/iarpas-new-director-wants-you-to-surprise-him IARPA’s New Director Wants You to Surprise Him]''[https://spectrum.ieee.org/computing/networks/iarpas-new-director-wants-you-to-surprise-him .] Retrieved October 19, 2015.
* {{cite web | title=IARPA's New Director Wants You to Surprise Him | website=IEEE Spectrum | date=19 Oct 2015 | url=https://spectrum.ieee.org/iarpas-new-director-wants-you-to-surprise-him | access-date=October 19, 2015}}
* New York Times. (2013). ''[https://www.nytimes.com/2013/03/22/opinion/brooks-forecasting-fox.html?_r=2 Forecasting Fox]''. Retrieved July 11, 2014.
* {{cite journal | last=Brooks | first=David | title= Forecasting Fox | date=22 Mar 2013 |journal=The New York Times | issn=0362-4331 | url=https://www.nytimes.com/2013/03/22/opinion/brooks-forecasting-fox.html?_r=2 | language=en-US | access-date= July 11, 2014}}
* Popular Mechanics. (2015). ''[http://www.popularmechanics.com/technology/security/a17451/iarpa-americas-secret-spy-lab/ What They're Building Inside America's Secret Spy Tech Lab]''[http://www.popularmechanics.com/technology/security/a17451/iarpa-americas-secret-spy-lab/ .] Retrieved September 23, 2015.
* {{cite web | title=What They're Building Inside America's Secret Spy Tech Lab | website=Popular Mechanics | date=23 Sep 2015 | url=http://www.popularmechanics.com/technology/security/a17451/iarpa-americas-secret-spy-lab/ | language=en-US | access-date=September 23, 2015}}
* USA Today. (2007). ''[http://usatoday30.usatoday.com/tech/news/techinnovations/2007-05-31-iarpa-spy-tools_N.htm New IARPA Agency Developing Spy Tools]''[http://usatoday30.usatoday.com/tech/news/techinnovations/2007-05-31-iarpa-spy-tools_N.htm .] Retrieved October 2, 2015.
* {{cite web | title=New IARPA Agency Developing Spy Tools | website=USA Today | url=http://usatoday30.usatoday.com/tech/news/techinnovations/2007-05-31-iarpa-spy-tools_N.htm| date=2007 | access-date=October 2, 2015}}
* Washington Post. (2013). ''[https://www.washingtonpost.com/news/monkey-cage/wp/2013/11/26/good-judgment-in-forecasting-international-affairs-and-an-invitation-for-season-3/ Good judgment in forecasting international affairs]''[https://www.washingtonpost.com/news/monkey-cage/wp/2013/11/26/good-judgment-in-forecasting-international-affairs-and-an-invitation-for-season-3/ .] Retrieved February 10, 2014.
* {{cite news | last=Horowitz | first=Michael | title=Good judgment in forecasting international affairs | newspaper=Washington Post | date=26 Nov 2013 | url=https://www.washingtonpost.com/news/monkey-cage/wp/2013/11/26/good-judgment-in-forecasting-international-affairs-and-an-invitation-for-season-3/ | access-date= February 10, 2014}}
* Wired. (2010). [https://www.wired.com/2010/10/u-s-spies-want-algorithms-to-spot-hot-trends/ U.S. ''Spies Want Algorithms to Spot Hot Trends''.] Retrieved August 13, 2014.
* {{cite magazine | last1=Drummond | first1=Katie | title=U.S. ''Spies Want Algorithms to Spot Hot Trends''. | magazine=WIRED | date=1 Oct 2010 | url=https://www.wired.com/2010/10/u-s-spies-want-algorithms-to-spot-hot-trends/ |publisher= Condé Nast | access-date= August 13, 2014}}


==External links==
== External links ==
* {{Official website|https://www.iarpa.gov/}}
* {{Official website|https://www.iarpa.gov/}}


Line 128: Line 126:
[[Category:United States intelligence agencies]]
[[Category:United States intelligence agencies]]
[[Category:Quantum computing]]
[[Category:Quantum computing]]
[[Category:Research and development in the United States]]
[[Category:Government research]]
[[Category:Government agencies established in 2006]]
[[Category:2006 establishments in the United States]]

