Jump to content

Diamond battery: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Added in the truth u selfish cunts, good job.
Tags: Reverted Mobile edit Mobile web edit
m Updated citation to reflect technological progress.
 
(36 intermediate revisions by 21 users not shown)
Line 1: Line 1:
{{Update|talk=Update needed|date=January 2024|}}
'''Diamond battery''' is the name of a [[nuclear battery]](given to us by azazel but we were too ignorant to listen to God so we ignored him and came up with it our selfish glory stealing selves)concept proposed by the [[University of Bristol]] Cabot Institute during its annual lecture<ref>{{cite web|title=Annual Lecture 2016: Ideas to change the world|url=http://www.bristol.ac.uk/cabot/events/2016/annual-lecture-2016.html|publisher=University of Bristol}}</ref> held on 25 November 2016 at the [[Wills Memorial Building]]. This battery is proposed to run on the [[radioactivity]] of waste [[graphite]] blocks (previously used as [[neutron moderator]] material in [[graphite-moderated reactor]]s) and would generate small amounts of electricity for thousands of years.
{{Short description|Proposed nuclear battery concept}}
'''Diamond battery''' is the name of a [[nuclear battery]] concept proposed by the [[University of Bristol]] Cabot Institute during its annual lecture<ref>{{cite web|title=Annual Lecture 2016: Ideas to change the world|url=http://www.bristol.ac.uk/cabot/events/2016/annual-lecture-2016.html|publisher=University of Bristol|access-date=2016-12-01|archive-date=2020-10-29|archive-url=https://web.archive.org/web/20201029173015/http://www.bristol.ac.uk/cabot/events/2016/annual-lecture-2016.html|url-status=dead}}</ref> held on 25 November 2016 at the [[Wills Memorial Building]]. This battery is proposed to run on the [[radioactivity]] of waste [[graphite]] blocks (previously used as [[neutron moderator]] material in [[graphite-moderated reactor]]s) and would generate small amounts of electricity for thousands of years.


The battery is a [[betavoltaic|betavoltaic cell]] using [[carbon-14]] (<sup>14</sup>C) in the form of [[diamond-like carbon]] (DLC) as the beta radiation source, and additional normal-carbon DLC to make the necessary [[semiconductor junction]] and encapsulate the carbon-14.<ref name="seeker">{{cite web|title=Nuclear Waste and Diamonds Make Batteries That Last 5,000 Years|url=http://www.seeker.com/nuclear-waste-and-diamonds-make-batteries-that-last-5000-years-2120412155.html | website=Seeker|date = 30 November 2016}}</ref>
The battery is a [[betavoltaic|betavoltaic cell]] using [[carbon-14]] (<sup>14</sup>C) in the form of [[diamond-like carbon]] (DLC) as the beta radiation source, and additional normal-carbon DLC to make the necessary [[semiconductor junction]] and encapsulate the carbon-14.<ref name="seeker">{{cite web|title=Nuclear Waste and Diamonds Make Batteries That Last 5,000 Years|url=http://www.seeker.com/nuclear-waste-and-diamonds-make-batteries-that-last-5000-years-2120412155.html | website=Seeker|date = 30 November 2016}}</ref>


== Prototypes ==
== Prototypes ==
Currently no known prototype uses <sup>14</sup>C as its source, there are however some prototypes that use [[nickel-63]] (<sup>63</sup>Ni) as their source with diamond semiconductors for energy conversion which are seen as a stepping stone to a possible <sup>14</sup>C diamond battery prototype.
Currently, no known prototype uses <sup>14</sup>C as its source. There are, however, some prototypes that use [[nickel-63]] (<sup>63</sup>Ni) as their source with diamond non-electrolytes/semiconductors for energy conversion, which are seen as a stepping stone to a possible <sup>14</sup>C diamond battery prototype.


