Jump to content

Kreiss matrix theorem: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: hdl, doi updated in citation with #oabot.
Citation bot (talk | contribs)
Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Systems theory | #UCB_Category 49/180
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[matrix analysis]], '''Kreiss matrix theorem''' relates the so-called Kreiss constant of a matrix with the power iterates of this matrix. It was originally introduced by [[Heinz-Otto Kreiss]] to analyze the stability of finite difference methods for [[partial difference equation]]s.<ref>{{Cite journal |last=Kreiss |first=Heinz-Otto |date=1962 |title=Über Die Stabilitätsdefinition Für Differenzengleichungen Die Partielle Differentialgleichungen Approximieren |url=http://dx.doi.org/10.1007/bf01957330 |journal=BIT |volume=2 |issue=3 |pages=153–181 |doi=10.1007/bf01957330 |s2cid=118346536 |issn=0006-3835}}</ref><ref>{{Cite journal |last1=Strikwerda |first1=John |last2=Wade |first2=Bruce |date=1997 |title=A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions |url=http://dx.doi.org/10.4064/-38-1-339-360 |journal=Banach Center Publications |volume=38 |issue=1 |pages=339–360 |doi=10.4064/-38-1-339-360 |issn=0137-6934|doi-access=free }}</ref>
In [[matrix analysis]], '''Kreiss matrix theorem''' relates the so-called Kreiss constant of a matrix with the power iterates of this matrix. It was originally introduced by [[Heinz-Otto Kreiss]] to analyze the stability of finite difference methods for [[partial difference equation]]s.<ref>{{Cite journal |last=Kreiss |first=Heinz-Otto |date=1962 |title=Über Die Stabilitätsdefinition Für Differenzengleichungen Die Partielle Differentialgleichungen Approximieren |url=http://dx.doi.org/10.1007/bf01957330 |journal=BIT |volume=2 |issue=3 |pages=153–181 |doi=10.1007/bf01957330 |s2cid=118346536 |issn=0006-3835}}</ref><ref>{{Cite journal |last1=Strikwerda |first1=John |last2=Wade |first2=Bruce |date=1997 |title=A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions |journal=Banach Center Publications |volume=38 |issue=1 |pages=339–360 |doi=10.4064/-38-1-339-360 |issn=0137-6934|doi-access=free }}</ref>


== Kreiss constant of a matrix ==
== Kreiss constant of a matrix ==
Given a matrix ''A'', the '''Kreiss constant''' 𝒦(''A'') (with respect to the closed unit circle) of ''A'' is defined as<ref name=":0">{{Cite journal |last=Raouafi |first=Samir |date=2018 |title=A generalization of the Kreiss Matrix Theorem |url=https://linkinghub.elsevier.com/retrieve/pii/S0024379518301216 |journal=Linear Algebra and Its Applications |language=en |volume=549 |pages=86–99 |doi=10.1016/j.laa.2018.03.011|s2cid=126237400 |doi-access=free }}</ref>
Given a matrix ''A'', the '''Kreiss constant''' 𝒦(''A'') (with respect to the closed unit circle) of ''A'' is defined as<ref name=":0">{{Cite journal |last=Raouafi |first=Samir |date=2018 |title=A generalization of the Kreiss Matrix Theorem |journal=Linear Algebra and Its Applications |language=en |volume=549 |pages=86–99 |doi=10.1016/j.laa.2018.03.011|s2cid=126237400 |doi-access=free }}</ref>


<math>\mathcal{K}(\mathbf{A})=\sup _{|z|>1}(|z|-1)\left\|(z-\mathbf{A})^{-1}\right\|,</math>
<math>\mathcal{K}(\mathbf{A})=\sup _{|z|>1}(|z|-1)\left\|(z-\mathbf{A})^{-1}\right\|,</math>
Line 12: Line 12:
=== Properties ===
=== Properties ===