Latest revision as of 10:30, 7 November 2024

Intelligence Advanced Research Projects Activity
Agency overview
Formed2006
JurisdictionUnited States Government
HeadquartersIntelligence Community Campus-Bethesda
Agency executive
  • Dr. Richard "Rick" Muller, Director
Parent agencyOffice of the Director of National Intelligence
WebsiteIARPA.gov

The Intelligence Advanced Research Projects Activity (IARPA) is an organization, within the Office of the Director of National Intelligence (ODNI), that is responsible for leading research to overcome difficult challenges facing the United States Intelligence Community.[1] IARPA characterizes its mission as follows: "To envision and lead high-risk, high-payoff research that delivers innovative technology for future overwhelming intelligence advantage."

IARPA funds academic and industry research across a broad range of technical areas, including mathematics, computer science, physics, chemistry, biology, neuroscience, linguistics, political science, and cognitive psychology. Most IARPA research is unclassified and openly published. IARPA transfers successful research results and technologies to other government agencies. Notable IARPA investments include quantum computing,[2] superconducting computing, machine learning, and forecasting tournaments.

Mission

[edit]

IARPA characterizes its mission as "to envision and lead high-risk, high-payoff research that delivers innovative technology for future overwhelming intelligence advantage".

History

[edit]

In 1958, the first Advanced Research Projects Agency, or ARPA, was created in response to an unanticipated surprise—the Soviet Union's successful launch of Sputnik on October 4, 1957. The ARPA model was designed to anticipate and pre-empt such technological surprises. As then-Secretary of Defense Neil McElroy said, "I want an agency that makes sure no important thing remains undone because it doesn't fit somebody's mission." The ARPA model has been characterized by ambitious technical goals, competitively awarded research led by term-limited staff, and independent testing and evaluation.

Authorized by the ODNI in 2006, IARPA was modeled after DARPA but focused on national intelligence, rather than military, needs. The agency was formed from a consolidation of the National Security Agency's Disruptive Technology Office, the National Geospatial-Intelligence Agency's National Technology Alliance, and the Central Intelligence Agency's Intelligence Technology Innovation Center.[3] IARPA operations began on October 1, 2007 with Lisa Porter as founding director. Its headquarters, a new building in M Square, the University of Maryland's research park in Riverdale Park, Maryland, was dedicated in April 2009.[4]

In 2010, IARPA's quantum computing research was named Science magazine's Breakthrough of the Year.[5][6] In 2015, IARPA was named to lead foundational research and development for the National Strategic Computing Initiative.[citation needed] IARPA is also a part of other White House science and technology efforts, including the U.S. BRAIN Initiative, and the nanotechnology-inspired Grand Challenge for Future Computing.[7][8] In 2013, The New York Times's op-ed columnist David Brooks called IARPA "one of the government's most creative agencies."[9]

Approach

[edit]

IARPA invests in multi-year research programs, in which academic and industry teams compete to solve a well-defined set of technical problems, regularly scored on a shared set of metrics and milestones. Each program is led by an IARPA Program Manager (PM) who is a term-limited Government employee. IARPA programs are meant to enable researchers to pursue ideas that are potentially disruptive to the status quo.

Most IARPA research is unclassified and openly published.[10] Former director Jason Matheny has stated that the agency's goals of openness and external engagement serve to draw in expertise from academia and industry, or even individuals who "might be working in their basement on some data-science project and might have an idea for how to solve an important problem".[11] IARPA transfers successful research results and technologies to other government agencies.