=== University of Bristol prototype ===
=== University of Bristol prototype ===
In 2016, researchers from the University of Bristol claimed to have constructed one of those <sup>63</sup>Ni prototypes. However, no proof is provided.<ref name="inhabitat">{{cite web|title=Scientists turn nuclear waste into diamond batteries that last virtually forever|last1=DiStaslo|first1=Cat|url=http://inhabitat.com/new-man-made-diamonds-turn-nuclear-waste-into-long-lasting-batteries/|publisher=[[Inhabitat]]|date = 2 December 2016}}</ref> Details about the performance of this prototype have been provided. However, they are not self-consistent. Contradicting other details and figures for performance exceed theoretical values by several orders of magnitude.<ref name="electronics-weekly">{{cite web|title = Diamond nuclear battery could generate 100μW for 5,000 years|publisher = [[Electronics Weekly]] | date = 2 December 2016 | url = http://www.electronicsweekly.com/news/research-news/diamond-nuclear-battery-generate-100%CE%BCw-5000-years-2016-12/}}</ref>
In 2016, researchers from the University of Bristol claimed to have constructed one of those <sup>63</sup>Ni prototypes.<ref name="inhabitat">{{cite web|title=Scientists turn nuclear waste into diamond batteries that last virtually forever|last1=DiStaslo|first1=Cat|url=http://inhabitat.com/new-man-made-diamonds-turn-nuclear-waste-into-long-lasting-batteries/|publisher=[[Inhabitat]]|date = 2 December 2016}}</ref><ref name="electronics-weekly">{{cite web|title = Diamond nuclear battery could generate 100&nbsp;μW for 5,000 years|publisher = [[Electronics Weekly]] | date = 2 December 2016 | url = http://www.electronicsweekly.com/news/research-news/diamond-nuclear-battery-generate-100%CE%BCw-5000-years-2016-12/}}</ref>


From their [https://www.bristol.ac.uk/media-library/sites/cabot-institute-2018/documents/Diamond_battery_FAQs_Nov_2016.pdf FAQ], the estimated power of a C-14 cell is 15J/day for thousands of years, which they compare to an AA battery weighing 20g, and providing 700J/g. Then they proceed to claim it is not possible to replace an AA battery with this technology, which should be aimed at applications where a low discharge rate over a long period of time is required, such as microelectronics, space exploration, medical devices, seabed communications, etc.
From their Frequently Asked Questions (FAQ document<ref>{{Cite web |url=https://www.bristol.ac.uk/media-library/sites/cabot-institute-2018/documents/Diamond_battery_FAQs_Nov_2016.pdf |title=Diamond Battery FAQs |access-date=2022-11-21 |archive-date=2022-11-20 | publisher=University of Bristol |archive-url=https://web.archive.org/web/20221120231856/https://www.bristol.ac.uk/media-library/sites/cabot-institute-2018/documents/Diamond_battery_FAQs_Nov_2016.pdf |url-status=live }}</ref>), the estimated power of a small C-14 cell is 15&nbsp;J/day for thousands of years. (For reference, a AA battery of the same size has about 10&nbsp;kJ total, which is equivalent to 15&nbsp;J/day for just 2 years.) They note it is not possible to directly replace an AA battery with this technology, because an AA battery can produce bursts of much higher power as well. Instead, the diamond battery is aimed at applications where a low discharge rate over a long period of time is required, such as space exploration, medical devices, seabed communications, microelectronics, etc.


=== Moscow Institute of Physics and Technology prototype ===
=== Moscow Institute of Physics and Technology prototype ===
{{external media
| float = right
| width = 300px
| image1 = [https://lh4.googleusercontent.com/wa1YcpO_nz_ArAMjAbvilhdJT8QMZEO6UuNDKPxHhH6R3dGQyZP_1xfrvznDwJAhdw1cs6Tpo-GHHl6Kghf8qHDVIC5ORhDjN0Cx9CuvNUuvJF1l8gPyQmU0JdgvEUzbJE3m4iWijF5GJtNRsg Prototype nuclear battery], Technological Institute for Superhard and Novel Carbon Materials.<ref name="mipt1">{{Cite web|url=https://mipt.ru/english/news/prototype_nuclear_battery_packs_10_times_more_power|title=Prototype nuclear battery packs 10 times more power}}</ref>
}}


