Jump to content

Quantum nonlocality: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Journal cites, Added 2 dois to journal cites
OAbot (talk | contribs)
m Open access bot: hdl updated in citation with #oabot.
 
(133 intermediate revisions by 63 users not shown)
Line 2: Line 2:
{{Quantum mechanics|cTopic=Fundamental concepts}}
{{Quantum mechanics|cTopic=Fundamental concepts}}


In [[theoretical physics]], '''quantum nonlocality''' refers to the phenomenon by which the [[Measurement in quantum mechanics|measurement]] statistics of a multipartite [[quantum system]] do not allow an interpretation with [[local realism]]. Quantum nonlocality has been experimentally verified under a variety of physical assumptions.<ref name = "ASPECT">{{cite journal |last=Aspect |first=Alain |author2=Dalibard, Jean |author3=Roger, Gérard |title=Experimental Test of Bell's Inequalities Using Time- Varying Analyzers |journal=Physical Review Letters|date=1982-12-20 |volume=49 |issue=25 |pages=1804–1807 |doi=10.1103/PhysRevLett.49.1804|bibcode = 1982PhRvL..49.1804A |doi-access=free}}</ref><ref name="ROWE">{{ cite journal |vauthors = Rowe MA, etal| date = February 2001| title = Experimental violation of a Bell's Inequality with efficient detection | journal = Nature |volume= 409| issue = 6822| pages= 791–794 | doi =10.1038/35057215| pmid = 11236986| bibcode = 2001Natur.409..791R| hdl = 2027.42/62731| s2cid = 205014115| hdl-access = free}}</ref><ref name="HENSEN">{{cite journal|vauthors = Hensen, B, etal|title= Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres| date = October 2015 | journal = Nature| volume = 526 |issue = 7575| pages = 682–686 | doi = 10.1038/nature15759|pmid= 26503041|bibcode= 2015Natur.526..682H|arxiv= 1508.05949|s2cid= 205246446}}</ref><ref name= "GIUSTINA">{{cite journal | vauthors = Giustina, M, etal| date = December 2015| title = Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons |journal = Physical Review Letters |volume = 115| issue = 25| pages= 250401| doi = 10.1103/PhysRevLett.115.250401| pmid = 26722905| bibcode = 2015PhRvL.115y0401G| arxiv = 1511.03190| s2cid = 13789503}}</ref><ref name = "SHALM">{{cite journal |vauthors = Shalm, LK, etal | date = December 2015 |title = Strong Loophole-Free Test of Local Realism | journal = Physical Review Letters |volume = 115 |issue = 25 | pages = 250402 | doi = 10.1103/PhysRevLett.115.250402| pmid = 26722906 | pmc = 5815856 | bibcode = 2015PhRvL.115y0402S | arxiv = 1511.03189 }}</ref>
In [[theoretical physics]], '''quantum nonlocality''' is a characteristic of some measurements made at a [[microscopic]] level that contradict the assumptions of ''[[Principle of locality#Local realism|local realism]]'' found in [[classical mechanics]]. Despite consideration of hidden variables as a possible resolution of this contradiction, some aspects of [[quantum entanglement|entangled]] quantum states have been demonstrated irreproducible by any [[local hidden variable theory]]. [[Bell's theorem]] is one such demonstration which has been verified by experiment.<ref name="Hensen">{{cite journal |vauthors=Hensen, B etal | title = Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres |date=October 2015 | journal=[[Nature (journal)|Nature]] | volume=526 | pages=682–686 | doi= 10.1038/nature15759 |issue=7575 | pmid=26503041|bibcode=2015Natur.526..682H |arxiv=1508.05949 }}</ref>


Quantum nonlocality does not allow for [[superluminal communication|faster-than-light communication]],<ref name="GHIRARDI">{{cite journal | last = Ghirardi| first = G.C.| author2= Rimini, A.| author3 =Weber, T.|date = March 1980 | title= A general argument against superluminal transmission through the quantum mechanical measurement process| journal= Lettere al Nuovo Cimento |volume= 27|issue =10| pages= 293–298| doi = 10.1007/BF02817189| s2cid = 121145494}}</ref> and hence is compatible with [[special relativity]] and its universal speed limit of objects. Thus, quantum theory is [[principle of locality|local]] in the strict sense defined by special relativity and, as such, the term "quantum nonlocality" is sometimes considered a misnomer.<ref name=":0">{{Cite journal |last1=Chang |first1=Lay Nam |last2=Lewis |first2=Zachary |last3=Minic |first3=Djordje |last4=Takeuchi |first4=Tatsu |last5=Tze |first5=Chia-Hsiung |date=2011 |title=Bell's Inequalities, Superquantum Correlations, and String Theory |journal=Advances in High Energy Physics |language=en |volume=2011 |pages=1–11 |doi=10.1155/2011/593423 |doi-access=free |issn=1687-7357|hdl=10919/48902 |hdl-access=free }}</ref> Still, it prompts many of the [[Quantum foundations|foundational]] discussions concerning quantum theory.<ref name=":0" />
Experiments have generally favoured quantum mechanics as a description of nature, over local hidden variable theories.<ref name="aspect">{{cite journal | last = Aspect | first = Alain |author2=Dalibard, Jean |author3=Roger, Gérard | title = Experimental Test of Bell's Inequalities Using Time- Varying Analyzers |date=December 1982 | journal = [[Physical Review Letters]] | volume = 49 | issue = 25 | pages = 1804–1807 | doi = 10.1103/PhysRevLett.49.1804 |bibcode = 1982PhRvL..49.1804A }}</ref><ref name="rowe2001">{{cite journal |vauthors=Rowe MA, etal | title = Experimental violation of a Bell's Inequality with efficient detection |date=February 2001 | journal=[[Nature (journal)|Nature]] | volume=409 | pages=791–794 | doi=10.1038/35057215 |bibcode = 2001Natur.409..791K | issue=6822 | pmid=11236986| url=https://deepblue.lib.umich.edu/bitstream/2027.42/62731/1/409791a0.pdf }}</ref> Any physical theory that supersedes or replaces quantum theory must make similar experimental predictions and must therefore also be nonlocal in this sense; quantum nonlocality is a property of the universe that is independent of our description of nature.


==History==
Quantum nonlocality does not allow for [[superluminal communication|faster-than-light communication]],<ref name="ghirardi1980">{{cite journal | last = Ghirardi | first = G.C. |author2=Rimini, A. |author3=Weber, T. | title = A general argument against superluminal transmission through the quantum mechanical measurement process |date=March 1980 | journal = [[Nuovo Cimento|Lettere al Nuovo Cimento]] | volume = 27 | issue = 10 | pages = 293–298 | doi = 10.1007/BF02817189 }}</ref> and hence is compatible with [[special relativity]]. However, it prompts many of the [[Quantum foundations|foundational discussions]] concerning quantum theory.

== History ==


===Einstein, Podolsky and Rosen===
===Einstein, Podolsky and Rosen===
{{Main|EPR paradox}}
{{Main|EPR paradox}}