Research fields

[edit]

IARPA is known for its programs to fund research into anticipatory intelligence, using data science to make predictions about future events ranging from political elections to disease outbreaks to cyberattacks, some of which focus on open-source intelligence.[12][13][14] IARPA has pursued these objectives not only through traditional funding programs but also through tournaments[12][13] and prizes.[11] Aggregative Contingent Estimation (ACE) is an example of one such program.[11][13] Other projects involve the analysis of images or videos that lack metadata by directly analyzing the media's content itself. Examples given by IARPA include determining the location of an image by analyzing features such as the placement of trees or a mountain skyline, or determining whether a video is of a baseball game or a traffic jam.[11] Another program focuses on developing speech recognition tools that can transcribe arbitrary languages.[15]

IARPA is also involved in high-performance computing and alternative computing methods. In 2015, IARPA was named one of two foundational research and development agencies in the National Strategic Computing Initiative, with the specific charge of finding "future computing paradigms offering an alternative to standard semiconductor computing technologies".[citation needed] One such approach is cryogenic superconducting computing, which seeks to use superconductors such as niobium, rather than semiconductors, to reduce the energy consumption of future exascale supercomputers.[11][15]

Several programs at IARPA focus on quantum computing[2] and neuroscience.[16] IARPA is a major funder of quantum computing research, due to its applications in quantum cryptography. As of 2009, IARPA was said to provide a large portion of quantum computing funding resources in the United States.[17] Quantum computing research funded by IARPA was named Science Magazine's Breakthrough of the Year in 2010,[5][6] and physicist David Wineland was a winner of the 2012 Nobel Prize in Physics for quantum computing research funded by IARPA.[11] IARPA is also involved in neuromorphic computation efforts as part of the U.S. BRAIN Initiative and the National Nanotechnology Initiative's Grand Challenge for Future Computing. IARPA's MICrONS project seeks to reverse engineer one cubic millimeter of brain tissue and use insights from its study to improve machine learning and artificial intelligence.[7][8]

Research programs

[edit]

Below are some of the past and current research programs of IARPA.

Past research

[edit]
  • Aggregative Contingent Estimation (ACE) Program aimed "to dramatically enhance the accuracy, precision, and timeliness of intelligence forecasts for a broad range of event types, through the development of advanced techniques that elicit, weight, and combine the judgments of many intelligence analysts."[18]
  • ATHENA Program was a research program about cybersecurity.[19] It aimed "to provide an early warning system for detecting precursors to cyberattacks".[20]
  • Babel Program developed "agile and robust speech recognition technology that can be rapidly applied to any human language in order to provide effective search capability for analysts to efficiently process massive amounts of real-world recorded speech".[21] The program tried to develop software that could transcribe and search among all the languages.[22][23]
  • Biometrics Exploitation Science & Technology (BEST) Program focused on trying to "significantly advance the state-of-the-science for biometrics technologies".[24] It was to discover techniques on utilizing biometrics from a subject in a less controlled environment which could produce a similar result to that in a controlled environment.[25]
  • Synthetic Holographic Observation (SHO) Program's stated goal was "to enable full-parallax, full-color, high-resolution display of dynamic 3D data without head-gear, and possessing visually continuous perspectives without artifacts over wide viewing angles."[26]

Current research

[edit]
  • Creation of Operationally Realistic 3-D Environments (CORE3D) aims to "develop rapid automated systems for 3-D models which are designed with complex physical properties and automated methods that will pull commercial, satellite, and airborne imagery."[27]
  • Crowdsourcing Evidence, Argumentation, Thinking and Evaluation (CREATE) Program is about "to develop, and experimentally test, systems that use crowdsourcing and structured analytic techniques to improve analytic reasoning".[28] It hopes to improve the intelligence community's ability to better understand evidence and sources in order to produce accurate information.[29][30]
  • Deep Intermodal Video Analytics (DIVA) aims to "advance state-of-the-art artificial visual perception, and automate video monitoring."[31]
  • Functional Genomic and Computational Assessment of Threats (Fun GCAT) aims to "develop next-generation biological data tools to improve DNA sequence screening, augment biodefense capabilities through the characterization of threats, and advance our understanding of the relative risks posed by unknown sequences."[32]
  • Hybrid Forecasting Competition (HFC) aims to "improve accuracy in predicting worldwide geopolitical issues, including foreign political elections, interstate conflict, disease outbreaks, and economic indicators by leveraging the relative strengths of humans and machines."[33]
  • Machine Translation for English Retrieval of Information in Any Language (MATERIAL) aims to "develop and deploy fully automatic systems that will allow English-only speakers to accurately and efficiently identify foreign language documents of interest."[34]
  • Molecular Analyzer for Efficient Gas-phase Low-power Interrogation (MAEGLIN) aims to "develop a compact system capable of unattended environmental sampling and chemical identification with minimal (preferably no) consumables."[35]
  • Multimodal Objective Sensing to Assess Individuals with Context (MOSAIC) Program aims to develop "unobtrusive, passive, and persistent measurement to predict an individual’s job performance".[36] It designs and tests sensors that can collect data about monitoring employees' work performance.[37][38][39]
  • Rapid Analysis of Various Emerging Nano-electronics (RAVEN) aims to "develop tools to rapidly image current and future integrated circuit chips."[40]
  • Space-based Machine Automated Recognition Technique (SMART) program.[41]