In 2018, researchers from the Moscow Institute of Physics and Technology (MIPT), the Technological Institute for Superhard and Novel Carbon Materials (TISNCM), and the National University of Science and Technology (MISIS) announced a prototype using 2-micron thick layers of <sup>63</sup>Ni foil sandwiched between 200 10-micron diamond converters. It produced a power output of about 1 μW at for [[power density]] of 10 μW/cm<sup>3</sup>. At those values, its energy density would be approximately 3.3 Wh/g over its 100 year [[half-life]], about 10 times that of conventional [[Electrochemical cell|electrochemical batteries]].<ref name="mipt1"/> This research was published in April of 2018 in the [[Diamond and Related Materials]] journal.<ref name="scidi1">{{cite web|title = High power density nuclear battery prototype based on diamond Schottky diodes|publisher = [[Science Direct]] | date = April 2018 | url = https://www.sciencedirect.com/science/article/abs/pii/S0925963517307495/}}</ref>
In 2018, researchers from the [[Moscow Institute of Physics and Technology]] (MIPT), the Technological Institute for Superhard and Novel Carbon Materials (TISNCM), and the National University of Science and Technology (MISIS) announced a prototype using 2-micron thick layers of <sup>63</sup>Ni foil sandwiched between 200 10-micron diamond converters. It produced a power output of about 1 μW at a [[power density]] of 10 μW/cm<sup>3</sup>. At those values, its energy density would be approximately 3.3 Wh/g over its 100-year [[half-life]], about 10 times that of conventional [[Electrochemical cell|electrochemical batteries]].<ref name="mipt1">{{Cite web|url=https://mipt.ru/english/news/prototype_nuclear_battery_packs_10_times_more_power|title=Prototype nuclear battery packs 10 times more power|website=mipt.ru}}</ref> This research was published in April 2018 in the ''[[Diamond and Related Materials]]'' journal.<ref name="scidi1">{{cite journal|title = High power density nuclear battery prototype based on diamond Schottky diodes| date = April 2018 |doi = 10.1016/j.diamond.2018.03.006 |last1 = Bormashov |first1 = V.S. |last2 = Troschiev |first2 = S.Yu. |last3 = Tarelkin |first3 = S.A. |last4 = Volkov |first4 = A.P. |last5 = Teteruk |first5 = D.V. |last6 = Golovanov |first6 = A.V. |last7 = Kuznetsov |first7 = M.S. |last8 = Kornilov |first8 = N.V. |last9 = Terentiev |first9 = S.A. |last10 = Blank |first10 = V.D. |journal = Diamond and Related Materials |volume = 84 |pages = 41–47 |bibcode = 2018DRM....84...41B |doi-access = free }}</ref>


== Carbon-14 ==
== Carbon-14 ==
Researchers are trying to improve the efficiency and are focusing on use of radioactive [[Isotopes of carbon|<sup>14</sup>C]], which is a minor contributor to the radioactivity of [[Radioactive waste|nuclear waste]].<ref name="inhabitat"/>
Researchers are trying to improve the efficiency and are focusing on use of radioactive [[Isotopes of carbon|<sup>14</sup>C]], which is a minor contributor to the radioactivity of [[Radioactive waste|nuclear waste]].<ref name="inhabitat"/>


<sup>14</sup>C undergoes [[beta decay]], in which it emits a low-energy [[beta particle]] to become [[Nitrogen-14]], which is [[stable isotope|stable]] (not radioactive).<ref>{{cite web|title=Nuclear Reactions/Beta Decay|url=http://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Nuclear_Chemistry/Nuclear_Reactions|website=libretexts.org|publisher=libretexts.org|date=2013-11-26}}</ref>
<sup>14</sup>C undergoes [[beta decay]], in which it emits a low-energy [[beta particle]] to become [[Nitrogen-14]], which is [[stable isotope|stable]] (not radioactive).<ref>{{cite web|title=Nuclear Reactions/Beta Decay|url=http://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Nuclear_Chemistry/Nuclear_Reactions|website=libretexts.org|date=2013-11-26}}</ref>


:{{nuclide|carbon|14}} → {{nuclide|nitrogen|14}} + {{physics particle|β|BL=−1|TL=0}}
:{{nuclide|carbon|14}} → {{nuclide|nitrogen|14}} + {{physics particle|β|BL=−1|TL=0}}
Line 30: Line 27:


==Proposed manufacturing==
==Proposed manufacturing==
In [[graphite-moderated reactor]]s, fissile [[uranium]] rods are placed inside [[graphite]] blocks. These blocks act as a [[neutron moderator]] whose purpose is to slow down fast-moving neutrons so that [[nuclear chain reaction]]s can occur with [[Neutron_temperature#Thermal|thermal neutrons]].<ref>{{cite web|title='Diamond-age' of power generation as nuclear batteries developed|url=https://www.youtube.com/watch?v=b6ME88nMnYE|website=Youtube|publisher=University of Bristol}}</ref> During their use, some of the non-radioactive [[carbon-12]] and [[carbon-13]] [[isotopes of carbon|isotopes]] in graphite get converted into radioactive <sup>14</sup>C by [[Neutron capture|capturing neutrons]].<ref>{{cite web|title=Radioactive Diamond Batteries: Making Good Use Of Nuclear Waste| url=https://www.forbes.com/sites/jamesconca/2016/12/09/radioactive-diamond-batteries-making-good-use-of-nuclear-waste/#1e4c95016bac|website=Forbes | date = 9 December 2016}}</ref> When the graphite blocks are removed during station decommissioning, their [[induced radioactivity]] qualifies them as [[low-level waste]] requiring [[Low-level_waste#Disposal|safe disposal]].
In [[graphite-moderated reactor]]s, fissile [[uranium]] rods are placed inside [[graphite]] blocks. These blocks act as a [[neutron moderator]] whose purpose is to slow down fast-moving neutrons so that [[nuclear chain reaction]]s can occur with [[Neutron temperature#Thermal|thermal neutrons]].<ref>{{cite web|title='Diamond-age' of power generation as nuclear batteries developed|url=https://www.youtube.com/watch?v=b6ME88nMnYE|website=Youtube| date=28 November 2016 |publisher=University of Bristol}}</ref> During their use, some of the non-radioactive [[carbon-12]] and [[carbon-13]] [[isotopes of carbon|isotopes]] in graphite get converted into radioactive <sup>14</sup>C by [[Neutron capture|capturing neutrons]].<ref>{{cite web|title=Radioactive Diamond Batteries: Making Good Use Of Nuclear Waste| url=https://www.forbes.com/sites/jamesconca/2016/12/09/radioactive-diamond-batteries-making-good-use-of-nuclear-waste/#1e4c95016bac|website=Forbes | date = 9 December 2016}}</ref> When the graphite blocks are removed during station decommissioning, their [[induced radioactivity]] qualifies them as [[low-level waste]] requiring [[Low-level waste#Disposal|safe disposal]].


Researchers at the University of Bristol demonstrated that a large amount of the radioactive <sup>14</sup>C was concentrated on the inner walls of the graphite blocks. Due to this, they propose that much of it can be effectively removed from the blocks. This can be done by heating them to the [[Sublimation (phase transition)|sublimation]] point of 3915 K (3642 °C, 6588 °F) which will release the carbon in gaseous form. After this, blocks will be less radioactive and possibly easier to dispose of with most of the radioactive <sup>14</sup>C having been extracted.<ref name="bristol-pr">{{cite web | title='Diamond-age' of power generation as nuclear batteries developed | url=http://www.bristol.ac.uk/news/2016/november/diamond-power.html | publisher = [[University of Bristol]] | date = 25 November 2016}}</ref>
Researchers at the University of Bristol demonstrated that a large amount of the radioactive <sup>14</sup>C was concentrated on the inner walls of the graphite blocks. Due to this, they propose that much of it can be effectively removed from the blocks. This can be done by heating them to the [[Sublimation (phase transition)|sublimation]] point of {{convert|3915|K|°C °F|abbr=on}} which will release the carbon in gaseous form. After this, blocks will be less radioactive and possibly easier to dispose of with most of the radioactive <sup>14</sup>C having been extracted.<ref name="bristol-pr">{{cite web | title='Diamond-age' of power generation as nuclear batteries developed | url=http://www.bristol.ac.uk/news/2016/november/diamond-power.html | publisher = [[University of Bristol]] | date = 25 November 2016}}</ref>


Those researchers propose that this <sup>14</sup>C gas could be collected and used to produce [[man-made diamond]]s by a process known as [[chemical vapor deposition]] using low pressure and elevated temperature, noting that this diamond would be a thin sheet and not of the stereotypical [[diamond cut]]. The resulting diamond made of radioactive <sup>14</sup>C would still produce beta radiation which researchers claim would allow it to be used as a betavoltaic source. Researchers also claim this diamond would be sandwiched between non-radioactive man-made diamonds made from <sup>12</sup>C which would block radiation from the source and would also be used for energy conversion as a [[Material properties of diamond#Electrical properties|diamond semiconductor]] instead of conventional [[List_of_semiconductor_materials|silicon semiconductors]].<ref name="bristol-pr"/>
Those researchers propose that this <sup>14</sup>C gas could be collected and used to produce [[man-made diamond]]s by a process known as [[chemical vapor deposition]] using low pressure and elevated temperature, noting that this diamond would be a thin sheet and not of the stereotypical [[diamond cut]]. The resulting diamond made of radioactive <sup>14</sup>C would still produce beta radiation which researchers claim would allow it to be used as a betavoltaic source. Researchers also claim this diamond would be sandwiched between non-radioactive man-made diamonds made from <sup>12</sup>C which would block radiation from the source and would also be used for energy conversion as a [[Material properties of diamond#Electrical properties|diamond semiconductor]] instead of conventional [[List of semiconductor materials|silicon semiconductors]].<ref name="bristol-pr"/>


