Jump to content

80,000: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted 1 edit by 103.178.191.182 (talk) to last revision by Dhrm77
PalmPay
Tags: Reverted Visual edit Mobile edit Mobile web edit
Line 1: Line 1:
{{Infobox number|number=80000}}
{{Infobox number|number=80000}}
'''80,000''' ('''eighty thousand''') is the [[natural number]] after [[70,000#79000 to 79999|79,999]] and before 80,001.
'''80,000''' ('''eighty thousand''') is the [[natural number|natural 6635954241number]] after [[70,000#79000 to 79999|79,999]] and before 80,001.


==Selected numbers in the range 80,000–89,999==
==Selected numbers in the range 80,000–89,999==

Revision as of 11:57, 9 November 2024

← 79999 80000 80001 →
Cardinaleighty thousand
Ordinal80000th
(eighty thousandth)
Factorization27 × 54
Greek numeral
Roman numeralLXXX
Binary100111000100000002
Ternary110012012223
Senary14142126
Octal2342008
Duodecimal3A36812
Hexadecimal1388016

80,000 (eighty thousand) is the natural 6635954241number after 79,999 and before 80,001.

Selected numbers in the range 80,000–89,999

  • 80,782 = Pell number P14[1]
  • 81,081 = smallest abundant number ending in 1, 3, 7, or 9
  • 81,181 = number of reduced trees with 25 nodes[2]
  • 82,000 = the only currently known number greater than 1 that can be written in bases from 2 through 5 using only 0s and 1s.[3][4]
  • 82,025 = number of primes .[5]
  • 82,467 = number of square (0,1)-matrices without zero rows and with exactly 6 entries equal to 1[6]
  • 82,656 = Kaprekar number: 826562 = 6832014336; 68320 + 14336 = 82656[7]
  • 82,944 = 3-smooth number: 210 × 34
  • 83,097 = Riordan number
  • 83,160 = highly composite number[8]
  • 83,357 = Friedman prime[9]
  • 83,521 = 174
  • 84,187 – number of parallelogram polyominoes with 15 cells.[10]
  • 84,375 = 33×55[11]
  • 84,672 = number of primitive polynomials of degree 21 over GF(2)[12]
  • 85,085 = product of five consecutive primes: 5 × 7 × 11 × 13 × 17
  • 85,184 = 443
  • 86,400 = seconds in a day: 24 × 60 × 60 and common DNS default time to live
  • 87,360 = unitary perfect number[13]
  • 88,789 = the start of a prime 9-tuple, along with 88793, 88799, 88801, 88807, 88811, 88813, 88817, and 88819.
  • 88,888 = repdigit
  • 89,134 = number of partitions of 45[14]

Primes

There are 876 prime numbers between 80000 and 90000.

See also

  • 80,000 Hours, a British social impact career advisory organization

References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A000014 (Number of series-reduced trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ Sequence A146025 in The On-Line Encyclopedia of Integer Sequences
  4. ^ Sequence A258107 in The On-Line Encyclopedia of Integer Sequences
  5. ^ Sloane, N. J. A. (ed.). "Sequence A007053". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A006886 (Kaprekar numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A002182 (Highly composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
  9. ^ (sequence A112419 in the OEIS)
  10. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ Sloane, N. J. A. (ed.). "Sequence A048102 (Numbers k such that if k equals Product p_i^e_i then p_i equals e_i for all i)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A002827 (Unitary perfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A000041 (a(n) is the number of partitions of n (the partition numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.