Jump to content

Tin(II) fluoride: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
added a section on chemistry of SnF2
Oral health benefits: hydroxyapatite per talk
 
(173 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Use British English|date=June 2019}}
{{Chembox new
{{chembox
| Name = Stannous fluoride
| Verifiedfields = changed
| IUPACName = Tin(II) fluoride
| Watchedfields = changed
| OtherNames = Stannous fluoride
| verifiedrevid = 441026513
| Section1 = {{Chembox Identifiers
| IUPACName = Tin(II) fluoride
| ImageCaption = {{Color box|#C0C0C0|border=darkgray}} Sn<sup>2+</sup>; {{Color box|#99CC00|border=darkgray}} F<sup>−</sup>
| OtherNames = Stannous fluoride
| ImageFile = Kristallstruktur Zinn(II)-fluorid.png
|Section1={{Chembox Identifiers
| CASNo = 7783-47-3
| CASNo = 7783-47-3
| CASNo_Ref = {{cascite|correct|CAS}}
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 3FTR44B32Q
| RTECS = XQ3450000
| UNNumber = 3288
| PubChem = 24550
| InChI = 1S/2FH.Sn/h2*1H;/q;;+2/p-2
| SMILES = F[Sn]F
}}
}}
| Section2 = {{Chembox Properties
|Section2={{Chembox Properties
| Formula = SnF<sub>2</sub>
| Formula = SnF<sub>2</sub>
| MolarMass = 156.69 g/mol
| MolarMass = 156.69 g/mol
| Appearance = colorless solid
| Appearance = colorless solid
| Density = 4.57 g/cm<sup>3</sup>
| Density = 4.57 g/cm<sup>3</sup>
| Solubility = Soluble in water (~350 g/l at 20°C)
| Solubility = 31 g/100 mL (0 °C); <br />35 g/100 mL (20 °C); <br />78.5 g/100 mL (106 °C)
| SolubleOther = soluble in [[potassium hydroxide|KOH]], [[potassium fluoride|KF]]; <br />negligible in [[ethanol]], [[diethyl ether|ether]], [[chloroform]]
| MeltingPt = 215°C
| BoilingPt = 850°C
| MeltingPtC = 213
| BoilingPtC = 850
}}
}}
| Section7 = {{Chembox Hazards
|Section3={{Chembox Structure
| RPhrases = {{R22}}, {{R38}}, {{R41}}
| CrystalStruct = [[Monoclinic]], [[Pearson symbol|mS48]]
| SPhrases = {{S26}}, {{S39}}
| SpaceGroup = C2/c, No. 15
}}
}}
|Section7={{Chembox Hazards
| ExternalSDS = [http://www.inchem.org/documents/icsc/icsc/eics0860.htm ICSC 0860]
| HPhrases =
| PPhrases =
| GHS_ref =
| NFPA-H = 2
| NFPA-F = 0
| NFPA-R = 0
| NFPA-S =
| FlashPt = Non-flammable
}}
|Section6={{Chembox Pharmacology
| ATCCode_prefix = A01
| ATCCode_suffix = AA04
}}
}}
|Section8={{Chembox Related
'''Stannous fluoride''', also known as '''tin(II) fluoride''', is the chemical compound with the formula [[Tin|Sn]][[Fluorine|F]]<sub>2</sub>. This colourless solid is a common ingredient in [[toothpaste]]. In the [[Tooth enamel| enamel]], it converts [[apatite]] into [[fluoroapatite]], which is more resistant to attack by [[acid]]s generated by bacteria. [[Sodium fluoride]] and [[sodium fluorophosphate]] perform similarly. [[Stannous fluoride]] can be mixed with calcium abrasives while the more common [[sodium fluoride]] gradually becomes biologically inactive combined with [[calcium]].<ref>{{cite journal | date = April [[1989]] | journal = Journal of Dentistry | volume = 17 | issue = 2 | pages = 47&ndash;54 | pmid = 2732364 | title = The State of Fluorides in Toothpastes. | doi = 10.1016/0300-5712(89)90129-2 | last = Hattab | first = F. }}</ref> It has also been shown to be more effective than [[sodium fluoride]] in controlling [[gingivitis]].<ref>{{cite journal | date=[[1995]] | journal = The Journal of Clinical Dentistry | volume = 6 | issue = Special Issue | pages = 54&ndash;58 | pmid = 8593194 | title = The clinical effect of a stabilized stannous fluoride dentifrice on plaque formation, gingivitis and gingival bleeding: a six-month study. }}</ref>
| OtherAnions = [[Tin(II) chloride]], <br />[[Tin(II) bromide]], <br />[[Tin(II) iodide]]
| OtherCations = [[Difluorocarbene]], <br>[[Carbon tetrafluoride]], <br>[[Difluorosilylene]], <br>[[Silicon tetrafluoride]], <br>[[Difluorogermylene]], <br>[[Germanium tetrafluoride]], <br />[[Tin tetrafluoride]], <br />[[Lead(II) fluoride]], <br>[[Lead(IV) fluoride]]
}}
}}
'''Tin(II) fluoride''', commonly referred to commercially as '''stannous fluoride'''<ref name="Commonly Referred to as Stannous Fluoride">{{cite press release|title=National Inventors Hall of Fame Announces 2019 Inductees at CES|url=https://www.prnewswire.com/news-releases/national-inventors-hall-of-fame-announces-2019-inductees-at-ces-300774807.html|access-date=6 February 2019|publisher=National Inventors Hall of Fame}}</ref><ref name="Latin Names Variable Charge Metals">{{cite web|title=Latin Names Variable Charge Metals|url=http://nobel.scas.bcit.ca/chem0010/unit6/6.1.3_binaryvarcharge.htm|work=Nobel.SCAS.BCIT.ca/|publisher=British Columbia Institute of Technology Chemistry Department|access-date=16 June 2013|archive-date=22 July 2020|archive-url=https://web.archive.org/web/20200722102958/http://nobel.scas.bcit.ca/chem0010/unit6/6.1.3_binaryvarcharge.htm|url-status=dead}}</ref> (from [[Latin]] ''{{lang|la|stannum}}'', 'tin'), is a [[chemical compound]] with the formula SnF<sub>2</sub>. It is a colourless solid used as an ingredient in [[toothpaste]]s.