== Proposed applications ==
== Proposed applications ==
Due to its very low [[power density]], conversion efficiency and high cost, a <sup>14</sup>C betavoltaic device is very similar to other existing [[betavoltaic device]]s which are suited to niche applications needing very little power (microwatts) for several years in situations where conventional batteries cannot be replaced or recharged using conventional [[energy harvesting]] techniques.<ref>[http://www.bristol.ac.uk/news/2016/november/diamond-power.html Bristol university Press release issued: 25 November 2016]</ref><ref> [http://www.bristol.ac.uk/engineering/research/csn/projects/aspire/ Bristol University interdisciplinary Aspire project, 2017]</ref> Due to its longer [[half-life]], <sup>14</sup>C betavoltaics may have an advantage in service life when compared to other betavoltaics using [[tritium]] or [[Isotopes of nickel|nickel]]. However, this will likely come at the cost of further reduced power density.
Due to its very low [[power density]], conversion efficiency and high cost, a <sup>14</sup>C betavoltaic device is very similar to other existing [[betavoltaic device]]s which are suited to niche applications needing very little power (microwatts) for several years in situations where conventional batteries cannot be replaced or recharged using conventional [[energy harvesting]] techniques.<ref>{{Cite web |url=http://www.bristol.ac.uk/news/2016/november/diamond-power.html |title=Bristol university Press release issued: 25 November 2016 |access-date=3 December 2016 |archive-date=20 November 2022 |archive-url=https://web.archive.org/web/20221120231903/http://www.bristol.ac.uk/news/2016/november/diamond-power.html |url-status=live }}</ref><ref>{{Cite web |url=http://www.bristol.ac.uk/engineering/research/csn/projects/aspire/ |title=Bristol University interdisciplinary Aspire project, 2017 |access-date=2020-10-02 |archive-date=2021-05-29 |archive-url=https://web.archive.org/web/20210529032357/http://www.bristol.ac.uk/engineering/research/csn/projects/aspire/ |url-status=dead }}</ref><ref>{{cite web |title=Tritium Batteries as a Source of Nuclear Power |url=https://citylabs.net/applications/ |website=City Labs |access-date=25 May 2023}}</ref> Due to its longer [[half-life]], <sup>14</sup>C betavoltaics may have an advantage in service life when compared to other betavoltaics using [[tritium]] or [[Isotopes of nickel|nickel]]. However, this will likely come at the cost of further reduced power density.

===Commercialization===
===Commercialization===
In September 2020, Morgan Boardman, an Industrial Fellow and Strategic Advisory Consultant with the Aspire Diamond Group at the South West Nuclear Hub of the [[University of Bristol]], was appointed to be the CEO of a new company called ''Arkenlight'', which was created explicitly to commercialize their diamond battery technology and possibly other nuclear radiation devices under research or development at Bristol University<ref> [https://newatlas.com/energy/arkenlight-nuclear-diamond-batteries/ New Atlas (formerly Gizmag) interview with Dr Boardman]</ref>
In September 2020, Morgan Boardman, an Industrial Fellow and Strategic Advisory Consultant with the Aspire Diamond Group at the South West Nuclear Hub of the University of Bristol, was appointed CEO of a new company called ''Arkenlight'', which was created explicitly to commercialize their diamond battery technology and possibly other nuclear radiation devices under research or development at Bristol University.<ref>{{Cite web |url=https://newatlas.com/energy/arkenlight-nuclear-diamond-batteries/ |title=New Atlas (formerly Gizmag) interview with Dr Boardman |date=30 September 2020 |access-date=2020-10-02 |archive-date=2022-11-20 |archive-url=https://web.archive.org/web/20221120231856/https://newatlas.com/energy/arkenlight-nuclear-diamond-batteries/ |url-status=live }}</ref> In September 2024, ''Arkenlight'' announced that they had created a <sup>14</sup>C diamond.<ref>{{Cite web |last=Arkenlight |date=2024-09-29 |title=Arkenlight – Brilliant Power for Very Useful Things |url=https://www.arkenlight.co.uk/news |url-status=live |archive-url= |archive-date= |access-date=2024-11-07 |website=Arkenlight Latest Updates}}</ref>