In the 1935 [[Einstein–Podolsky–Rosen paradox|EPR paper]],<ref name=EPR>{{Cite journal |last1=Einstein |first1=A. |last2=Podolsky |first2=B. |last3=Rosen |first3=N. |date=1935-05-15 |title=Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? |journal=Physical Review |language=en |volume=47 |issue=10 |pages=777–780 |doi=10.1103/PhysRev.47.777 |issn=0031-899X|doi-access=free |bibcode=1935PhRv...47..777E }}</ref> [[Albert Einstein]], [[Boris Podolsky]] and [[Nathan Rosen]] described "two spatially separated particles which have both perfectly correlated positions and momenta"<ref name=Colloquium >{{Cite journal |last1=Reid |first1=M. D. |last2=Drummond |first2=P. D. |last3=Bowen |first3=W. P. |last4=Cavalcanti |first4=E. G. |last5=Lam |first5=P. K. |last6=Bachor |first6=H. A. |last7=Andersen |first7=U. L. |last8=Leuchs |first8=G. |date=2009-12-10 |title=Colloquium : The Einstein-Podolsky-Rosen paradox: From concepts to applications |url=https://link.aps.org/doi/10.1103/RevModPhys.81.1727 |journal=Reviews of Modern Physics |language=en |volume=81 |issue=4 |pages=1727–1751 |doi=10.1103/RevModPhys.81.1727 |arxiv=0806.0270 |bibcode=2009RvMP...81.1727R |issn=0034-6861|hdl=10072/37941 |hdl-access=free }}</ref> as a direct consequence of quantum theory. They intended to use the classical [[principle of locality]] to challenge the idea that the quantum wavefunction was a complete description of reality, but instead they sparked a debate on the nature of reality.<ref name=ClauserShimony1978>Clauser, John F., and Abner Shimony. "[https://duneece.wiscweb.wisc.edu/wp-content/uploads/sites/605/2019/01/J_F_Clauser_1978_Rep._Prog._Phys._41_002_bell_test.pdf Bell's theorem. Experimental tests and implications.]" Reports on Progress in Physics 41.12 (1978): 1881.</ref>
In 1935, [[Albert Einstein|Einstein]], [[Boris Podolsky|Podolsky]] and [[Nathan Rosen|Rosen]] published a [[thought experiment]] with which they hoped to expose the incompleteness of the [[Copenhagen interpretation]] of quantum mechanics in relation to the violation of [[Principle of locality|local causality]] at the microscopic scale that it described.<ref name="epr">{{cite journal | last = Einstein| first = Albert |author2=Podolsky, Boris |author3=Rosen, Nathan | title = Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? |date=May 1935 | journal = [[Physical Review]] | volume = 47 | issue = 10 | pages = 777–780 | doi = 10.1103/PhysRev.47.777|bibcode = 1935PhRv...47..777E | url = http://cds.cern.ch/record/405662}}</ref> Afterwards, Einstein presented a variant of these ideas in a letter to [[Erwin Schrödinger]],<ref name="Einstein">{{cite archive |first= Albert |last= Einstein |item = Letter to E. Schrödinger|type = Letter|item-id =Call Number 22-47 |collection = Einstein Archives|institution= Hebrew University of Jerusalem|urlref= http://alberteinstein.info/vufind1/Record/EAR000024019}}</ref> which is the version that is presented here. The state and notation used here are more modern, and akin to Bohm's take on EPR.<ref>{{cite article|author= Jevtic, S.|author2= Rudolph, T|year=2015|issue=4|journal=Journal of the Optical Society of America B|pages= 50–55|volume= 32|title=How Einstein and/or Schrödinger should have discovered Bell's theorem in 1936}}</ref> The quantum state of the two particles prior to measurement can be written as
Afterwards, Einstein presented a variant of these ideas in a letter to [[Erwin Schrödinger]],<ref name="EINSTEIN">{{cite archive |first= Albert |last= Einstein |item = Letter to E. Schrödinger|type = Letter|item-id =Call Number 22-47 |collection = Einstein Archives|institution= Hebrew University of Jerusalem|urlref= http://alberteinstein.info/vufind1/Record/EAR000024019}}</ref> which is the version that is presented here. The state and notation used here are more modern, and akin to [[David Bohm]]'s take on EPR.<ref>{{cite journal|author= Jevtic, S.|author2= Rudolph, T|year=2015|issue=4|journal=Journal of the Optical Society of America B|pages= 50–55|volume= 32|title=How Einstein and/or Schrödinger should have discovered Bell's theorem in 1936|doi= 10.1364/JOSAB.32.000A50|bibcode= 2015JOSAB..32A..50J|arxiv= 1411.4387|s2cid= 55579565}}</ref> The quantum state of the two particles prior to measurement can be written as

:<math>\left|\psi_{AB}\right\rang =\frac{1}{\sqrt{2}} \bigg(\left|0\right\rang_A \left|1\right\rang_B -
<math display="block">\left|\psi_{AB}\right\rang =\frac{1}{\sqrt{2}} \left(\left|0\right\rang_A \left|1\right\rang_B -
\left|1\right\rang_A \left|0\right\rang_B \bigg)
\left|1\right\rang_A \left|0\right\rang_B \right)
=\frac{1}{\sqrt{2}} \bigg(\left|+\right\rang_A \left|-\right\rang_B -
=\frac{1}{\sqrt{2}} \left(\left|-\right\rang_A \left|+\right\rang_B -
\left|-\right\rang_A \left|+\right\rang_B \bigg) </math>
\left|+\right\rang_A \left|-\right\rang_B \right) </math>
where <math display="inline">\left|\pm\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0\right\rangle\pm\left|1\right\rangle\right)</math>.<ref name="NIELSEN">

Where <math>\left|\pm\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0\right\rangle\pm\left|1\right\rangle\right)</math>.<ref name=nielchuang>
{{cite book
{{cite book
| last = Nielsen | first = Michael A.
| last = Nielsen | first = Michael A.
|author2=Chuang, Isaac L.
|author2=Chuang, Isaac L.
| year = 2000
| year = 2000
| title = Quantum Computation and Quantum Information
| title = Quantum Computation and Quantum Information
| publisher = [[Cambridge University Press]]
| publisher = [[Cambridge University Press]]
Line 31: Line 28:
}}</ref>
}}</ref>


Here, subscripts ''A'' and ''B'' distinguish the two particles, though it is more convenient and usual to refer to these particles as being in the possession of two experimentalists called Alice and Bob. The rules of quantum theory give predictions for the outcomes of measurements performed by the experimentalists. Alice, for example, will measure her particle to be spin-up in an average of fifty percent of measurements. However, according to the Copenhagen interpretation, Alice's measurement causes the state of the two particles to [[Wave function collapse|collapse]], so that if Alice performs a measurement of spin in the z-direction, that is with respect to the basis <math>\{\left|0\right\rang_A, \left|1\right\rang_A\} </math>, then Bob's system will be left in one of the states <math>\{\left|0\right\rang_B, \left|1\right\rang_B\} </math>. Likewise, if Alice performs a measurement of spin in the x-direction, that is with respect to the basis <math>\{\left|+\right\rang_A, \left|-\right\rang_A\} </math>, then Bob's system will be left in one of the states <math>\{\left|+\right\rang_B, \left|-\right\rang_B\} </math>. Schrödinger referred to this phenomenon as "steering".<ref name=Wise2007>{{cite journal | first1=H.M. |last1= Wiseman| first2=S.J. |last2= Jones| first3=A.C. |last3= Doherty| title= Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox| journal= Physical Review Letters | date = April 2007| volume = 98 | doi=10.1103/physrevlett.98.140402}}</ref> This steering occurs in such a way that no signal can be sent by performing such a state update; quantum nonlocality cannot be used to send messages instantaneously and is therefore not in direct conflict with causality concerns in Special Relativity.<ref name=nielchuang/>
Here, subscripts “A” and “B” distinguish the two particles, though it is more convenient and usual to refer to these particles as being in the possession of two experimentalists called [[Alice and Bob]]. The rules of quantum theory give predictions for the outcomes of measurements performed by the experimentalists. Alice, for example, will measure her particle to be spin-up in an average of fifty percent of measurements. However, according to the Copenhagen interpretation, Alice's measurement causes the state of the two particles to [[Wave function collapse|collapse]], so that if Alice performs a measurement of spin in the z-direction, that is with respect to the basis <math>\{\left|0\right\rang_A, \left|1\right\rang_A\} </math>, then Bob's system will be left in one of the states <math>\{\left|0\right\rang_B, \left|1\right\rang_B\} </math>. Likewise, if Alice performs a measurement of spin in the x-direction, that is, with respect to the basis <math>\{\left|+\right\rang_A, \left|-\right\rang_A\} </math>, then Bob's system will be left in one of the states <math>\{\left|+\right\rang_B, \left|-\right\rang_B\} </math>. Schrödinger referred to this phenomenon as "[[Quantum steering|steering]]".<ref name="WISEMAN">{{cite journal | first1=H.M. |last1= Wiseman| first2=S.J. |last2= Jones| first3=A.C. |last3= Doherty| title= Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox| journal= Physical Review Letters | date = April 2007| volume = 98 |issue= 14|pages= 140402| doi=10.1103/physrevlett.98.140402|pmid= 17501251|bibcode= 2007PhRvL..98n0402W|arxiv= quant-ph/0612147|s2cid= 30078867}}</ref> This steering occurs in such a way that no signal can be sent by performing such a state update; quantum nonlocality cannot be used to send messages instantaneously and is therefore not in direct conflict with causality concerns in [[special relativity]].<ref name="NIELSEN"/>