==Oral health benefits==
Stannous fluoride is an alternative to [[sodium fluoride]] for the prevention of cavities ([[tooth decay]]). It was first released commercially in 1956, in [[Crest (brand)|Crest]] toothpaste. It was discovered and developed by [[Joseph C. Muhler|Joseph Muhler]] and William Nebergall. In recognition of their innovation, they were inducted into the [[National Inventors Hall of Fame|Inventor's Hall of Fame]].<ref name="Commonly Referred to as Stannous Fluoride"/>

The fluoride in stannous fluoride helps to convert the calcium mineral [[hydroxyapatite]] in teeth into [[fluorapatite]], which makes [[tooth enamel]] more resistant to bacteria-generated [[acid]] attacks.<ref>{{Cite journal|last1=Groeneveld|first1=A.|last2=Purdell-Lewis|first2=D. J.|last3=Arends|first3=J.|date=1976|title=Remineralization of artificial caries lesions by stannous fluoride|journal=Caries Research|volume=10|issue=3|pages=189–200|issn=0008-6568|pmid=1063601|doi=10.1159/000260201}}</ref> The calcium present in plaque and saliva reacts with fluoride to form [[calcium fluoride]] on the tooth surface; over time, this calcium fluoride dissolves to allow calcium and fluoride ions to interact with the tooth and form fluoride-containing apatite within the tooth structure.<ref name="pmid23192605">{{Cite journal|last1=Lussi|first1=Adrian|last2=Hellwig|first2=Elmar|last3=Klimek|first3=Joachim|date=2012|title=Fluorides - mode of action and recommendations for use|url=https://pubmed.ncbi.nlm.nih.gov/23192605|journal=Schweizer Monatsschrift für Zahnmedizin = Revue Mensuelle Suisse d'Odonto-Stomatologie = Rivista Mensile Svizzera di Odontologia e Stomatologia|volume=122|issue=11|pages=1030–1042|issn=0256-2855|pmid=23192605}}</ref> This chemical reaction inhibits demineralisation and can promote remineralisation of tooth decay. The resulting fluoride-containing apatite is more insoluble, and more resistant to acid and tooth decay.<ref name="pmid23192605" />

In addition to fluoride, the stannous ion has benefits for oral health when incorporated in a toothpaste. At similar fluoride concentrations, toothpastes containing stannous fluoride have been shown to be more effective than toothpastes containing sodium fluoride for reducing the incidence of dental caries and [[Acid erosion|dental erosion]],<ref>{{Cite journal|last1=West|first1=N. X.|last2=He|first2=T.|last3=Macdonald|first3=E. L.|last4=Seong|first4=J.|last5=Hellin|first5=N.|last6=Barker|first6=M. L.|last7=Eversole|first7=S. L.|date=March 2017|title=Erosion protection benefits of stabilized SnF2 dentifrice versus an arginine–sodium monofluorophosphate dentifrice: results from in vitro and in situ clinical studies|journal=Clinical Oral Investigations|language=en|volume=21|issue=2|pages=533–540|doi=10.1007/s00784-016-1905-1|issn=1432-6981|pmc=5318474|pmid=27477786}}</ref><ref>{{Cite journal|last1=Ganss|first1=C.|last2=Lussi|first2=A.|last3=Grunau|first3=O.|last4=Klimek|first4=J.|last5=Schlueter|first5=N.|date=2011|title=Conventional and Anti-Erosion Fluoride Toothpastes: Effect on Enamel Erosion and Erosion-Abrasion|url=https://www.karger.com/Article/FullText/334318|journal=Caries Research|language=en|volume=45|issue=6|pages=581–589|doi=10.1159/000334318|pmid=22156703|s2cid=45156274|issn=0008-6568}}</ref><ref>{{Cite journal|last1=West|first1=Nicola X.|last2=He|first2=Tao|last3=Hellin|first3=Nikki|last4=Claydon|first4=Nicholas|last5=Seong|first5=Joon|last6=Macdonald|first6=Emma|last7=Farrell|first7=Svetlana|last8=Eusebio|first8=Rachelle|last9=Wilberg|first9=Aneta|date=August 2019|title=Randomized in situ clinical trial evaluating erosion protection efficacy of a 0.454% stannous fluoride dentifrice|journal=International Journal of Dental Hygiene|language=en|volume=17|issue=3|pages=261–267|doi=10.1111/idh.12379|issn=1601-5029|pmc=6850309|pmid=30556372}}</ref><ref>{{Cite journal|date=2020-02-12|title=Efficacy of a Stannous-containing Dentifrice for Protecting Against Combined Erosive and Abrasive Tooth Wear In Situ|url=|journal=Oral Health and Preventive Dentistry|volume=18|issue=1|pages=619–624|doi=10.3290/j.ohpd.a44926|pmid=32700515|last1=Zhao|first1=X.|last2=He|first2=T.|last3=He|first3=Y.|last4=Chen|first4=H.}}</ref><ref>{{Cite journal|last1=Stookey|first1=G.K.|last2=Mau|first2=M.S.|last3=Isaacs|first3=R.L.|last4=Gonzalez-Gierbolini|first4=C.|last5=Bartizek|first5=R.D.|last6=Biesbrock|first6=A.R.|date=2004|title=The Relative Anticaries Effectiveness of Three Fluoride-Containing Dentifrices in Puerto Rico|url=https://www.karger.com/Article/FullText/80584|journal=Caries Research|language=en|volume=38|issue=6|pages=542–550|doi=10.1159/000080584|pmid=15528909|s2cid=489634|issn=0008-6568|doi-access=free}}</ref> as well as reducing [[gingivitis]].<ref>{{Cite journal|last1=Parkinson|first1=C. R.|last2=Milleman|first2=K. R.|last3=Milleman|first3=J. L.|date=2020-03-26|title=Gingivitis efficacy of a 0.454% w/w stannous fluoride dentifrice: a 24-week randomized controlled trial|journal=BMC Oral Health|volume=20|issue=1|pages=89|doi=10.1186/s12903-020-01079-6|issn=1472-6831|pmc=7098169|pmid=32216778 |doi-access=free }}</ref><ref>{{Cite journal|last1=Hu|first1=Deyu|last2=Li|first2=Xue|last3=Liu|first3=Hongchun|last4=Mateo|first4=Luis R.|last5=Sabharwal|first5=Amarpreet|last6=Xu|first6=Guofeng|last7=Szewczyk|first7=Gregory|last8=Ryan|first8=Maria|last9=Zhang|first9=Yun-Po|date=April 2019|title=Evaluation of a stabilized stannous fluoride dentifrice on dental plaque and gingivitis in a randomized controlled trial with 6-month follow-up|url=|journal=The Journal of the American Dental Association|volume=150|issue=4|pages=S32–S37|doi=10.1016/j.adaj.2019.01.005|pmid=30797257|s2cid=73488958|issn=0002-8177}}</ref><ref>{{Cite journal|last1=Mankodi|first1=Suru|last2=Bartizek|first2=Robert D.|last3=Winston|first3=J. Leslie|last4=Biesbrock|first4=Aaron R.|last5=McClanahan|first5=Stephen F.|last6=He|first6=Tao|date=2005|title=Anti-gingivitis efficacy of a stabilized 0.454% stannous fluoride/sodium hexametaphosphate dentifrice|journal=Journal of Clinical Periodontology|language=en|volume=32|issue=1|pages=75–80|doi=10.1111/j.1600-051X.2004.00639.x|pmid=15642062|issn=1600-051X|doi-access=free}}</ref><ref>{{Cite journal|last1=Archila|first1=Luis|last2=Bartizek|first2=Robert D.|last3=Winston|first3=J. Leslie|last4=Biesbrock|first4=Aaron R.|last5=McClanahan|first5=Stephen F.|last6=He|first6=Tao|date=2004|title=The Comparative Efficacy of Stabilized Stannous Fluoride/Sodium Hexametaphosphate Dentifrice and Sodium Fluoride/Triclosan/Copolymer Dentifrice for the Control of Gingivitis: A 6-Month Randomized Clinical Study|url=|journal=Journal of Periodontology|language=en|volume=75|issue=12|pages=1592–1599|doi=10.1902/jop.2004.75.12.1592|pmid=15732859|issn=1943-3670}}</ref><ref>{{Cite journal|last1=Clark-Perry|first1=Danielle|last2=Levin|first2=Liran|date=December 2020|title=Comparison of new formulas of stannous fluoride toothpastes with other commercially available fluoridated toothpastes: A systematic review and meta-analysis of randomised controlled trials|journal=International Dental Journal|language=en|volume=70|issue=6|pages=418–426|doi=10.1111/idj.12588|pmid=32621315|pmc=9379195 |s2cid=220336087}}</ref> Some stannous fluoride-containing toothpastes also contain ingredients that allow for better stain removal.<ref name="pmid17410949">{{Cite journal|last1=He|first1=Tao|last2=Baker|first2=Robert|last3=Bartizek|first3=Robert D.|last4=Biesbrock|first4=Aaron R.|last5=Chaves|first5=Eros|last6=Terézhalmy|first6=Geza|date=2007|title=Extrinsic stain removal efficacy of a stannous fluoride dentifrice with sodium hexametaphosphate|url=https://pubmed.ncbi.nlm.nih.gov/17410949|journal=The Journal of Clinical Dentistry|volume=18|issue=1|pages=7–11|issn=0895-8831|pmid=17410949}}</ref><ref name="pmid31872105">{{Cite journal|last1=Johannsen|first1=A.|last2=Emilson|first2=C.-G.|last3=Johannsen|first3=G.|last4=Konradsson|first4=K.|last5=Lingström|first5=P.|last6=Ramberg|first6=P.|date=December 2019|title=Effects of stabilized stannous fluoride dentifrice on dental calculus, dental plaque, gingivitis, halitosis and stain: A systematic review|url=|journal=Heliyon|volume=5|issue=12|pages=e02850|doi=10.1016/j.heliyon.2019.e02850|doi-access=free |issn=2405-8440|pmc=6909063|pmid=31872105|bibcode=2019Heliy...502850J }}</ref> Stabilised stannous fluoride formulations allow for greater bioavailability of the stannous and fluoride ion, increasing their oral health benefits.<ref>{{Cite journal|last=White|first=D. J.|date=1995|title=A "return" to stannous fluoride dentifrices|url=https://pubmed.ncbi.nlm.nih.gov/8593190|journal=The Journal of Clinical Dentistry|volume=6|pages=29–36|issn=0895-8831|pmid=8593190}}</ref><ref>{{Cite journal|last=Tinanoff|first=N.|date=1995|title=Progress regarding the use of stannous fluoride in clinical dentistry|url=https://pubmed.ncbi.nlm.nih.gov/8593191|journal=The Journal of Clinical Dentistry|volume=6|pages=37–40|issn=0895-8831|pmid=8593191}}</ref> A systematic review revealed stabilised stannous fluoride-containing toothpastes had a positive effect on the reduction of [[Dental plaque|plaque]], gingivitis and staining, with a significant reduction in [[Calculus (dental)|calculus]] and [[Bad breath|halitosis]] (bad breath) compared to other toothpastes.<ref name="pmid31872105" /> A specific formulation of stabilised stannous fluoride toothpastes has shown superior protection against dental erosion and [[Dentin hypersensitivity|dentine hypersensitivity]] compared to other fluoride-containing and fluoride-free toothpastes.<ref>{{Cite journal|last1=West|first1=Nicola X.|last2=He|first2=Tao|last3=Zou|first3=Yuanshu|last4=DiGennaro|first4=Joe|last5=Biesbrock|first5=Aaron|last6=Davies|first6=Maria|date=February 2021|title=Bioavailable gluconate chelated stannous fluoride toothpaste meta-analyses: Effects on dentine hypersensitivity and enamel erosion|journal=Journal of Dentistry|volume=105|pages=103566|doi=10.1016/j.jdent.2020.103566|issn=1879-176X|pmid=33383100|s2cid=229940161|doi-access=free|hdl=1983/34d78138-703d-484f-864f-ece3d3610d64|hdl-access=free}}</ref>