== References ==
== References ==
Line 51: Line 49:


[[Category:Radioactivity]]
[[Category:Radioactivity]]
[[Category:Diamond]]
[[Category:Diamond|Battery]]

Latest revision as of 22:04, 7 November 2024

Diamond battery is the name of a nuclear battery concept proposed by the University of Bristol Cabot Institute during its annual lecture[1] held on 25 November 2016 at the Wills Memorial Building. This battery is proposed to run on the radioactivity of waste graphite blocks (previously used as neutron moderator material in graphite-moderated reactors) and would generate small amounts of electricity for thousands of years.

The battery is a betavoltaic cell using carbon-14 (14C) in the form of diamond-like carbon (DLC) as the beta radiation source, and additional normal-carbon DLC to make the necessary semiconductor junction and encapsulate the carbon-14.[2]

Prototypes

[edit]

Currently, no known prototype uses 14C as its source. There are, however, some prototypes that use nickel-63 (63Ni) as their source with diamond non-electrolytes/semiconductors for energy conversion, which are seen as a stepping stone to a possible 14C diamond battery prototype.

University of Bristol prototype

[edit]

In 2016, researchers from the University of Bristol claimed to have constructed one of those 63Ni prototypes.[3][4]

From their Frequently Asked Questions (FAQ document[5]), the estimated power of a small C-14 cell is 15 J/day for thousands of years. (For reference, a AA battery of the same size has about 10 kJ total, which is equivalent to 15 J/day for just 2 years.) They note it is not possible to directly replace an AA battery with this technology, because an AA battery can produce bursts of much higher power as well. Instead, the diamond battery is aimed at applications where a low discharge rate over a long period of time is required, such as space exploration, medical devices, seabed communications, microelectronics, etc.

Moscow Institute of Physics and Technology prototype

[edit]

In 2018, researchers from the Moscow Institute of Physics and Technology (MIPT), the Technological Institute for Superhard and Novel Carbon Materials (TISNCM), and the National University of Science and Technology (MISIS) announced a prototype using 2-micron thick layers of 63Ni foil sandwiched between 200 10-micron diamond converters. It produced a power output of about 1 μW at a power density of 10 μW/cm3. At those values, its energy density would be approximately 3.3 Wh/g over its 100-year half-life, about 10 times that of conventional electrochemical batteries.[6] This research was published in April 2018 in the Diamond and Related Materials journal.[7]

Carbon-14

[edit]

Researchers are trying to improve the efficiency and are focusing on use of radioactive 14C, which is a minor contributor to the radioactivity of nuclear waste.[3]

14C undergoes beta decay, in which it emits a low-energy beta particle to become Nitrogen-14, which is stable (not radioactive).[8]

14
6
C
14
7
N
+ 0
−1
β

These beta particles, having an average energy of 50 keV, undergo inelastic collisions with other carbon atoms, thus creating electron-hole pairs which then contribute to an electric current. This can be restated in terms of band theory by saying that due to the high energy of the beta particles, electrons in the carbon valence band jump to its conduction band, leaving behind holes in the valence band where electrons were earlier present.[9][4]

Proposed manufacturing

[edit]

In graphite-moderated reactors, fissile uranium rods are placed inside graphite blocks. These blocks act as a neutron moderator whose purpose is to slow down fast-moving neutrons so that nuclear chain reactions can occur with thermal neutrons.[10] During their use, some of the non-radioactive carbon-12 and carbon-13 isotopes in graphite get converted into radioactive 14C by capturing neutrons.[11] When the graphite blocks are removed during station decommissioning, their induced radioactivity qualifies them as low-level waste requiring safe disposal.