In the Copenhagen view of this experiment, Alice's measurement—and particularly her measurement choice—have a direct effect on Bob's state. However, under the assumption of locality, actions on Alice's system do not affect the "true", or "ontic" state of Bob's system. We see that the ontic state of Bob's system must be compatible with one of the quantum states <math>\left|\uparrow\right\rang_B</math> or <math>\left|\downarrow\right\rang_B </math>, since Alice can make a measurement that concludes with one of those states being the quantum description of his system. At the same time, it must also be compatible with one of the quantum states <math>\left|\leftarrow\right\rang_B</math> or <math>\left|\rightarrow\right\rang_B </math> for the same reason. Therefore, the ontic state of Bob's system must be compatible with at least two quantum states; the quantum state is therefore not a complete descriptor of his system. Einstein, Podolsky and Rosen saw this as evidence of the incompleteness of the Copenhagen interpretation of quantum theory, since the wavefunction is explicitly not a complete description of a quantum system under this assumption of locality. Their paper concludes:<ref name="epr" />
In the Copenhagen view of this experiment, Alice's measurement—and particularly her measurement choice—has a direct effect on Bob's state. However, under the assumption of locality, actions on Alice's system do not affect the "true", or "ontic" state of Bob's system. We see that the ontic state of Bob's system must be compatible with one of the quantum states <math>\left|\uparrow\right\rang_B</math> or <math>\left|\downarrow\right\rang_B </math>, since Alice can make a measurement that concludes with one of those states being the quantum description of his system. At the same time, it must also be compatible with one of the quantum states <math>\left|\leftarrow\right\rang_B</math> or <math>\left|\rightarrow\right\rang_B </math> for the same reason. Therefore, the ontic state of Bob's system must be compatible with at least two quantum states; the quantum state is therefore not a complete descriptor of his system. Einstein, Podolsky and Rosen saw this as evidence of the incompleteness of the Copenhagen interpretation of quantum theory, since the wavefunction is explicitly not a complete description of a quantum system under this assumption of locality. Their paper concludes:<ref name="EPR"/>


{{quote|While we have thus shown that the wave function does not provide a complete description of the physical reality, we left open the question of whether or not such a description exists. We believe, however, that such a theory is possible.}}
{{quote|While we have thus shown that the wave function does not provide a complete description of the physical reality, we left open the question of whether or not such a description exists. We believe, however, that such a theory is possible. }}


Although various authors (most notably [[Niels Bohr]]) criticised the ambiguous terminology of the EPR paper,<ref name="bohr35">{{cite journal | last = Bohr| first = N | title = Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? |date=July 1935 | journal = [[Physical Review]] | volume = 48 | issue = 8 | pages = 696–702 | doi = 10.1103/PhysRev.48.696|bibcode = 1935PhRv...48..696B | url = http://cds.cern.ch/record/1060284}}</ref><ref>{{cite journal | last = Furry| first = W.H. | title = Remarks on Measurements in Quantum Theory |date=March 1936 | journal = [[Physical Review]] | volume = 49 | issue = 6 | pages = 476 | doi = 10.1103/PhysRev.49.476|bibcode = 1936PhRv...49..476F }}</ref> the thought experiment nevertheless generated a great deal of interest. Their notion of a "complete description" was later formalised by the suggestion of hidden variables that determine the statistics of measurement results, but to which an observer does not have access.<ref>von Neumann, J. (1932/1955). In ''Mathematische Grundlagen der Quantenmechanik'', Springer, Berlin, translated into English by Beyer, R.T., Princeton University Press, Princeton, cited by Baggott, J. (2004) ''Beyond Measure: Modern physics, philosophy, and the meaning of quantum theory'', Oxford University Press, Oxford, {{ISBN|0-19-852927-9}}, pages 144–145.</ref> [[De Broglie–Bohm theory|Bohmian mechanics]] provides such a completion of quantum mechanics, with introduction of hidden variables; however the theory is explicitly nonlocal.<ref>{{cite book |last1=Maudlin |first1=Tim |title=Quantum Non-Locality and Relativity : Metaphysical Intimations of Modern Physics. |date=2011 |publisher=John Wiley & Sons |isbn=9781444331264 |edition=3rd|page=111}}</ref> The interpretation therefore does not give an answer to Einstein's question, which was whether or not a complete description of quantum mechanics could be given in terms of ''local'' hidden variables in keeping with the [[Principle of locality|"Principle of Local Action"]].<ref>{{cite encyclopedia |last1=Fine |first1=Arthur |title=The Einstein-Podolsky-Rosen Argument in Quantum Theory |date=Winter 2017 |encyclopedia = The Stanford Encyclopedia of Philosophy |editor1-first=Edward N. |editor1-last=Zalta|publisher=Metaphysics Research Lab, Stanford University |url=https://plato.stanford.edu/archives/win2017/entries/qt-epr/ |accessdate=6 December 2018}}</ref>
Although various authors (most notably [[Niels Bohr]]) criticised the ambiguous terminology of the EPR paper,<ref name="BOHR">{{cite journal | last = Bohr| first = N | title = Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? |date=July 1935 | journal = [[Physical Review]] | volume = 48 | issue = 8 | pages = 696–702 | doi = 10.1103/PhysRev.48.696|bibcode = 1935PhRv...48..696B | url = https://cds.cern.ch/record/1060284| doi-access = free}}</ref><ref name="FURRY">{{cite journal | last = Furry| first = W.H. | title = Remarks on Measurements in Quantum Theory |date=March 1936 | journal = [[Physical Review]] | volume = 49 | issue = 6 | pages = 476 | doi = 10.1103/PhysRev.49.476|bibcode = 1936PhRv...49..476F }}</ref> the thought experiment nevertheless generated a great deal of interest. Their notion of a "complete description" was later formalised by the suggestion of [[Hidden-variable theory|hidden variables]] that determine the statistics of measurement results, but to which an observer does not have access.<ref name="NEUMANN">von Neumann, J. (1932/1955). In ''Mathematische Grundlagen der Quantenmechanik'', Springer, Berlin, translated into English by Beyer, R.T., Princeton University Press, Princeton, cited by Baggott, J. (2004) ''Beyond Measure: Modern physics, philosophy, and the meaning of quantum theory'', Oxford University Press, Oxford, {{ISBN|0-19-852927-9}}, pages 144–145.</ref> [[De Broglie–Bohm theory|Bohmian mechanics]] provides such a completion of quantum mechanics, with the introduction of hidden variables; however the theory is explicitly nonlocal.<ref>{{cite book |last1=Maudlin |first1=Tim |title=Quantum Non-Locality and Relativity : Metaphysical Intimations of Modern Physics |date=2011 |publisher=John Wiley & Sons |isbn=9781444331264 |edition=3rd|page=111}}</ref> The interpretation therefore does not give an answer to Einstein's question, which was whether or not a complete description of quantum mechanics could be given in terms of local hidden variables in keeping with the "Principle of Local Action".<ref name="FINE">{{cite encyclopedia |last1=Fine |first1=Arthur |title=The Einstein-Podolsky-Rosen Argument in Quantum Theory |date=Winter 2017 |encyclopedia = The Stanford Encyclopedia of Philosophy |editor1-first=Edward N. |editor1-last=Zalta|publisher=Metaphysics Research Lab, Stanford University |url=https://plato.stanford.edu/archives/win2017/entries/qt-epr/ |access-date=6 December 2018}}</ref>


=== Probabilistic Nonlocality ===
=== Bell inequality ===
{{See also|Bell test experiments}}
{{See also|Bell's theorem|Bell test experiments}}
In 1964 [[John Stewart Bell|John Bell]] answered Einstein's question by showing that such local hidden variables can never reproduce the full range of statistical outcomes predicted by quantum theory.<ref name="bell64">{{cite journal | last = Bell| first = John | title = On the Einstein Podolsky Rosen paradox | journal = Physics | volume = 1 | issue = 3 | pages = 195–200 | year = 1964 | doi = 10.1103/PhysicsPhysiqueFizika.1.195 }}</ref> Bell showed that a local hidden variable hypothesis leads to [[Bell's theorem|restrictions]] on the strength of correlations of measurement results. If the Bell inequalities are violated experimentally as predicted by quantum mechanics, then reality cannot be described by local hidden variables and the mystery of quantum nonlocal causation remains. According to Bell:<ref name="bell64"/>