Stannous fluoride was once used under the [[Drug nomenclature#Trade names|trade name]] Fluoristan in the original formulation of the toothpaste brand [[Crest (brand)|Crest]], though it was later replaced with [[sodium monofluorophosphate]] under the trade name Fluoristat. Stabilised stannous fluoride is now the active ingredient in Crest/[[Oral-B|Oral B]] Pro-Health brand toothpaste. Although concerns have been previously raised that stannous fluoride may cause tooth staining, this can be avoided by proper brushing and by using a stabilised stannous fluoride toothpaste.<ref name="pmid17410949" /><ref name="pmid31872105" /> Any stannous fluoride staining that occurs due to improper brushing is not permanent, and Crest/Oral B Pro-Health states that its particular formulation is resistant to staining.


==Production==
Stannous fluoride was used (under the trade name '''Fluoristan''') in the original formulation of the toothpaste [[Crest (brand)|Crest]]{{Fact|date=April 2008}}., though it was later replaced with [[sodium monofluorophosphate]]{{Fact|date=April 2008}}. However it is the active ingredient in Crest Pro Health brand toothpaste according to the label on the box and the tube. Crest Pro Health also issues a warning on the tube that stannous fluoride may cause staining; and that by proper brushing this can be avoided; and that their particular formulation is resistant to staining.
SnF<sub>2</sub> can be prepared by evaporating a solution of SnO in 40% [[hydrofluoric acid|HF]].<ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref>


:SnO + 2 HF → SnF<sub>2</sub> + H<sub>2</sub>O
Used in combination with abrasives that contain calcium, sodium fluoride is ineffective; stannous fluoride remains effective when used with such abrasives. Stannous fluoride can cause surface staining of teeth, but these stains are not permanent.
=Chemistry=
SnF<sub>2</sub> can be prepared by evaporating a solution of SnO in 40% [[hydrofluoric acid|HF]].<ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref><br />