* For any matrix ''A'', one has that 𝒦(''A'') ≥ 1 and 𝒦{{Sub|lhp}}(''A'') ≥ 1. In particular, 𝒦(''A'') (resp. 𝒦{{Sub|lhp}}(''A'')) are finite only if the matrix ''A'' is [[Stable polynomial#Schur matrix|Schur stable]] (resp. [[Hurwitz matrix#Hurwitz stable matrices|Hurwitz stable]]).
* For any matrix ''A'', one has that 𝒦(''A'') ≥ 1 and 𝒦{{Sub|lhp}}(''A'') ≥ 1. In particular, 𝒦(''A'') (resp. 𝒦{{Sub|lhp}}(''A'')) are finite only if the matrix ''A'' is [[Stable polynomial#Schur matrix|Schur stable]] (resp. [[Hurwitz-stable matrix|Hurwitz stable]]).
* Kreiss constant can be interpreted as a measure of [[Normal matrix|normality]] of a matrix.<ref>{{Cite thesis |title=Non-normality in scalar delay differential equations |author=Jacob Nathaniel Stroh |year=2006 |url=https://bueler.github.io/papers/jnstrohMS.pdf}}</ref> In particular, for normal matrices ''A'' with [[spectral radius]] less than 1, one has that 𝒦(''A'') = 1. Similarly, for normal matrices ''A'' that are [[Hurwitz matrix#Hurwitz stable matrices|Hurwitz stable]], 𝒦{{Sub|lhp}}(''A'') = 1.
* Kreiss constant can be interpreted as a measure of [[Normal matrix|normality]] of a matrix.<ref>{{Cite thesis |title=Non-normality in scalar delay differential equations |author=Jacob Nathaniel Stroh |year=2006 |url=https://bueler.github.io/papers/jnstrohMS.pdf}}</ref> In particular, for normal matrices ''A'' with [[spectral radius]] less than 1, one has that 𝒦(''A'') = 1. Similarly, for normal matrices ''A'' that are [[Hurwitz-stable matrix|Hurwitz stable]], 𝒦{{Sub|lhp}}(''A'') = 1.
* 𝒦(''A'') and 𝒦{{Sub|lhp}}(''A'') have alternative definitions through the [[pseudospectrum]] Λ{{Sub|ε}}(A):<ref name=":1">{{Cite journal |last=Mitchell |first=Tim |date=2020 |title=Computing the Kreiss Constant of a Matrix |url=http://dx.doi.org/10.1137/19m1275127 |journal=SIAM Journal on Matrix Analysis and Applications |volume=41 |issue=4 |pages=1944–1975 |doi=10.1137/19m1275127 |arxiv=1907.06537 |s2cid=196622538 |issn=0895-4798}}</ref>
* 𝒦(''A'') and 𝒦{{Sub|lhp}}(''A'') have alternative definitions through the [[pseudospectrum]] Λ{{Sub|ε}}(A):<ref name=":1">{{Cite journal |last=Mitchell |first=Tim |date=2020 |title=Computing the Kreiss Constant of a Matrix |url=http://dx.doi.org/10.1137/19m1275127 |journal=SIAM Journal on Matrix Analysis and Applications |volume=41 |issue=4 |pages=1944–1975 |doi=10.1137/19m1275127 |arxiv=1907.06537 |s2cid=196622538 |issn=0895-4798}}</ref>
** <math>\mathcal{K}(A)=\sup _{\varepsilon>0} \frac{\rho_{\varepsilon}(A)-1}{\varepsilon}</math> , where ''p''{{Sub|ε}}(A) = max{|''λ''| : ''λ'' ∈ Λ{{Sub|ε}}(''A'')},
** <math>\mathcal{K}(A)=\sup _{\varepsilon>0} \frac{\rho_{\varepsilon}(A)-1}{\varepsilon}</math> , where ''p''{{Sub|ε}}(A) = max{|''λ''| : ''λ'' ∈ Λ{{Sub|ε}}(''A'')},

Latest revision as of 08:35, 8 November 2024

In matrix analysis, Kreiss matrix theorem relates the so-called Kreiss constant of a matrix with the power iterates of this matrix. It was originally introduced by Heinz-Otto Kreiss to analyze the stability of finite difference methods for partial difference equations.[1][2]