In 1964 [[John Stewart Bell|John Bell]] answered Einstein's question by showing that such local hidden variables can never reproduce the full range of statistical outcomes predicted by quantum theory.<ref name="BELL">{{cite journal | last = Bell| first = John | title = On the Einstein Podolsky Rosen paradox | journal = [[Physics Physique Физика]] | volume = 1 | issue = 3 | pages = 195–200 | year = 1964 | doi = 10.1103/PhysicsPhysiqueFizika.1.195 | doi-access = free }}</ref> Bell showed that a local hidden variable hypothesis leads to restrictions on the strength of correlations of measurement results. If the Bell inequalities are violated experimentally as predicted by quantum mechanics, then reality cannot be described by local hidden variables and the mystery of quantum nonlocal causation remains. However, Bell notes that the non-local hidden variable model of [[pilot wave theory|Bohm]] are different:<ref name="BELL"/>
{{quote|This [grossly nonlocal structure] is characteristic&nbsp;... of any such theory which reproduces exactly the quantum mechanical predictions.}}
{{quote|This [grossly nonlocal structure] is characteristic ... of any such theory which reproduces exactly the quantum mechanical predictions.}}
[[John Clauser|Clauser]], Horne, [[Abner Shimony|Shimony]] and Holt (CHSH) reformulated these inequalities in a manner that was more conducive to experimental testing (see [[CHSH inequality]]).<ref name="CHSH">{{cite journal | last1 = Clauser| first1 = John F. | last2 = Horne | first2 = Michael A. | last3 = Shimony | first3= Abner | last4= Holt | first4= Richard A. | title = Proposed Experiment to Test Local Hidden-Variable Theories |date=October 1969 | journal = [[Physical Review Letters]] | volume = 23 | issue = 15 | pages = 880–884 | doi = 10.1103/PhysRevLett.23.880|bibcode = 1969PhRvL..23..880C | s2cid = 18467053 | doi-access = free }}</ref>


In the scenario proposed by Bell (a Bell scenario), two experimentalists, Alice and Bob, conduct experiments in separate labs. At each run, Alice (Bob) conducts an experiment <math>x </math> <math> (y) </math> in her (his) lab, obtaining outcome <math>a</math> <math>(b) </math>. If Alice and Bob repeat their experiments several times, then they can estimate the probabilities <math>P(a,b|x,y) </math>, namely, the probability that Alice and Bob respectively observe the results <math>a, b</math> when they respectively conduct the experiments x,y. In the following, each such set of probabilities <math>\{P(a,b|x,y):a,b,x,y\}</math> will be denoted by just <math>P(a,b|x,y) </math>. In the quantum nonlocality slang, <math>P(a,b|x,y) </math> is termed a box.<ref name="BOXES">{{cite journal|last=Barrett| first= J.| author2= Linden, N.|author3= Massar, S.|author4= Pironio, S.|author5= Popescu, S.| author6= Roberts, D.|date= 2005| title=Non-local correlations as an information theoretic resource| journal= Physical Review A |volume=71 |issue=2| pages= 022101| doi =10.1103/PhysRevA.71.022101| bibcode= 2005PhRvA..71b2101B| arxiv= quant-ph/0404097| s2cid= 13373771}}</ref>
[[John Clauser|Clauser]], Horne, [[Abner Shimony|Shimony]] and Holt (CHSH) reformulated these inequalities in a manner that was more conducive to experimental testing (see [[CHSH inequality]]).<ref>{{cite journal | last1 = Clauser| first1 = John F. | last2 = Horne | first2 = Michael A. | last3 = Shimony | first3= Abner | last4= Holt | first4= Richard A. | title = Proposed Experiment to Test Local Hidden-Variable Theories |date=October 1969 | journal = [[Physical Review Letters]] | volume = 23 | issue = 15 | pages = 880–884 | doi = 10.1103/PhysRevLett.23.880|bibcode = 1969PhRvL..23..880C }}</ref> They proposed a scheme whereby two experimentalists, Alice and Bob, make separate measurements of [[photon polarization]] in two carefully chosen directions, and derived a simple inequality that is obeyed by all local hidden variable theories, but violated by certain measurements on quantum states.


Bell formalized the idea of a hidden variable by introducing the parameter ''λ'' to locally characterize measurement results on each system:<ref name="bell64"/> "It is a matter of indifference&nbsp;... whether ''λ'' denotes a single variable or a set&nbsp;... and whether the variables are discrete or continuous". However, it is equivalent (and more intuitive) to think of ''λ'' as a local "strategy" or "message" that occurs with some probability ''ρ(<math>\lambda</math>)'' when an entangled pair of states is created. EPR's criteria of local separability then stipulates that each local strategy defines the distributions of ''[[Independence (probability theory)|independent]]'' outcomes if Alice measures in direction ''A'' and Bob measures in direction ''B'':<ref name="bell64"/>
Bell formalized the idea of a hidden variable by introducing the parameter <math>\lambda </math> to locally characterize measurement results on each system:<ref name="BELL"/> "It is a matter of indifference ... whether λ denotes a single variable or a set ... and whether the variables are discrete or continuous". However, it is equivalent (and more intuitive) to think of <math>\lambda </math> as a local "strategy" or "message" that occurs with some probability <math>\rho(\lambda) </math> when Alice and Bob reboot their experimental setup. Bell's assumption of local causality then stipulates that each local strategy defines the distributions of independent outcomes if Alice conducts experiment x and Bob conducts experiment {{nowrap|<math>y </math>:}}


:<math> P \left ( {a, b}{|}{A, B, \lambda } \right ) = P \left ( {a}{|}{A, \lambda } \right ) P \left ( {b}{|}{B, \lambda } \right )</math>
<math display="block"> P(a,b|x,y,\lambda_A,\lambda_B)=P_A(a|x,\lambda_A) P_B(b|y,\lambda_B)</math>


Here <math>P_A(a|x, \lambda_A)</math> (<math>P_B(b|y, \lambda_B)</math>) denotes the probability that Alice (Bob) obtains the result <math>a</math> <math> (b) </math> when she (he) conducts experiment <math>x</math> <math> (y) </math> and the local variable describing her (his) experiment has value <math>\lambda_A</math> (<math>\lambda_B</math>).
where, for instance, <math>\scriptstyle P \left ( {a}{|}{A, \lambda } \right )</math> denotes the probability of Alice getting the outcome ''a'' given ''λ'', and that she measured ''A''.


Suppose that ''λ'' can take values from some set <math>\lambda_i</math>, where 1 ≤ i ≤ k. If each <math>\lambda_i</math> has an associated probability ρ(<math>\lambda_i</math>) of being selected (such that the probabilities sum to unity) we can average over this distribution to obtain a formula for the joint probability of each measurement result:
Suppose that <math>\lambda_A,\lambda_B</math> can take values from some set <math>\Lambda</math>. If each pair of values <math>\lambda_A,\lambda_B\in\Lambda</math> has an associated probability <math>\rho(\lambda_A,\lambda_B)</math> of being selected (shared randomness is allowed, i.e., <math>\lambda_A,\lambda_B</math> can be correlated), then one can average over this distribution to obtain a formula for the joint probability of each measurement result:


<math display="block">P(a,b|x,y) =\sum_{\lambda_A,\lambda_B\in\Lambda}\rho(\lambda_A,\lambda_B)P_A(a|x,\lambda_A) P_B(b|y,\lambda_B) </math>
:<math> P \left ( {a, b}{|}{A, B} \right ) = \sum_{i=1}^k P \left ( {a, b} {|} {A, B, \lambda_i } \right ) \rho \left (\lambda_i \right ) \,.</math>


A box admitting such a decomposition is called a Bell local or a classical box. Fixing the number of possible values which <math>a,b,x,y</math> can each take, one can represent each box <math>P(a,b|x,y) </math> as a finite vector with entries <math>\left(P(a,b|x,y)\right)_{a,b,x,y}</math>. In that representation, the set of all classical boxes forms a [[convex polytope]].
In the CHSH scheme, the measurement result for the polarization of a photon can take one of two values (informally, whether the photon is polarized in that direction, or in the orthogonal direction). We encode this by allowing ''a'' and ''b'' to take on values ±1. For arbitrary measurements ''A'' and ''B'', their correlator ''E''(''A'', ''B'') is then defined as
In the Bell scenario studied by CHSH, where <math>a,b,x,y</math> can take values within <math>{0,1}</math>, any Bell local box <math>P(a,b|x,y)</math> must satisfy the CHSH inequality:


:<math> E \left ( {A, B} \right ) = \sum_{a,b} ab P\left ( {a, b}{|}{A, B} \right ) \,.</math>
<math display="block">S_{\rm CHSH}\equiv E(0,0)+E(1,0)+E(0,1)-E(1,1)\leq 2,</math>


where
Note that the product ''ab'' is equal to 1 if Alice and Bob get the same outcome, and −1 if they get different outcomes. The correlator ''E''(''A'',''B'') can therefore be seen as the [[Expected value|expectation]] that Alice's and Bob's outcomes are ''correlated''. In the case that Alice chooses from one of two measurements <math>A_0</math> or <math>A_1</math>, and Bob chooses from <math>B_0</math> or <math>B_1</math>, the CHSH value for this [[joint probability distribution]] is defined as
<math display="block">E(x,y)\equiv\sum_{a,b=0,1}(-1)^{a+b}P(a,b|x,y).</math>