==Aqueous solutions==
==Aqueous solutions==
Readily soluble in water SnF<sub>2</sub> is hydrolysed forming at low concentration species such as SnOH<sup>+</sup>, Sn(OH)<sub>2</sub> and Sn(OH)<sub>3</sub><sup>−</sup> and at higher concentrations, predominantly polynuclear species, Sn<sub>2</sub>(OH)<sub>2</sub><sup>2+</sup> and Sn<sub>3</sub>(OH)<sub>4</sub><sup>2+</sup>.<ref>{{cite journal
Readily soluble in water, SnF<sub>2</sub> is hydrolysed. At low concentration, it forms species such as SnOH<sup>+</sup>, Sn(OH)<sub>2</sub> and Sn(OH)<sub>3</sub><sup>−</sup>. At higher concentrations, predominantly polynuclear species are formed, including Sn<sub>2</sub>(OH)<sub>2</sub><sup>2+</sup> and Sn<sub>3</sub>(OH)<sub>4</sub><sup>2+</sup>.<ref>{{cite journal
| title = A critical review of thermodynamic data for inorganic tin species
| title = A critical review of thermodynamic data for inorganic tin species
| author = Séby F., Potin-Gautier M., Giffaut E., Donard O. F. X.
| journal = Geochimica et Cosmochimica Acta
| journal = Geochimica et Cosmochimica Acta
| year = 2001
| year = 2001
| volume = 65
| volume = 65
| issue = 18
| issue = 18
| pages = 3041-3053
| pages = 3041–3053
| doi = 10.1016/S0016-7037(01)00645-7
| doi = 10.1016/S0016-7037(01)00645-7
| bibcode=2001GeCoA..65.3041S
}}</ref>Aqueous solutions readily oxidise to form insoluble precipitates of Sn<sup>IV</sup> which are ineffective as a dental prophylactic. <ref>David B. Troy, 2005, ''Remington: The Science and Practice of Pharmacy'', Lippincott Williams & Wilkins, ISBN 0781746736, 9780781746731</ref> Studies of the oxidation using [[Mössbauer spectroscopy]] on frozen samples suggests that O<sub>2</sub> is the oxidizing species.<ref>{{cite journal
| last1 = Séby
| first1 = F.
| last2 = Potin-Gautier
| first2 = M.
| last3 = Giffaut
| first3 = E.
| last4 = Donard
| first4 = O.F.X.
}}</ref> Aqueous solutions readily oxidise to form insoluble precipitates of Sn<sup>IV</sup>, which are ineffective as a dental prophylactic.<ref>David B. Troy, 2005, ''Remington: The Science and Practice of Pharmacy'', Lippincott Williams & Wilkins, {{ISBN|0-7817-4673-6}}, {{ISBN|978-0-7817-4673-1}}</ref> Studies of the oxidation using [[Mössbauer spectroscopy]] on frozen samples suggests that O<sub>2</sub> is the oxidizing species.<ref>{{cite journal
| title = Oxidation of SnF<sub>2</sub> stannous fluoride in aqueous solutions
| title = Oxidation of SnF<sub>2</sub> stannous fluoride in aqueous solutions
| author = Denes G; Lazanas G.
| journal = Hyperfine Interactions
| journal = Hyperfine Interactions
| year = 1994
| year = 1994
| volume = 90
| volume = 90
| issue = 1
| issue = 1
| pages = 435-439
| pages = 435–439
| doi = 10.1007/BF02069152
| doi = 10.1007/BF02069152
| bibcode = 1994HyInt..90..435D
}}</ref><br />
| last1 = Denes
| first1 = Georges
| last2 = Lazanas
| first2 = George
| s2cid = 96184099
}}</ref>


==Lewis acidity==
==Lewis acidity==
SnF<sub>2</sub> is a [[Lewis acid]] forming, for example, a 1:1 complex (CH<sub>3</sub>)<sub>3</sub>NSnF<sub>2</sub> and 2:1 complex [(CH<sub>3</sub>)<sub>3</sub>N]<sub>2</sub>SnF<sub>2</sub> with [[trimethylamine]]<ref>{{cite journal
SnF<sub>2</sub> acts as a [[Lewis acid]]. For example, it forms a 1:1 complex (CH<sub>3</sub>)<sub>3</sub>NSnF<sub>2</sub> and 2:1 complex [(CH<sub>3</sub>)<sub>3</sub>N]<sub>2</sub>SnF<sub>2</sub> with [[trimethylamine]],<ref>{{cite journal
| title = Synthesis and studies of trimethylamine adducts with tin(II) halides
| title = Synthesis and studies of trimethylamine adducts with tin(II) halides
| name-list-style=amp | journal = Inorg. Chem.
| author = Chung Chun Hsu and R. A. Geanangel
| journal = Inorg. Chem.
| year = 1977
| year = 1977
| volume = 16
| volume = 16
Line 59: Line 112:
| pages = 2529–2534
| pages = 2529–2534
| doi = 10.1021/ic50176a022
| doi = 10.1021/ic50176a022
}}</ref>, and a 1:1 complex with [[dimethylsulfoxide]], (CH<sub>3</sub>)<sub>2</sub>SO.SnF<sub>2</sub>.<ref>{{cite journal
| last1=Hsu | first1=C. C. | last2=Geanangel | first2=R. A. }}</ref> and a 1:1 complex with [[dimethylsulfoxide]], (CH<sub>3</sub>)<sub>2</sub>SO·SnF<sub>2</sub>.<ref>{{cite journal
| title = Donor and acceptor behavior of divalent tin compounds
| title = Donor and acceptor behavior of divalent tin compounds
| name-list-style=amp | journal = Inorg. Chem.
| author = Chung Chun Hsu and R. A. Geanangel
| journal = Inorg. Chem.
| year = 1980
| year = 1980
| volume = 19
| volume = 19
Line 68: Line 120:
| pages = 110–119
| pages = 110–119
| doi = 10.1021/ic50203a024
| doi = 10.1021/ic50203a024
| last1=Hsu | first1=Chung Chun | last2=Geanangel | first2=R. A. }}</ref> <br />In solutions containing the fluoride ion, F<sup>−</sup>, it forms the fluoride complexes SnF<sub>3</sub><sup>−</sup>, Sn<sub>2</sub>F<sub>5</sub><sup>−</sup>, and SnF<sub>2</sub>(OH<sub>2</sub>).<ref name = "Wiberg&Holleman">Egon Wiberg, Arnold Frederick Holleman (2001) ''Inorganic Chemistry'', Elsevier {{ISBN|0-12-352651-5}}.</ref> Crystallization from an aqueous solution containing [[sodium fluoride|NaF]] produces compounds containing polynuclear anions, e.g. NaSn<sub>2</sub>F<sub>5</sub> or Na<sub>4</sub>Sn<sub>3</sub>F<sub>10</sub> depending on the reaction conditions, rather than NaSnF<sub>3</sub>.<ref name = "Greenwood"/> The compound NaSnF<sub>3</sub>, containing the pyramidal SnF<sub>3</sub><sup>−</sup> anion, can be produced from a pyridine–water solution.<ref>{{cite journal
}}</ref> <br />
In solutions containing fluoride ion, F<sup>−</sup> it forms fluoride complexes SnF<sub>3</sub><sup>−</sup>, Sn<sub>2</sub>F<sub>5</sub><sup>−</sup>, SnF<sub>2</sub>(OH<sub>2</sub>).<ref name = "Wiberg&Holleman">Egon Wiberg, Arnold Frederick Holleman (2001) ''Inorganic Chemistry'', Elsevier ISBN 0123526515</ref> Crystallization from an aqueous solution containing [[sodium fluoride|NaF]] produces compounds containing polynuclear anions, e.g. NaSn<sub>2</sub>F<sub>5</sub> or Na<sub>4</sub>Sn<sub>3</sub>F<sub>10</sub> depending on the reaction conditions, rather than NaSnF<sub>3</sub><ref name = "Greenwood"/>producing NaSnF<sub>3</sub> The compound NaSnF<sub>3</sub> containing the pyramidal SnF<sub>3</sub><sup>−</sup> anion can however be produced from a pyridine - water solution.<ref>{{cite journal
| title = Synthesis and crystal structure of two tin fluoride materials: NaSnF<sub>3</sub> (BING-12) and Sn<sub>3</sub>F<sub>3</sub>PO<sub>4</sub>
| title = Synthesis and crystal structure of two tin fluoride materials: NaSnF<sub>3</sub> (BING-12) and Sn<sub>3</sub>F<sub>3</sub>PO<sub>4</sub>
| author = Salami T.O. , Zavalij P.Y. and Oliver S.R.J.
| journal = Journal of Solid State Chemistry
| journal = Journal of Solid State Chemistry
| year = 2004
| year = 2004
| volume = 177
| volume = 177
| issue = 3
| issue = 3
| pages = 800-805
| pages = 800–805
| doi = 10.1016/j.jssc.2003.09.013
| doi = 10.1016/j.jssc.2003.09.013
| bibcode = 2004JSSCh.177..800S
}}</ref>
| last1 = Salami
Other compounds containing the pyramidal SnF<sub>3</sub><sup>−</sup> anion are known for example Ca(SnF<sub>3</sub>)<sub>2</sub>
| first1 = Tolulope O.
<ref>{{cite journal
| last2 = Zavalij
| first2 = Peter Y.
| last3 = Oliver
| first3 = Scott R.J
}}</ref> Other compounds containing the pyramidal SnF<sub>3</sub><sup>−</sup> anion are known, such as {{chem2|Ca(SnF3)2}}.<ref>{{cite journal
| title =Synthesis and Crystal Structure of Calcium Trifluorostannate(II)
| title =Synthesis and Crystal Structure of Calcium Trifluorostannate(II)
| author = Kokunov Y.V., Detkov D. G., Gorbunova Yu. E.,Ershova M. M. , Mikhailov Yu. N.
|author1=Kokunov Y. V. |author2=Detkov D. G. |author3=Gorbunova Yu. E. |author4=Ershova M. M. |author5=Mikhailov Yu. N. | journal = Doklady Chemistry
| journal = Doklady Chemistry
| year = 2001
| year = 2001
| volume = 376
| volume = 376
| issue = 4-6
| issue = 4–6
| pages = 52-54
| pages = 52–54
| doi = 10.1023/A:1018855109716
| doi = 10.1023/A:1018855109716
}}</ref>
|s2cid=91430538 }}</ref>