Kreiss constant of a matrix

[edit]

Given a matrix A, the Kreiss constant 𝒦(A) (with respect to the closed unit circle) of A is defined as[3]

while the Kreiss constant 𝒦lhp(A) with respect to the left-half plane is given by[3]

Properties

[edit]
  • For any matrix A, one has that 𝒦(A) ≥ 1 and 𝒦lhp(A) ≥ 1. In particular, 𝒦(A) (resp. 𝒦lhp(A)) are finite only if the matrix A is Schur stable (resp. Hurwitz stable).
  • Kreiss constant can be interpreted as a measure of normality of a matrix.[4] In particular, for normal matrices A with spectral radius less than 1, one has that 𝒦(A) = 1. Similarly, for normal matrices A that are Hurwitz stable, 𝒦lhp(A) = 1.
  • 𝒦(A) and 𝒦lhp(A) have alternative definitions through the pseudospectrum Λε(A):[5]
    • , where pε(A) = max{|λ| : λ ∈ Λε(A)},
    • , where αε(A) = max{Re|λ| : λ ∈ Λε(A)}.
  • 𝒦lhp(A) can be computed through robust control methods.[6]

Statement of Kreiss matrix theorem

[edit]

Let A be a square matrix of order n and e be the Euler's number. The modern and sharp version of Kreiss matrix theorem states that the inequality below is tight[3][7]

and it follows from the application of Spijker's lemma.[8]

There also exists an analogous result in terms of the Kreiss constant with respect to the left-half plane and the matrix exponential:[3][9]

Consequences and applications

[edit]

The value (respectively, ) can be interpreted as the maximum transient growth of the discrete-time system (respectively, continuous-time system ).

Thus, the Kreiss matrix theorem gives both upper and lower bounds on the transient behavior of the system with dynamics given by the matrix A: a large (and finite) Kreiss constant indicates that the system will have an accentuated transient phase before decaying to zero.[5][6]

References

[edit]
  1. ^ Kreiss, Heinz-Otto (1962). "Über Die Stabilitätsdefinition Für Differenzengleichungen Die Partielle Differentialgleichungen Approximieren". BIT. 2 (3): 153–181. doi:10.1007/bf01957330. ISSN 0006-3835. S2CID 118346536.
  2. ^ Strikwerda, John; Wade, Bruce (1997). "A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions". Banach Center Publications. 38 (1): 339–360. doi:10.4064/-38-1-339-360. ISSN 0137-6934.
  3. ^ a b c d Raouafi, Samir (2018). "A generalization of the Kreiss Matrix Theorem". Linear Algebra and Its Applications. 549: 86–99. doi:10.1016/j.laa.2018.03.011. S2CID 126237400.
  4. ^ Jacob Nathaniel Stroh (2006). Non-normality in scalar delay differential equations (PDF) (Thesis).
  5. ^ a b Mitchell, Tim (2020). "Computing the Kreiss Constant of a Matrix". SIAM Journal on Matrix Analysis and Applications. 41 (4): 1944–1975. arXiv:1907.06537. doi:10.1137/19m1275127. ISSN 0895-4798. S2CID 196622538.
  6. ^ a b Apkarian, Pierre; Noll, Dominikus (2020). "Optimizing the Kreiss Constant". SIAM Journal on Control and Optimization. 58 (6): 3342–3362. arXiv:1910.12572. doi:10.1137/19m1296215. ISSN 0363-0129. S2CID 204904802.
  7. ^ Trefethen, Lloyd N.; Embree, Mark (2005), Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, p. 177
  8. ^ Wegert, Elias; Trefethen, Lloyd N. (1994). "From the Buffon Needle Problem to the Kreiss Matrix Theorem". The American Mathematical Monthly. 101 (2): 132. doi:10.2307/2324361. hdl:1813/7113. JSTOR 2324361.
  9. ^ Trefethen, Lloyd N.; Embree, Mark (2005), Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, p. 183