The above considerations apply to model a quantum experiment. Consider two parties conducting local polarization measurements on a bipartite photonic state. The measurement result for the polarization of a photon can take one of two values (informally, whether the photon is polarized in that direction, or in the orthogonal direction). If each party is allowed to choose between just two different polarization directions, the experiment fits within the CHSH scenario. As noted by CHSH, there exist a quantum state and polarization directions which generate a box <math>P(a,b|x,y)</math> with <math>S_{\rm CHSH}</math> equal to <math>2\sqrt{2}\approx 2.828</math>. This demonstrates an explicit way in which a theory with ontological states that are local, with local measurements and only local actions cannot match the probabilistic predictions of quantum theory, disproving Einstein's hypothesis. Experimentalists such as [[Alain Aspect]] have verified the quantum violation of the CHSH inequality <ref name="ASPECT"/> as well as other formulations of Bell's inequality, to invalidate the local hidden variables hypothesis and confirm that reality is indeed nonlocal in the EPR sense.
:<math> S_{CHSH} = E \left ( {A_0, B_0} \right ) + E \left ( {A_0, B_1} \right ) + E \left ( {A_1, B_0} \right ) - E \left ( {A_1, B_1} \right ) \,.</math>


==Possibilistic nonlocality==
Compare this with the expression <math>\scriptstyle x \oplus y = XY</math> and the discussion in the above [[Quantum nonlocality#Two-way events|example]]. The CHSH value <math>S_{CHSH}</math> includes a ''negative'' contribution of the correlator whenever <math>A_1</math> and <math>B_1</math> are chosen (<math>x=y</math> when <math>XY=1</math>), and a ''positive'' contribution in all other cases (<math>x</math>≠<math>y</math> when <math>XY=0</math>). If the joint probability distribution can be described with local strategies as above, it can be shown that the correlation function always obeys the following CHSH inequality:<ref name =nielchuang />


Bell's demonstration is probabilistic in the sense that it shows that the precise probabilities predicted by quantum mechanics for some entangled scenarios cannot be met by a local hidden variable theory. (For short, here and henceforth "local theory" means "local hidden variables theory".) However, quantum mechanics permits an even stronger violation of local theories: a possibilistic one, in which local theories cannot even agree with quantum mechanics on which events are possible or impossible in an entangled scenario. The first proof of this kind was due to [[Daniel Greenberger]], [[Michael Horne (physicist)|Michael Horne]], and [[Anton Zeilinger]] in 1993<ref name="GHZ">{{citation |author1=Daniel M. Greenberger |author2=Michael A. Horne |author3=Anton Zeilinger |year=2007 |title=Going beyond Bell's Theorem |arxiv=0712.0921|bibcode = 2007arXiv0712.0921G }}</ref> The state involved is often called the [[Greenberger-Horne-Zeilinger state|GHZ state]].
:<math> -2 \le S_{CHSH} \le 2 \,.</math>


In 1993, [[Lucien Hardy]] demonstrated a logical proof of quantum nonlocality that, like the GHZ proof is a possibilistic proof.<ref name="HARDY">{{cite journal | last = Hardy| first = Lucien | title = Nonlocality for two particles without inequalities for almost all entangled states |date=1993 | journal = [[Physical Review Letters]] | volume = 71 | issue =11 | pages = 1665–1668|bibcode = 1993PhRvL..71.1665H |doi = 10.1103/PhysRevLett.71.1665 | pmid=10054467| s2cid = 11839894 }}</ref><ref>{{cite journal| author1=Braun, D.| author2=Choi, M.-S.|journal= Physical Review A|volume=78|issue=3 |pages=032114 |year=2008|title= Hardy's test versus the Clauser-Horne-Shimony-Holt test of quantum nonlocality: Fundamental and practical aspects |doi=10.1103/physreva.78.032114 |arxiv=0808.0052 |bibcode=2008PhRvA..78c2114B |s2cid=119267461}}</ref><ref>{{cite journal| last=Nikolić|first=Hrvoje| journal=Foundations of Physics |title=Quantum Mechanics: Myths and Facts |year=2007|pages=1563–1611|volume=37 |issue=11 |doi=10.1007/s10701-007-9176-y| arxiv=quant-ph/0609163| bibcode=2007FoPh...37.1563N | s2cid=9613836}}</ref> It starts with the observation that the state <math>\left| \psi\right\rangle </math> defined below can be written in a few suggestive ways:
However, if instead of local hidden variables we adopt the rules of quantum theory, it is possible to construct an entangled pair of particles (one each for Alice and Bob) and a set of measurements <math>\scriptstyle A_0, A_1, B_0, B_1</math> such that <math>\scriptstyle S_{CHSH} \;=\; 2\sqrt{2}</math>. This demonstrates an explicit way in which a theory with ontological states that are local, with local measurements and only local actions cannot match the probabilistic predictions of quantum theory, disproving Einstein's hypothesis. Experimentalists such as [[Alain Aspect]] have verified the quantum violation of the CHSH inequality,<ref name="aspect" /> as well as other formulations of Bell's inequality, to invalidate the local hidden variables hypothesis and confirm that reality is indeed nonlocal in the EPR sense.
<math display="block">\left|\psi\right\rangle=\frac{1}{\sqrt{3}}\left(\left|00\right\rangle+\left|01\right\rangle+\left|10\right\rangle\right)=

===Possibilistic Nonlocality===
The demonstration of nonlocality due to Bell is ''probabilistic'' in the sense that it shows that the precise probabilities predicted by quantum mechanics for some entangled scenarios cannot be met by a local theory. (For short, here and henceforth "local theory" means "local hidden variables theory".) However, quantum mechanics permits an even stronger violation of local theories: a ''possibilistic'' one, in which we find that local theories cannot agree with quantum mechanics on which events are possible or impossible in an entangled scenario. The first proof of this kind was due to [[Daniel Greenberger|Greenberger]], Horne and [[Anton Zeilinger|Zeilinger]] in 1993.<ref>{{citation |author1=Daniel M. Greenberger |author2=Michael A. Horne |author3=Anton Zeilinger |year=2007 |title=Going beyond Bell's Theorem |arxiv=0712.0921|bibcode = 2007arXiv0712.0921G }}</ref> The state involved is often called the [[Greenberger-Horne-Zeilinger state|GHZ state]].

In 1993, [[Lucien Hardy]] demonstrated a logical proof of quantum nonlocality that, like the GHZ proof is a ''possibilistic'' proof.<ref>{{cite journal | last = Hardy| first = Lucien | title = Nonlocality for two particles without inequalities for almost all entangled states |date=1993 | journal = [[Physical Review Letters]] | volume = 71 | issue =11 | pages = 1665–1668|bibcode = 1993PhRvL..71.1665H |doi = 10.1103/PhysRevLett.71.1665 | pmid=10054467}}</ref><ref>{{cite journal| author1=Braun, D.|author2=Choi, M.-S.|journal=Phys. Rev. A|volume=78|issue=3|pages=032114|year=2008|title= Hardy's test versus the Clauser-Horne-Shimony-Holt test of quantum nonlocality: Fundamental and practical aspects|doi=10.1103/physreva.78.032114|arxiv=0808.0052|bibcode=2008PhRvA..78c2114B}}</ref><ref>{{cite journal|last=Nikolić|first=Hrvoje|journal=Foundations of Physics|title=Quantum Mechanics: Myths and Facts|year=2007|pages=1563–1611|volume=37|issue=11|doi=10.1007/s10701-007-9176-y|arxiv=quant-ph/0609163|bibcode=2007FoPh...37.1563N}}</ref> We note that the same state <math>\left|\psi\right\rangle</math> defined below can be written in a few suggestive ways:
:<math>\left|\psi\right\rangle=\frac{1}{\sqrt{3}}\left(\left|00\right\rangle+\left|01\right\rangle+\left|10\right\rangle\right)=
\frac{1}\sqrt{3}\left(\sqrt{2}\left|+0\right\rangle+\frac{1}{\sqrt{2}}\left(\left|+1\right\rangle+\left|-1\right\rangle\right)\right)=
\frac{1}\sqrt{3}\left(\sqrt{2}\left|+0\right\rangle+\frac{1}{\sqrt{2}}\left(\left|+1\right\rangle+\left|-1\right\rangle\right)\right)=
\frac{1}\sqrt{3}\left(\sqrt{2}\left|0+\right\rangle+\frac{1}{\sqrt{2}}\left(\left|1+\right\rangle+\left|1-\right\rangle\right)\right)</math>
\frac{1}\sqrt{3}\left(\sqrt{2}\left|0+\right\rangle+\frac{1}{\sqrt{2}}\left(\left|1+\right\rangle+\left|1-\right\rangle\right)\right)</math>
where, as above, <math>|\pm\rangle=\tfrac{1}{\sqrt{2}}(\left|0\right\rangle\pm\left|1\right\rangle)</math>.
where, as above, <math>|\pm\rangle=\tfrac{1}{\sqrt{2}}(\left|0\right\rangle\pm\left|1\right\rangle)</math>.