==Reducing properties==
==Reducing properties==
SnF<sub>2</sub> is a [[reducing agent]], with a standard reduction potential E<sup>o</sup> (Sn<sup>IV</sup>/ Sn<sup>II</sup>) = +0.15V <ref>Catherine E. Housecroft, A. G. Sharpe, 2005, ''Inorganic Chemistry'', Pearson Education, ISBN 0130399132</ref>.Solutions in HF are readily oxidised by a range of oxidizing agents, O<sub>2</sub>, SO<sub>2</sub> or F<sub>2</sub>, to form the mixed valence compound, Sn<sub>3</sub>F<sub>8</sub> (containing Sn<sup>II</sup> and Sn<sup>IV</sup> and no Sn - Sn bonds).<ref name = "Greenwood"/>
SnF<sub>2</sub> is a [[reducing agent]], with a standard reduction potential of E<sup>o</sup> (Sn<sup>IV</sup>/ Sn<sup>II</sup>) = +0.15&nbsp;V.<ref>{{Housecroft2nd}}</ref> Solutions in HF are readily oxidised by a range of oxidizing agents (O<sub>2</sub>, SO<sub>2</sub> or F<sub>2</sub>) to form the mixed-valence compound Sn<sub>3</sub>F<sub>8</sub> (containing Sn<sup>II</sup> and Sn<sup>IV</sup> and no Sn–Sn bonds).<ref name = "Greenwood"/>


==Structure==
==Structure==
The monoclinic form contains tetramers, Sn<sub>4</sub>F<sub>8</sub>, where there are two distinct coordination environments for the Sn atoms but in each case there are three nearest neighbours with Sn at the apex of a trigonal pyramid and the lone pair of electrons is sterically active.<ref name = "Wells"> Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications ISBN 0-19-855370-6 </ref> Other forms reported have the GeF<sub>2</sub> and TeO<sub>2</sub> structures.<ref name = "Wells"/>
The [[Monoclinic crystal system|monoclinic]] form contains tetramers, Sn<sub>4</sub>F<sub>8</sub>, where there are two distinct coordination environments for the Sn atoms. In each case, there are three nearest neighbours, with Sn at the apex of a trigonal pyramid, and the lone pair of electrons sterically active.<ref name = "Wells">Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications {{ISBN|0-19-855370-6}}</ref> Other forms reported have the [[germanium difluoride|GeF<sub>2</sub>]] and [[tellurium dioxide|paratellurite]] structures.<ref name = "Wells"/>


==Molecular SnF<sub>2</sub>==
==Molecular SnF<sub>2</sub>==
In the vapour phase SnF<sub>2</sub> forms monomers as well as dimers and trimers.<ref name = "Wiberg&Holleman">Egon Wiberg, Arnold Frederick Holleman (2001) ''Inorganic Chemistry'', Elsevier ISBN 0123526515</ref> Monomeric SnF<sub>2</sub> is a non-linear molecule with an Sn-F bond length of 206 pm.<ref name = "Wiberg&Holleman"/><br />
In the vapour phase, SnF<sub>2</sub> forms monomers, dimers, and trimers.<ref name="Wiberg&Holleman"/> Monomeric SnF<sub>2</sub> is a non-linear with an Sn−F bond length of 206 pm.<ref name = "Wiberg&Holleman"/> Complexes of SnF<sub>2</sub>, sometimes called difluorostannylene, with an [[alkyne]] and aromatic compounds deposited in an argon matrix at 12 K have been reported.<ref>{{cite journal
Complexes of SnF<sub>2</sub>, sometimes called difluorostannylene, with an alkyne and aromatic compounds deposited in an argon matrix at 12 K have been reported
<ref>{{cite journal
| title = Matrix IR spectra and quantum chemical studies of the reaction between difluorostannylene and hept-1-yne. The first direct observation of a carbene analog π-complex with alkyne
| title = Matrix IR spectra and quantum chemical studies of the reaction between difluorostannylene and hept-1-yne. The first direct observation of a carbene analog π-complex with alkyne
| first1 = SE
| author = S. E. Boganov, V. I. Faustov, M. P. Egorov and O. M. Nefedov
| last1 = Bogdanov
| journal = Russian Chemical Bulletin Volume
| first2 = VI
| last2 = Faustov
| first3 = MP
| last3 = Egorov
| first4 = OM
| last4 = Nefedov
| journal = Russian Chemical Bulletin
| year = 1994
| year = 1994
| volume = 43
| volume = 43
| issue = 1
| issue = 1
| pages = 47-49
| pages = 47–49
| doi = 10.1007/BF00699133
| doi = 10.1007/BF00699133
| s2cid = 97064510
}}</ref>
<ref>{{cite journal
}}</ref><ref>{{cite journal
| title = Study of complexation between difluorostannylene and aromatics by matrix IR spectroscopy
| title = Study of complexation between difluorostannylene and aromatics by matrix IR spectroscopy
| author = S. E. Boganov, M. P. Egorov and O. M. Nefedov
| author = S. E. Boganov, M. P. Egorov and O. M. Nefedov
Line 116: Line 176:
| volume = 48
| volume = 48
| issue = 1
| issue = 1
| pages = 98-103
| pages = 98–103
| doi = 10.1007/BF02494408
| doi = 10.1007/BF02494408
| s2cid = 94004320
}}</ref>
}}</ref>