Researchers at the University of Bristol demonstrated that a large amount of the radioactive 14C was concentrated on the inner walls of the graphite blocks. Due to this, they propose that much of it can be effectively removed from the blocks. This can be done by heating them to the sublimation point of 3,915 K (3,642 °C; 6,587 °F) which will release the carbon in gaseous form. After this, blocks will be less radioactive and possibly easier to dispose of with most of the radioactive 14C having been extracted.[12]

Those researchers propose that this 14C gas could be collected and used to produce man-made diamonds by a process known as chemical vapor deposition using low pressure and elevated temperature, noting that this diamond would be a thin sheet and not of the stereotypical diamond cut. The resulting diamond made of radioactive 14C would still produce beta radiation which researchers claim would allow it to be used as a betavoltaic source. Researchers also claim this diamond would be sandwiched between non-radioactive man-made diamonds made from 12C which would block radiation from the source and would also be used for energy conversion as a diamond semiconductor instead of conventional silicon semiconductors.[12]

Proposed applications

[edit]

Due to its very low power density, conversion efficiency and high cost, a 14C betavoltaic device is very similar to other existing betavoltaic devices which are suited to niche applications needing very little power (microwatts) for several years in situations where conventional batteries cannot be replaced or recharged using conventional energy harvesting techniques.[13][14][15] Due to its longer half-life, 14C betavoltaics may have an advantage in service life when compared to other betavoltaics using tritium or nickel. However, this will likely come at the cost of further reduced power density.

Commercialization

[edit]

In September 2020, Morgan Boardman, an Industrial Fellow and Strategic Advisory Consultant with the Aspire Diamond Group at the South West Nuclear Hub of the University of Bristol, was appointed CEO of a new company called Arkenlight, which was created explicitly to commercialize their diamond battery technology and possibly other nuclear radiation devices under research or development at Bristol University.[16] In September 2024, Arkenlight announced that they had created a 14C diamond.[17]

References

[edit]
  1. ^ "Annual Lecture 2016: Ideas to change the world". University of Bristol. Archived from the original on 2020-10-29. Retrieved 2016-12-01.
  2. ^ "Nuclear Waste and Diamonds Make Batteries That Last 5,000 Years". Seeker. 30 November 2016.
  3. ^ a b DiStaslo, Cat (2 December 2016). "Scientists turn nuclear waste into diamond batteries that last virtually forever". Inhabitat.
  4. ^ a b "Diamond nuclear battery could generate 100 μW for 5,000 years". Electronics Weekly. 2 December 2016.
  5. ^ "Diamond Battery FAQs" (PDF). University of Bristol. Archived (PDF) from the original on 2022-11-20. Retrieved 2022-11-21.
  6. ^ "Prototype nuclear battery packs 10 times more power". mipt.ru.
  7. ^ Bormashov, V.S.; Troschiev, S.Yu.; Tarelkin, S.A.; Volkov, A.P.; Teteruk, D.V.; Golovanov, A.V.; Kuznetsov, M.S.; Kornilov, N.V.; Terentiev, S.A.; Blank, V.D. (April 2018). "High power density nuclear battery prototype based on diamond Schottky diodes". Diamond and Related Materials. 84: 41–47. Bibcode:2018DRM....84...41B. doi:10.1016/j.diamond.2018.03.006.
  8. ^ "Nuclear Reactions/Beta Decay". libretexts.org. 2013-11-26.
  9. ^ "Flash Physics: Nuclear diamond battery, M G K Menon dies, four new elements named". Physics World. 30 November 2016.
  10. ^ "'Diamond-age' of power generation as nuclear batteries developed". Youtube. University of Bristol. 28 November 2016.
  11. ^ "Radioactive Diamond Batteries: Making Good Use Of Nuclear Waste". Forbes. 9 December 2016.
  12. ^ a b "'Diamond-age' of power generation as nuclear batteries developed". University of Bristol. 25 November 2016.
  13. ^ "Bristol university Press release issued: 25 November 2016". Archived from the original on 20 November 2022. Retrieved 3 December 2016.
  14. ^ "Bristol University interdisciplinary Aspire project, 2017". Archived from the original on 2021-05-29. Retrieved 2020-10-02.
  15. ^ "Tritium Batteries as a Source of Nuclear Power". City Labs. Retrieved 25 May 2023.
  16. ^ "New Atlas (formerly Gizmag) interview with Dr Boardman". 30 September 2020. Archived from the original on 2022-11-20. Retrieved 2020-10-02.
  17. ^ Arkenlight (2024-09-29). "Arkenlight – Brilliant Power for Very Useful Things". Arkenlight Latest Updates. Retrieved 2024-11-07.{{cite web}}: CS1 maint: url-status (link)
[edit]