The experiment consists of this entangled state being shared between two experimenters, each of whom has the ability to measure either with respect to the basis <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math> or <math>\{\left|+\right\rangle,\left|-\right\rangle\}</math>. We see that if they each measure with respect to <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math>, then they never see the outcome <math>\left|11\right\rangle</math>. If one measures with respect to <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math> and the other <math>\{\left|+\right\rangle,\left|-\right\rangle\}</math>, they never see the outcomes <math>\left|-0\right\rangle,</math> <math>\left|0-\right\rangle.</math> However, sometimes they see the outcome <math>\left|--\right\rangle</math> when measuring with respect to <math>\{\left|+\right\rangle,\left|-\right\rangle\}</math>, since <math>\langle--|\psi\rangle = -\tfrac1{2\sqrt3} \ne 0.</math>
The experiment consists of this entangled state being shared between two experimenters, each of whom has the ability to measure either with respect to the basis <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math> or <math>\{\left|+\right\rangle,\left|-\right\rangle\}</math>. We see that if they each measure with respect to <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math>, then they never see the outcome <math>\left|11\right\rangle</math>. If one measures with respect to <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math> and the other <math>\{\left|+\right\rangle,\left|-\right\rangle\}</math>, they never see the outcomes <math>\left|-0\right\rangle,</math> <math>\left|0-\right\rangle.</math> However, sometimes they see the outcome <math>\left|--\right\rangle</math> when measuring with respect to <math>\{\left|+\right\rangle,\left|-\right\rangle\}</math>, since <math>\langle--|\psi\rangle = -\tfrac{1}{2\sqrt3} \ne 0.</math>


This leads us to the paradox: having the outcome <math>|--\rangle</math> we conclude that if one of the experimenters had measured with respect to the <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math> basis instead, the outcome must have been <math>|{-}1\rangle</math> or <math>|1-\rangle</math>, since <math>|{-}0\rangle</math> and <math>|0-\rangle</math> are impossible. But then, if they had both measured with respect to the <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math> basis, by locality the result must have been <math>\left|11\right\rangle</math>, which is also impossible.
This leads to the paradox: having the outcome <math>|--\rangle</math> we conclude that if one of the experimenters had measured with respect to the <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math> basis instead, the outcome must have been <math>|{-}1\rangle</math> or <math>|1-\rangle</math>, since <math>|{-}0\rangle</math> and <math>|0-\rangle</math> are impossible. But then, if they had both measured with respect to the <math>\{\left|0\right\rangle,\left|1\right\rangle\}</math> basis, by locality the result must have been <math>\left|11\right\rangle</math>, which is also impossible.


==Nonlocal hidden variable models with a finite propagation speed==
==Differences between nonlocality and entanglement==
The work of Bancal et al.<ref name="BANCAL">{{cite journal|last= Bancal|first= Jean-Daniel | author2= Pironio, Stefano| author3= Acin, Antonio|author4= Liang, Yeong-Cherng|author5= Scarani, Valerio|author6= Gisin, Nicolas| title=Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling|journal= Nature Physics|volume= 8|issue= 867|pages= 867–870 |date =2012|doi= 10.1038/nphys2460|bibcode= 2012NatPh...8..867B |arxiv= 1110.3795 |s2cid= 13922531 }}</ref> generalizes Bell's result by proving that correlations achievable in quantum theory are also incompatible with a large class of superluminal hidden variable models. In this framework, faster-than-light signaling is precluded. However, the choice of settings of one party can influence hidden variables at another party's distant location, if there is enough time for a superluminal influence (of finite, but otherwise unknown speed) to propagate from one point to the other. In this scenario, any bipartite experiment revealing Bell nonlocality can just provide lower bounds on the hidden influence's propagation speed. Quantum experiments with three or more parties can, nonetheless, disprove all such non-local hidden variable models.<ref name="BANCAL"/>

==Analogs of Bell’s theorem in more complicated causal structures==
[[Image:SimpleBayesNetNodes.svg|thumb|right|A simple Bayesian network. Rain influences whether the sprinkler is activated, and both rain and the sprinkler influence whether the grass is wet.]]

The random variables measured in a general experiment can depend on each other in complicated ways. In the field of causal inference, such dependencies are represented via [[Bayesian network]]s: directed acyclic graphs where each node represents a variable and an edge from a variable to another signifies that the former influences the latter and not otherwise, see the figure.
In a standard bipartite Bell experiment, Alice's (Bob's) setting <math>x</math> (<math>y</math>), together with her (his) local variable <math>\lambda_A</math> (<math>\lambda_B</math>), influence her (his) local outcome <math>a</math> (<math>b</math>). Bell's theorem can thus be interpreted as a separation between the quantum and classical predictions in a type of causal structures with just one hidden node <math>(\lambda_A,\lambda_B)</math>. Similar separations have been established in other types of causal structures.<ref name="CAUSAL">{{cite journal|first=Tobias|last= Fritz|title= Beyond Bell's Theorem: Correlation Scenarios|journal= New J. Phys. |volume=14|issue= 10|pages= 103001|year= 2012|doi= 10.1088/1367-2630/14/10/103001|bibcode= 2012NJPh...14j3001F|arxiv= 1206.5115|s2cid= 4847110}}</ref> The characterization of the boundaries for classical correlations in such extended Bell scenarios is challenging, but there exist complete practical computational methods to achieve it.<ref name="INFLATION">{{cite journal|first=Elie|last= Wolfe|author2-link=Robert Spekkens|author2= Spekkens, R. W. | author3= Fritz, T| title=The Inflation Technique for Causal Inference with Latent Variables| journal=Causal Inference |volume=7|issue=2|date= 2019| doi=10.1515/jci-2017-0020|arxiv=1609.00672|s2cid= 52476882}}</ref><ref name="INFLATION2">{{cite journal|first=Miguel|last= Navascués|author2= Wolfe, Elie| title=The Inflation Technique Completely Solves the Causal Compatibility Problem|journal= Journal of Causal Inference| arxiv= 1707.06476|year= 2020|volume= 8|pages= 70–91|doi= 10.1515/jci-2018-0008|s2cid= 155100141}}</ref>

==Entanglement and nonlocality==
{{See also|Quantum entanglement}}
{{See also|Quantum entanglement}}
Quantum nonlocality is sometimes understood as being equivalent to entanglement. However, this is not the case. Quantum entanglement can be defined only within the formalism of quantum mechanics, i.e., it is a model-dependent property. In contrast, nonlocality refers to the impossibility of a description of observed statistics in terms of a local hidden variable model, so it is independent of the physical model used to describe the experiment.