==Safety==
=References=
Stannous fluoride can cause redness and irritation if it is inhaled or comes into contact with the eyes. If ingested, it can cause abdominal pains and shock.<ref>{{cite web|url=https://www.ilo.org/dyn/icsc/showcard.display?p_lang=en&p_card_id=0860&p_version=2|title=Stannous fluoride (International Chemical Safety Cards: 0860)|publisher=International Labour Organization|access-date=June 21, 2021}}</ref> Rare but serious allergic reactions are possible; symptoms include itching, swelling, and difficulty breathing. Certain formulations of stannous fluoride in dental products may cause mild [[tooth discoloration]]; this is not permanent and can be removed by brushing, or can be prevented by using a stabilised stannous fluoride toothpaste.<ref name="pmid17410949" /><ref name="pmid31872105" /><ref>{{cite web|url=http://www.webmd.com/drugs/mono-7156-STANNOUS+FLUORIDE+GEL+-+DENTAL.aspx?drugid=75277&drugname=stannous+fluoride+dent|title=Stannous Fluoride-Dental|publisher=WebMD|access-date=March 11, 2014}}</ref>
{{reflist|2}}
{{clear}}

==References==
{{reflist|30em}}
{{Tin compounds}}
{{Stomatological preparations}}
{{Stomatological preparations}}
{{fluorine compounds}}


{{DEFAULTSORT:Tin(Ii) Fluoride}}
[[Category:Fluorides]]
[[Category:Fluorides]]
[[Category:Tin compounds]]
[[Category:Metal halides]]
[[Category:Tin(II) compounds]]

[[Category:Reducing agents]]
{{dentistry-stub}}

[[cs:Fluorid cínatý]]
[[de:Zinn(II)-fluorid]]

Latest revision as of 03:58, 9 November 2024

Tin(II) fluoride

  Sn2+;   F
Names
IUPAC name
Tin(II) fluoride
Other names
Stannous fluoride
Identifiers
3D model (JSmol)
ECHA InfoCard 100.029.090 Edit this at Wikidata
RTECS number
  • XQ3450000
UNII
UN number 3288
  • InChI=1S/2FH.Sn/h2*1H;/q;;+2/p-2
  • F[Sn]F
Properties
SnF2
Molar mass 156.69 g/mol
Appearance colorless solid
Density 4.57 g/cm3
Melting point 213 °C (415 °F; 486 K)
Boiling point 850 °C (1,560 °F; 1,120 K)
31 g/100 mL (0 °C);
35 g/100 mL (20 °C);
78.5 g/100 mL (106 °C)
Solubility soluble in KOH, KF;
negligible in ethanol, ether, chloroform
Structure
Monoclinic, mS48
C2/c, No. 15
Pharmacology
A01AA04 (WHO)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Flash point Non-flammable
Safety data sheet (SDS) ICSC 0860
Related compounds
Other anions
Tin(II) chloride,
Tin(II) bromide,
Tin(II) iodide
Other cations
Difluorocarbene,
Carbon tetrafluoride,
Difluorosilylene,
Silicon tetrafluoride,
Difluorogermylene,
Germanium tetrafluoride,
Tin tetrafluoride,
Lead(II) fluoride,
Lead(IV) fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Tin(II) fluoride, commonly referred to commercially as stannous fluoride[1][2] (from Latin stannum, 'tin'), is a chemical compound with the formula SnF2. It is a colourless solid used as an ingredient in toothpastes.

Oral health benefits

[edit]

Stannous fluoride is an alternative to sodium fluoride for the prevention of cavities (tooth decay). It was first released commercially in 1956, in Crest toothpaste. It was discovered and developed by Joseph Muhler and William Nebergall. In recognition of their innovation, they were inducted into the Inventor's Hall of Fame.[1]

The fluoride in stannous fluoride helps to convert the calcium mineral hydroxyapatite in teeth into fluorapatite, which makes tooth enamel more resistant to bacteria-generated acid attacks.[3] The calcium present in plaque and saliva reacts with fluoride to form calcium fluoride on the tooth surface; over time, this calcium fluoride dissolves to allow calcium and fluoride ions to interact with the tooth and form fluoride-containing apatite within the tooth structure.[4] This chemical reaction inhibits demineralisation and can promote remineralisation of tooth decay. The resulting fluoride-containing apatite is more insoluble, and more resistant to acid and tooth decay.[4]

In addition to fluoride, the stannous ion has benefits for oral health when incorporated in a toothpaste. At similar fluoride concentrations, toothpastes containing stannous fluoride have been shown to be more effective than toothpastes containing sodium fluoride for reducing the incidence of dental caries and dental erosion,[5][6][7][8][9] as well as reducing gingivitis.[10][11][12][13][14] Some stannous fluoride-containing toothpastes also contain ingredients that allow for better stain removal.[15][16] Stabilised stannous fluoride formulations allow for greater bioavailability of the stannous and fluoride ion, increasing their oral health benefits.[17][18] A systematic review revealed stabilised stannous fluoride-containing toothpastes had a positive effect on the reduction of plaque, gingivitis and staining, with a significant reduction in calculus and halitosis (bad breath) compared to other toothpastes.[16] A specific formulation of stabilised stannous fluoride toothpastes has shown superior protection against dental erosion and dentine hypersensitivity compared to other fluoride-containing and fluoride-free toothpastes.[19]

Stannous fluoride was once used under the trade name Fluoristan in the original formulation of the toothpaste brand Crest, though it was later replaced with sodium monofluorophosphate under the trade name Fluoristat. Stabilised stannous fluoride is now the active ingredient in Crest/Oral B Pro-Health brand toothpaste. Although concerns have been previously raised that stannous fluoride may cause tooth staining, this can be avoided by proper brushing and by using a stabilised stannous fluoride toothpaste.[15][16] Any stannous fluoride staining that occurs due to improper brushing is not permanent, and Crest/Oral B Pro-Health states that its particular formulation is resistant to staining.