Directors

[edit]

See also

[edit]

References

[edit]
  1. ^ "About IARPA". IARPA. Archived from the original on 2016-03-14. Retrieved 2016-03-12.
  2. ^ a b "Quantum programs at IARPA". Archived from the original on 2017-10-04. Retrieved 2017-06-20.
  3. ^ Lawlor, Maryann (October 2007). "Igniting a Technical Renaissance". Afcea International. AFCEA.
  4. ^ "IARPA dedicates a permanent home on the campus of U Maryland" (Press release). Homeland Security News Wire. 2009-04-29. Retrieved 2015-12-15.
  5. ^ a b Ford, Matt (2010-12-23). "Science's breakthrough of 2010: A visible quantum device". Ars Technica. Retrieved 2016-03-31.
  6. ^ a b O’Connell, A. D.; Hofheinz, M.; Ansmann, M.; Bialczak, Radoslaw C.; Lenander, M.; Lucero, Erik; Neeley, M.; Sank, D.; Wang, H. (April 2010). "Quantum ground state and single-phonon control of a mechanical resonator". Nature. 464 (7289): 697–703. Bibcode:2010Natur.464..697O. doi:10.1038/nature08967. PMID 20237473. S2CID 4412475.
  7. ^ a b Cepelewicz, Jordana (2016-03-08). "The U.S. Government Launches a $100-Million "Apollo Project of the Brain"". Scientific American. Retrieved 2016-03-12.
  8. ^ a b Whitman, Lloyd; Bryant, Randy; Kalil, Tom (2015-10-30). "A Nanotechnology-Inspired Grand Challenge for Future Computing". whitehouse.gov. Retrieved 2016-05-01 – via National Archives.
  9. ^ Brooks, David (2013-03-21). "Forecasting Fox". The New York Times. ISSN 0362-4331. Retrieved 2016-03-12.
  10. ^ Jason Matheny interviewed on the TV show Triangulation on the TWiT.tv network
  11. ^ a b c d e f Harbert, Tam (2015-10-19). "IARPA's New Director Wants You to Surprise Him". IEEE Spectrum. Retrieved 2016-03-31.
  12. ^ a b Corrin, Amber (2015-11-02). "How IARPA predicts the unpredictable". Federal Times. Retrieved 2016-03-31.
  13. ^ a b c Corrin, Amber (2015-09-23). "IARPA's high-stakes intelligence experiment". C4ISR & Networks. Archived from the original on 2017-06-21. Retrieved 2016-03-31.
  14. ^ Drummond, Katie (2010-10-01). "U.S. Spies Want Algorithms to Spot Hot Trends". WIRED. Retrieved 2016-03-31.
  15. ^ a b Belfiore, Michael (2015-09-23). "What They're Building Inside America's Secret Spy Lab". Popular Mechanics. Retrieved 2016-03-31.
  16. ^ "Neuroscience Programs at IARPA". IARPA. Archived from the original on 2016-03-20. Retrieved 2016-03-31.
  17. ^ Weinberger, Sharon (2009-06-03). "Spooky research cuts". Nature. 459 (7247): 625. doi:10.1038/459625a. PMID 19494878.
  18. ^ "ACE". www.iarpa.gov. Retrieved 2017-03-12.
  19. ^ "ATHENA". www.iarpa.gov. Retrieved 2017-03-12.
  20. ^ "Lifeboat News: The Blog". lifeboat.com. 29 September 2016. Retrieved 2017-03-12.
  21. ^ "Babel". www.iarpa.gov. Retrieved 2017-03-13.
  22. ^ "What They're Building Inside America's Secret Spy Lab". Popular Mechanics. 2015-09-23. Retrieved 2017-03-13.