It is true that for any pure entangled state there exists a choice of measurements that produce Bell nonlocal correlations, but the situation is more complex for mixed states. While any Bell nonlocal state must be entangled, there exist (mixed) entangled states which do not produce Bell nonlocal correlations<ref name="WERNER">{{cite journal|last=Werner| first= R.F.| date=1989| title=Quantum States with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model|journal= Physical Review A|volume= 40|issue= 8|pages= 4277–4281|doi=10.1103/PhysRevA.40.4277| pmid= 9902666| bibcode= 1989PhRvA..40.4277W}}</ref> (although, operating on several copies of some of such states,<ref name="PALAZUELOS">{{cite journal|first=Carlos|last= Palazuelos|title= Super-activation of quantum non-locality|journal= Physical Review Letters|volume= 109|issue= 19|pages= 190401|year= 2012|doi= 10.1103/PhysRevLett.109.190401|pmid= 23215363|bibcode= 2012PhRvL.109s0401P|arxiv= 1205.3118|s2cid= 4613963}}</ref> or carrying out local post-selections,<ref name="POPESCU">{{cite journal|first=Sandu|last= Popescu|title= Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality| journal=Physical Review Letters| volume=74|issue= 14|pages= 2619–2622|year= 1995|doi= 10.1103/PhysRevLett.74.2619|pmid= 10057976|bibcode= 1995PhRvL..74.2619P|arxiv= quant-ph/9502005|s2cid= 35478562}}</ref> it is possible to witness nonlocal effects). Moreover, while there are [[Quantum catalyst|catalysts]] for entanglement,<ref>{{Cite journal|last1=Jonathan|first1=Daniel|last2=Plenio|first2=Martin B.|date=1999-10-25|title=Entanglement-Assisted Local Manipulation of Pure Quantum States|url=https://link.aps.org/doi/10.1103/PhysRevLett.83.3566|journal=Physical Review Letters|language=en|volume=83|issue=17|pages=3566–3569|arxiv=quant-ph/9905071|doi=10.1103/PhysRevLett.83.3566|bibcode=1999PhRvL..83.3566J|hdl=10044/1/245|s2cid=392419|issn=0031-9007}}</ref> there are none for nonlocality.<ref>{{Cite journal|last=Karvonen|first=Martti|date=2021-10-13|title=Neither Contextuality nor Nonlocality Admits Catalysts|url=https://link.aps.org/doi/10.1103/PhysRevLett.127.160402|journal=Physical Review Letters|language=en|volume=127|issue=16|pages=160402|arxiv=2102.07637|doi=10.1103/PhysRevLett.127.160402|pmid=34723585|bibcode=2021PhRvL.127p0402K|s2cid=231924967|issn=0031-9007}}</ref> Finally, reasonably simple examples of Bell inequalities have been found for which the quantum state giving the largest violation is never a maximally entangled state, showing that entanglement is, in some sense, not even proportional to nonlocality.<ref name="JUNGE">{{cite journal |first=Marius|last= Junge| author2= Palazuelos, C| year= 2011| title=Large violation of Bell inequalities with low entanglement|journal= Communications in Mathematical Physics| volume= 306|issue= 3|pages= 695–746|doi=10.1007/s00220-011-1296-8|bibcode= 2011CMaPh.306..695J|arxiv= 1007.3043|s2cid= 673737}}</ref><ref name="VIDICK">{{Cite journal| author1 = Thomas Vidick | author2 = Stephanie Wehner |title = More Non-locality with less Entanglement | journal = Physical Review A | volume = 83 | issue = 5 | pages = 052310 |arxiv=1011.5206 | year = 2011| doi = 10.1103/PhysRevA.83.052310 |bibcode = 2011PhRvA..83e2310V | s2cid = 6589783 }}</ref><ref name="LIANG">{{Cite journal| author1 = Yeong-Cherng Liang | author2 = Tamás Vértesi | author3= Nicolas Brunner |title = Semi-device-independent bounds on entanglement | journal = Physical Review A | volume = 83 | issue = 2 | pages = 022108 |arxiv=1012.1513 | year = 2010| doi = 10.1103/PhysRevA.83.022108 |bibcode = 2011PhRvA..83b2108L | s2cid = 73571969 | url = http://archive-ouverte.unige.ch/unige:36417 }}</ref>


==Quantum correlations==
In the media and popular science, quantum nonlocality is often portrayed as being equivalent to entanglement. While it is true that a pure bipartite quantum state must be entangled in order for it to produce nonlocal correlations, there exist entangled (mixed) states which do not produce such correlations,<ref name=werner1989/> and there exist non-entangled (namely, separable) states that do produce some type of non-local behavior.<ref name=nonentangled>{{cite journal | last = Bennett | first = C.H. |author2=DiVincenzo, D.P. |author3=Fuchs, C.A. |author4=Mor, T. |author5=Rains, E. |author6=Shor, P.W. |author7=Smolin, J.A. |author8=Wootters, W.K. | title = Quantum nonlocality without entanglement | journal = [[Physical Review A]] | volume = 59| pages = 1070–1091 | year = 1999 | doi = 10.1103/PhysRevA.59.1070 | issue = 2 |arxiv = quant-ph/9804053 |bibcode=1999PhRvA..59.1070B }}</ref> For the former, a well-known example is constituted by a subset of [[Werner state]]s that are entangled but whose correlations can always be described using local hidden variables. On the other hand, reasonably simple examples of Bell inequalities have been found for which the quantum state giving the largest violation is ''never'' a [[maximally entangled state]], showing that entanglement is, in some sense, not even proportional to nonlocality.<ref>{{Cite journal| author1 = Marius Junge | author2 = Carlos Palazuelos |title = Large violation of Bell inequalities with low entanglement | journal = Communications in Mathematical Physics | volume = 306 | issue = 3 | pages = 695–746 |arxiv=1007.3043 | year = 2011| doi = 10.1007/s00220-011-1296-8 |bibcode = 2011CMaPh.306..695J |citeseerx=10.1.1.752.4896}}</ref><ref>{{Cite journal| author1 = Thomas Vidick | author2 = Stephanie Wehner |title = More Non-locality with less Entanglement | journal = Physical Review A | volume = 83 | issue = 5 | pages = 052310 |arxiv=1011.5206 | year = 2011| doi = 10.1103/PhysRevA.83.052310 |bibcode = 2011PhRvA..83e2310V }}</ref><ref>{{Cite journal| author1 = Yeong-Cherng Liang | author2 = Tamas Vertesi | author3= Nicolas Brunner |title = Semi-device-independent bounds on entanglement | journal = Physical Review A | volume = 83 | issue = 2 | pages = 022108 |arxiv=1012.1513 | year = 2010| doi = 10.1103/PhysRevA.83.022108 |bibcode = 2011PhRvA..83b2108L | url = http://archive-ouverte.unige.ch/unige:36417 }}</ref>


As shown, the statistics achievable by two or more parties conducting experiments in a classical system are constrained in a non-trivial way. Analogously, the statistics achievable by separate observers in a quantum theory also happen to be restricted. The first derivation of a non-trivial statistical limit on the set of quantum correlations, due to [[Boris Tsirelson|B. Tsirelson]],<ref name="TSIRELBOUND">{{cite journal|first=BS|last=Cirel'son| year=1980|title= Quantum generalizations of Bell's inequality|journal= Letters in Mathematical Physics |volume= 4 |issue=2|pages= 93–100| doi=10.1007/bf00417500|bibcode=1980LMaPh...4...93C|s2cid=120680226}}</ref> is known as [[Tsirelson's bound]].
In short, entanglement of a two-party state is neither necessary nor sufficient for that state to be nonlocal. It is important to recognise that entanglement is more commonly viewed as an algebraic concept, noted for being a precedent to nonlocality as well as [[quantum teleportation]] and [[superdense coding]], whereas nonlocality is interpreted according to experimental statistics and is much more involved with the [[Quantum foundations|foundations]] and [[Interpretations of quantum mechanics|interpretations]] of quantum mechanics.
Consider the CHSH Bell scenario detailed before, but this time assume that, in their experiments, Alice and Bob are preparing and measuring quantum systems. In that case, the CHSH parameter can be shown to be bounded by


:<math>-2\sqrt{2}\leq \mathrm{CHSH}\leq 2\sqrt{2}.</math>
==Superquantum nonlocality==
Whilst the CHSH inequality gives restrictions on the CHSH value attainable by local hidden variable theories, the rules of quantum theory do not allow us to violate [[Tsirelson's bound]] of <math>\scriptstyle 2 \sqrt{2}</math>, even if we exploit measurements of entangled particles.<ref>{{cite journal | last = Cirel'son| first = B. S. | title = Quantum generalizations of Bell's inequality | journal = [[Letters in Mathematical Physics]] | volume = 4| issue = 2| pages = 93–100 | year = 1980 | doi = 10.1007/BF00417500 |bibcode = 1980LMaPh...4...93C }}</ref> The question remained whether this was the maximum CHSH value that can be attained without explicitly allowing instantaneous signaling. In 1994 two physicists, [[Sandu Popescu]] and Daniel Rohrlich, formulated an explicit set of correlated measurements that respect the "non-signalling" principle, yet give <math>S_{CHSH} = 4</math>: the algebraic maximum.<ref name="popescu1994">{{cite journal | last = Popescu | first = Sandu |author2=Rohrlich, Daniel | title = Nonlocality as an axiom | journal = [[Foundations of Physics]] | volume = 24| pages = 379–385 | year = 1994 | doi = 10.1007/BF02058098 | issue = 3 |bibcode = 1994FoPh...24..379P |citeseerx=10.1.1.508.4193}}</ref> The maximal violation of CHSH consistent with no signalling was also found, earlier, by Rastall and Khalfin and Tsirelson.<ref>{{cite journal | last = Rastall | first = Peter | title = Locality, Bell's theorem, and quantum mechanics | journal = Foundations of Physics | volume = 15 | issue = 9 | pages = 963–972 | year = 1985 | doi=10.1007/bf00739036| bibcode = 1985FoPh...15..963R }}</ref><ref>{{cite conference |title=Quantum and quasi-classical analogs of Bell inequalities |author=Khalfin, L.A. |author2= Tsirelson, B.S. |year=1985 |conference=Symposium on the Foundations of Modern Physics |editor=Lahti|display-editors=etal|publisher=World Sci. Publ. |location= |pages=441–460 }}</ref> This demonstrated that there exist formulatable theories that are "non-signalling", yet drastically violate the joint probability constraints of quantum theory. The attempt to understand what distinguishes quantum theory from such general theories motivated an abstraction from physical measurements of nonlocality, to the study of ''nonlocal boxes''.<ref name=nonlocalbox>{{cite journal | last = Barrett| first = J. |author2=Linden, N. |author3=Massar, S. |author4=Pironio, S. |author5=Popescu, S. |author6=Roberts, D. | title = Non-local correlations as an information theoretic resource | journal = [[Physical Review A]] | volume = 71| pages = 022101 | year = 2005 | doi = 10.1103/PhysRevA.71.022101 | issue = 2 |arxiv = quant-ph/0404097 |bibcode = 2005PhRvA..71b2101B }}</ref>