Production

[edit]

SnF2 can be prepared by evaporating a solution of SnO in 40% HF.[20]

SnO + 2 HF → SnF2 + H2O

Aqueous solutions

[edit]

Readily soluble in water, SnF2 is hydrolysed. At low concentration, it forms species such as SnOH+, Sn(OH)2 and Sn(OH)3. At higher concentrations, predominantly polynuclear species are formed, including Sn2(OH)22+ and Sn3(OH)42+.[21] Aqueous solutions readily oxidise to form insoluble precipitates of SnIV, which are ineffective as a dental prophylactic.[22] Studies of the oxidation using Mössbauer spectroscopy on frozen samples suggests that O2 is the oxidizing species.[23]

Lewis acidity

[edit]

SnF2 acts as a Lewis acid. For example, it forms a 1:1 complex (CH3)3NSnF2 and 2:1 complex [(CH3)3N]2SnF2 with trimethylamine,[24] and a 1:1 complex with dimethylsulfoxide, (CH3)2SO·SnF2.[25]
In solutions containing the fluoride ion, F, it forms the fluoride complexes SnF3, Sn2F5, and SnF2(OH2).[26] Crystallization from an aqueous solution containing NaF produces compounds containing polynuclear anions, e.g. NaSn2F5 or Na4Sn3F10 depending on the reaction conditions, rather than NaSnF3.[20] The compound NaSnF3, containing the pyramidal SnF3 anion, can be produced from a pyridine–water solution.[27] Other compounds containing the pyramidal SnF3 anion are known, such as Ca(SnF3)2.[28]

Reducing properties

[edit]

SnF2 is a reducing agent, with a standard reduction potential of Eo (SnIV/ SnII) = +0.15 V.[29] Solutions in HF are readily oxidised by a range of oxidizing agents (O2, SO2 or F2) to form the mixed-valence compound Sn3F8 (containing SnII and SnIV and no Sn–Sn bonds).[20]

Structure

[edit]

The monoclinic form contains tetramers, Sn4F8, where there are two distinct coordination environments for the Sn atoms. In each case, there are three nearest neighbours, with Sn at the apex of a trigonal pyramid, and the lone pair of electrons sterically active.[30] Other forms reported have the GeF2 and paratellurite structures.[30]

Molecular SnF2

[edit]

In the vapour phase, SnF2 forms monomers, dimers, and trimers.[26] Monomeric SnF2 is a non-linear with an Sn−F bond length of 206 pm.[26] Complexes of SnF2, sometimes called difluorostannylene, with an alkyne and aromatic compounds deposited in an argon matrix at 12 K have been reported.[31][32]

Safety

[edit]

Stannous fluoride can cause redness and irritation if it is inhaled or comes into contact with the eyes. If ingested, it can cause abdominal pains and shock.[33] Rare but serious allergic reactions are possible; symptoms include itching, swelling, and difficulty breathing. Certain formulations of stannous fluoride in dental products may cause mild tooth discoloration; this is not permanent and can be removed by brushing, or can be prevented by using a stabilised stannous fluoride toothpaste.[15][16][34]