  23. ^ "What Happens When Spies Can Eavesdrop on Any Conversation?". Defense One. Retrieved 2017-03-13.
  24. ^ "BEST". www.iarpa.gov. Retrieved 2017-03-12.
  25. ^ "IARPA seeks BEST biometrics". Biometric Technology Today. 17 (2): 3–4. 2009-02-01. doi:10.1016/S0969-4765(09)70045-1.
  26. ^ "Synthetic Holographic Observation (SHO)". Office of the Director of National Intelligence. 2011. Retrieved December 3, 2020.
  27. ^ "CORE3D". www.dni.gov. Retrieved 2018-04-04.[permanent dead link]
  28. ^ "CREATE". www.iarpa.gov. Retrieved 2017-03-13.
  29. ^ "Leveraging the wisdom (and ignorance) of crowds". GCN. Archived from the original on 2017-03-13. Retrieved 2017-03-13.
  30. ^ "Data Analytics Key to Complex Intelligence Decisions, Says IARPA Director – MeriTalk". www.meritalk.com. Retrieved 2017-03-13.
  31. ^ "DIVA". www.dni.gov. Archived from the original on 2018-04-05. Retrieved 2018-04-04.
  32. ^ "FunGCAT". www.dni.gov. Archived from the original on 2018-04-05. Retrieved 2018-04-04.
  33. ^ "HFC". www.dni.gov. Archived from the original on 2018-04-05. Retrieved 2018-04-04.
  34. ^ "MATERIAL". www.dni.gov. Archived from the original on 2018-04-05. Retrieved 2018-04-04.
  35. ^ "MAEGLIN". www.dni.gov. Archived from the original on 2018-04-05. Retrieved 2018-04-04.
  36. ^ "MOSAIC". www.iarpa.gov. Retrieved 2017-03-13.
  37. ^ "IC wants sensors to evaluate personnel performance". FCW. Archived from the original on 2017-03-13. Retrieved 2017-03-13.
  38. ^ "The Intelligence Community Will Monitor Wearables to Find the Perfect Spy". Nextgov. Retrieved 2017-03-13.
  39. ^ "U.S. government proposes the permanent job interview". The Stack. 2016-10-19. Archived from the original on 2017-03-13. Retrieved 2017-03-13.
  40. ^ "RAVEN". www.dni.gov. Archived from the original on 2018-04-05. Retrieved 2018-04-04.
  41. ^ "BlackSky Wins IARPA Award to Support Analysis Automation Project SMART". Via Satellite. 2022-07-14. Retrieved 2022-07-15.
  42. ^ a b Dizard III, Wilson P. (2007-08-14). "Master spy agency promotes Nixon". GCN. Archived from the original on 2016-03-15. Retrieved 2016-03-15.
  43. ^ a b Lais, Sami (2008-03-24). "The Future of Intelligence". Defense Systems. Archived from the original on 2016-03-15. Retrieved 2016-03-15.
  44. ^ Stegon, David (2012-09-04). "Highnam named IARPA director". FedScoop. Retrieved 2016-03-15.
  45. ^ Otto, Greg (2015-08-03). "Jason Matheny named IARPA director". FedScoop. Retrieved 2016-03-15.
  46. ^ "DNI Coats Names New IARPA Director". www.odni.gov. Archived from the original on 2019-01-27. Retrieved 2019-01-26.
  47. ^ "ODNI Welcomes Dr. Catherine Marsh as Director of IARPA". www.odni.gov. Retrieved 2019-11-26.
  48. ^ "DNI Haines Welcomes Dr. Richard Muller as IARPA Director". www.iarpa.gov. Retrieved 2024-06-13.

Further reading

[edit]
[edit]