References

[edit]
  1. ^ a b "National Inventors Hall of Fame Announces 2019 Inductees at CES" (Press release). National Inventors Hall of Fame. Retrieved 6 February 2019.
  2. ^ "Latin Names Variable Charge Metals". Nobel.SCAS.BCIT.ca/. British Columbia Institute of Technology Chemistry Department. Archived from the original on 22 July 2020. Retrieved 16 June 2013.
  3. ^ Groeneveld, A.; Purdell-Lewis, D. J.; Arends, J. (1976). "Remineralization of artificial caries lesions by stannous fluoride". Caries Research. 10 (3): 189–200. doi:10.1159/000260201. ISSN 0008-6568. PMID 1063601.
  4. ^ a b Lussi, Adrian; Hellwig, Elmar; Klimek, Joachim (2012). "Fluorides - mode of action and recommendations for use". Schweizer Monatsschrift für Zahnmedizin = Revue Mensuelle Suisse d'Odonto-Stomatologie = Rivista Mensile Svizzera di Odontologia e Stomatologia. 122 (11): 1030–1042. ISSN 0256-2855. PMID 23192605.
  5. ^ West, N. X.; He, T.; Macdonald, E. L.; Seong, J.; Hellin, N.; Barker, M. L.; Eversole, S. L. (March 2017). "Erosion protection benefits of stabilized SnF2 dentifrice versus an arginine–sodium monofluorophosphate dentifrice: results from in vitro and in situ clinical studies". Clinical Oral Investigations. 21 (2): 533–540. doi:10.1007/s00784-016-1905-1. ISSN 1432-6981. PMC 5318474. PMID 27477786.
  6. ^ Ganss, C.; Lussi, A.; Grunau, O.; Klimek, J.; Schlueter, N. (2011). "Conventional and Anti-Erosion Fluoride Toothpastes: Effect on Enamel Erosion and Erosion-Abrasion". Caries Research. 45 (6): 581–589. doi:10.1159/000334318. ISSN 0008-6568. PMID 22156703. S2CID 45156274.
  7. ^ West, Nicola X.; He, Tao; Hellin, Nikki; Claydon, Nicholas; Seong, Joon; Macdonald, Emma; Farrell, Svetlana; Eusebio, Rachelle; Wilberg, Aneta (August 2019). "Randomized in situ clinical trial evaluating erosion protection efficacy of a 0.454% stannous fluoride dentifrice". International Journal of Dental Hygiene. 17 (3): 261–267. doi:10.1111/idh.12379. ISSN 1601-5029. PMC 6850309. PMID 30556372.
  8. ^ Zhao, X.; He, T.; He, Y.; Chen, H. (2020-02-12). "Efficacy of a Stannous-containing Dentifrice for Protecting Against Combined Erosive and Abrasive Tooth Wear In Situ". Oral Health and Preventive Dentistry. 18 (1): 619–624. doi:10.3290/j.ohpd.a44926. PMID 32700515.
  9. ^ Stookey, G.K.; Mau, M.S.; Isaacs, R.L.; Gonzalez-Gierbolini, C.; Bartizek, R.D.; Biesbrock, A.R. (2004). "The Relative Anticaries Effectiveness of Three Fluoride-Containing Dentifrices in Puerto Rico". Caries Research. 38 (6): 542–550. doi:10.1159/000080584. ISSN 0008-6568. PMID 15528909. S2CID 489634.
  10. ^ Parkinson, C. R.; Milleman, K. R.; Milleman, J. L. (2020-03-26). "Gingivitis efficacy of a 0.454% w/w stannous fluoride dentifrice: a 24-week randomized controlled trial". BMC Oral Health. 20 (1): 89. doi:10.1186/s12903-020-01079-6. ISSN 1472-6831. PMC 7098169. PMID 32216778.
  11. ^ Hu, Deyu; Li, Xue; Liu, Hongchun; Mateo, Luis R.; Sabharwal, Amarpreet; Xu, Guofeng; Szewczyk, Gregory; Ryan, Maria; Zhang, Yun-Po (April 2019). "Evaluation of a stabilized stannous fluoride dentifrice on dental plaque and gingivitis in a randomized controlled trial with 6-month follow-up". The Journal of the American Dental Association. 150 (4): S32–S37. doi:10.1016/j.adaj.2019.01.005. ISSN 0002-8177. PMID 30797257. S2CID 73488958.
  12. ^ Mankodi, Suru; Bartizek, Robert D.; Winston, J. Leslie; Biesbrock, Aaron R.; McClanahan, Stephen F.; He, Tao (2005). "Anti-gingivitis efficacy of a stabilized 0.454% stannous fluoride/sodium hexametaphosphate dentifrice". Journal of Clinical Periodontology. 32 (1): 75–80. doi:10.1111/j.1600-051X.2004.00639.x. ISSN 1600-051X. PMID 15642062.
  13. ^ Archila, Luis; Bartizek, Robert D.; Winston, J. Leslie; Biesbrock, Aaron R.; McClanahan, Stephen F.; He, Tao (2004). "The Comparative Efficacy of Stabilized Stannous Fluoride/Sodium Hexametaphosphate Dentifrice and Sodium Fluoride/Triclosan/Copolymer Dentifrice for the Control of Gingivitis: A 6-Month Randomized Clinical Study". Journal of Periodontology. 75 (12): 1592–1599. doi:10.1902/jop.2004.75.12.1592. ISSN 1943-3670. PMID 15732859.
  14. ^ Clark-Perry, Danielle; Levin, Liran (December 2020). "Comparison of new formulas of stannous fluoride toothpastes with other commercially available fluoridated toothpastes: A systematic review and meta-analysis of randomised controlled trials". International Dental Journal. 70 (6): 418–426. doi:10.1111/idj.12588. PMC 9379195. PMID 32621315. S2CID 220336087.
  15. ^ a b c He, Tao; Baker, Robert; Bartizek, Robert D.; Biesbrock, Aaron R.; Chaves, Eros; Terézhalmy, Geza (2007). "Extrinsic stain removal efficacy of a stannous fluoride dentifrice with sodium hexametaphosphate". The Journal of Clinical Dentistry. 18 (1): 7–11. ISSN 0895-8831. PMID 17410949.
  16. ^ a b c d Johannsen, A.; Emilson, C.-G.; Johannsen, G.; Konradsson, K.; Lingström, P.; Ramberg, P. (December 2019). "Effects of stabilized stannous fluoride dentifrice on dental calculus, dental plaque, gingivitis, halitosis and stain: A systematic review". Heliyon. 5 (12): e02850. Bibcode:2019Heliy...502850J. doi:10.1016/j.heliyon.2019.e02850. ISSN 2405-8440. PMC 6909063. PMID 31872105.
  17. ^ White, D. J. (1995). "A "return" to stannous fluoride dentifrices". The Journal of Clinical Dentistry. 6: 29–36. ISSN 0895-8831. PMID 8593190.
  18. ^ Tinanoff, N. (1995). "Progress regarding the use of stannous fluoride in clinical dentistry". The Journal of Clinical Dentistry. 6: 37–40. ISSN 0895-8831. PMID 8593191.
  19. ^ West, Nicola X.; He, Tao; Zou, Yuanshu; DiGennaro, Joe; Biesbrock, Aaron; Davies, Maria (February 2021). "Bioavailable gluconate chelated stannous fluoride toothpaste meta-analyses: Effects on dentine hypersensitivity and enamel erosion". Journal of Dentistry. 105: 103566. doi:10.1016/j.jdent.2020.103566. hdl:1983/34d78138-703d-484f-864f-ece3d3610d64. ISSN 1879-176X. PMID 33383100. S2CID 229940161.
  20. ^ a b c Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  21. ^ Séby, F.; Potin-Gautier, M.; Giffaut, E.; Donard, O.F.X. (2001). "A critical review of thermodynamic data for inorganic tin species". Geochimica et Cosmochimica Acta. 65 (18): 3041–3053. Bibcode:2001GeCoA..65.3041S. doi:10.1016/S0016-7037(01)00645-7.
  22. ^ David B. Troy, 2005, Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, ISBN 0-7817-4673-6, ISBN 978-0-7817-4673-1
  23. ^ Denes, Georges; Lazanas, George (1994). "Oxidation of SnF2 stannous fluoride in aqueous solutions". Hyperfine Interactions. 90 (1): 435–439. Bibcode:1994HyInt..90..435D. doi:10.1007/BF02069152. S2CID 96184099.
  24. ^ Hsu, C. C. & Geanangel, R. A. (1977). "Synthesis and studies of trimethylamine adducts with tin(II) halides". Inorg. Chem. 16 (1): 2529–2534. doi:10.1021/ic50176a022.
  25. ^ Hsu, Chung Chun & Geanangel, R. A. (1980). "Donor and acceptor behavior of divalent tin compounds". Inorg. Chem. 19 (1): 110–119. doi:10.1021/ic50203a024.
  26. ^ a b c Egon Wiberg, Arnold Frederick Holleman (2001) Inorganic Chemistry, Elsevier ISBN 0-12-352651-5.
  27. ^ Salami, Tolulope O.; Zavalij, Peter Y.; Oliver, Scott R.J (2004). "Synthesis and crystal structure of two tin fluoride materials: NaSnF3 (BING-12) and Sn3F3PO4". Journal of Solid State Chemistry. 177 (3): 800–805. Bibcode:2004JSSCh.177..800S. doi:10.1016/j.jssc.2003.09.013.
  28. ^ Kokunov Y. V.; Detkov D. G.; Gorbunova Yu. E.; Ershova M. M.; Mikhailov Yu. N. (2001). "Synthesis and Crystal Structure of Calcium Trifluorostannate(II)". Doklady Chemistry. 376 (4–6): 52–54. doi:10.1023/A:1018855109716. S2CID 91430538.
  29. ^ Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. ISBN 978-0-13-039913-7.
  30. ^ a b Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  31. ^ Bogdanov, SE; Faustov, VI; Egorov, MP; Nefedov, OM (1994). "Matrix IR spectra and quantum chemical studies of the reaction between difluorostannylene and hept-1-yne. The first direct observation of a carbene analog π-complex with alkyne". Russian Chemical Bulletin. 43 (1): 47–49. doi:10.1007/BF00699133. S2CID 97064510.
  32. ^ S. E. Boganov, M. P. Egorov and O. M. Nefedov (1999). "Study of complexation between difluorostannylene and aromatics by matrix IR spectroscopy". Russian Chemical Bulletin. 48 (1): 98–103. doi:10.1007/BF02494408. S2CID 94004320.
  33. ^ "Stannous fluoride (International Chemical Safety Cards: 0860)". International Labour Organization. Retrieved June 21, 2021.
  34. ^ "Stannous Fluoride-Dental". WebMD. Retrieved March 11, 2014.