===The sets of quantum correlations and Tsirelson’s problem===
Nonlocal boxes generalize the concept of experimentalists making joint measurements from separate locations. As in the discussion above, the choice of measurement is encoded by the input to the box. A two-party nonlocal box takes an input ''A'' from Alice and an input ''B'' from Bob, and outputs two values ''a'' and ''b'' for Alice and Bob respectively and separately, where ''a, b, A'' and ''B'' take values from some finite alphabet (normally <math>\{0,1\}</math>). The box is characterized by the probability of outputting pair ''a, b'', given the inputs ''A, B''. This probability is denoted <math>\scriptstyle P \left ( { {a, b}{|}{A, B} } \right )</math> and obeys the normal [[Probability|probabilistic]] conditions of positivity and normalisation:<ref name="nonlocalbox"/>
Mathematically, a box <math>P(a,b|x,y)</math> admits a quantum realization if and only if there exists a pair of Hilbert spaces <math>H_A, H_B</math>, a normalized vector <math>\left|\psi\right\rangle\in H_A\otimes H_B</math> and projection operators <math>E^x_a:H_A\to H_A, F^y_b:H_B\to H_B</math> such that


# For all <math>x,y</math>, the sets <math>\{E^x_a\}_a,\{F^y_b\}_b</math> represent complete measurements. Namely, <math>\sum_aE^x_a={\mathbb I}_A, \sum_bF^y_b={\mathbb I}_B</math>.
:<math>P \left ( { {a, b}{|}{A, B} } \right ) \ge 0 \quad \forall {a,b,A,B}</math>
# <math>P(a,b|x,y) =\left\langle\psi\right|E^x_a\otimes F^y_b\left|\psi\right\rangle</math>, for all <math>a,b,x,y</math>.


In the following, the set of such boxes will be called <math>Q</math>. Contrary to the classical set of correlations, when viewed in probability space, <math>Q</math> is not a polytope. On the contrary, it contains both straight and curved boundaries.<ref name = TLM&RIGIDITY>{{cite journal|year=1987|first= B.S.|last= Tsirel'son|title=Quantum analogues of the Bell inequalities. The case of two spatially separated domains| journal= Journal of Soviet Mathematics|volume= 36|issue=4|pages= 557–570|doi= 10.1007/BF01663472|s2cid= 119363229|doi-access= free}}</ref> In addition, <math>Q</math> is not closed:<ref name= SLOFSTRA>{{cite arXiv|first=William|last= Slofstra|title= The set of quantum correlations is not closed| eprint= 1703.08618|class= quant-ph|year= 2017}}</ref> this means that there exist boxes <math>P(a,b|x,y)</math> which can be arbitrarily well approximated by quantum systems but are themselves not quantum.
and


In the above definition, the space-like separation of the two parties conducting the Bell experiment was modeled by imposing that their associated operator algebras act on different factors <math>H_A, H_B</math> of the overall Hilbert space <math>H=H_A\otimes H_B</math> describing the experiment. Alternatively, one could model space-like separation by imposing that these two algebras commute. This leads to a different definition:
:<math>\sum_{a,b} P \left ( { {a, b}{|}{A, B} } \right ) = 1 \quad \forall {A,B}</math>


<math>P(a,b|x,y)</math> admits a field quantum realization if and only if there exists a Hilbert space <math>H</math>, a normalized vector <math>\left|\psi\right\rangle\in H</math> and projection operators <math>E^x_a:H\to H, F^y_b:H\to H</math> such that
A box is ''local'', or ''admits a local hidden variable model'', if its output probabilities can be characterized in the following way:<ref name=werner1989>{{cite journal | last = Werner| first = R.F. | title = Quantum States with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model | journal = [[Physical Review A]] | volume = 40| pages = 4277–4281 | year = 1989 |doi=10.1103/PhysRevA.40.4277|bibcode = 1989PhRvA..40.4277W | pmid=9902666 | issue=8}}</ref>


# For all <math>x,y</math>, the sets <math>\{E^x_a\}_a,\{F^y_b\}_b</math> represent complete measurements. Namely, <math>\sum_aE^x_a={\mathbb I}, \sum_bF^y_b={\mathbb I} </math>.
:<math>P \left ( { {a,b}{|}{A,B} } \right ) = \sum_{\lambda} p(\lambda) \; P \left ( { {a}{|}{A,\lambda} } \right ) \; P \left ( { {b}{|}{B,\lambda} } \right )</math>
# <math>P(a,b|x,y) =\left\langle\psi\right|E^x_a F^y_b\left|\psi\right\rangle</math>, for all <math>a,b,x,y</math>.
# <math>[E^x_a, F^y_b]=0</math>, for all <math> a,b,x,y</math>.


Call <math>Q_c</math> the set of all such correlations <math>P(a,b|x,y)</math>.
where <math>\scriptstyle P \left ( { {a}{|}{A,\lambda} } \right )</math> and <math>\scriptstyle P \left ( { {b}{|}{B,\lambda} } \right )</math> describe single input/output probabilities at Alice's or Bob's system alone, and the value of <math>\lambda</math> is chosen at random according to some fixed probability distribution given by <math>p(\lambda)</math>. Intuitively, <math>\lambda</math> corresponds to a hidden variable, or to a shared randomness between Alice and Bob. If a box violates this condition, it is explicitly called ''nonlocal''. However, the study of nonlocal boxes often encompasses both local and nonlocal boxes.


How does this new set relate to the more conventional <math>Q</math> defined above? It can be proven that <math>Q_c</math> is closed. Moreover, <math> \bar{Q} \subseteq Q_c</math>, where <math>\bar{Q}</math> denotes the closure of <math>Q</math>. Tsirelson's problem<ref name="OQP">{{cite web |url=https://oqp.iqoqi.univie.ac.at/bell-inequalities-and-operator-algebras/ |title=Bell inequalities and operator algebras |author=<!--Not stated--> |publisher=Open quantum problems |access-date=2019-12-05 |archive-date=2019-12-06 |archive-url=https://web.archive.org/web/20191206004134/https://oqp.iqoqi.univie.ac.at/bell-inequalities-and-operator-algebras/ |url-status=dead }}</ref> consists in deciding whether the inclusion relation <math> \bar{Q} \subseteq Q_c</math> is strict, i.e., whether or not <math> \bar{Q} = Q_c</math>. This problem only appears in infinite dimensions: when the Hilbert space <math>H</math> in the definition of <math>Q_c</math> is constrained to be finite-dimensional, the closure of the corresponding set equals <math>\bar{Q}</math>.<ref name="OQP"/>
The set of nonlocal boxes most commonly studied are the so-called ''non-signalling boxes'',<ref name=nonlocalbox /> for which neither Alice nor Bob can signal their choice of input to the other. Physically, this is a reasonable restriction: setting the input is physically analogous to making a measurement, which should effectively provide a result immediately. Since there may be a large spatial separation between the parties, signalling to Bob would potentially require considerable time to elapse between measurement and result, which is a physically unrealistic scenario.


In January 2020, Ji, Natarajan, Vidick, Wright, and Yuen claimed a result in [[quantum complexity theory]]<ref name="Videck">{{Cite journal |last1=Ji |first1=Zhengfeng |last2=Natarajan |first2=Anand |last3=Vidick |first3=Thomas |last4=Wright |first4=John |last5=Yuen |first5=Henry |date=2020 |title=MIP*=RE |arxiv=2001.04383 |bibcode=2020arXiv200104383J}}</ref> that would imply that <math>\bar{Q} \neq Q_c </math>, thus solving Tsirelson's problem.<ref>{{Cite journal |last=Castelvecchi |first=Davide |year=2020 |title=How 'spooky' is quantum physics? The answer could be incalculable |journal=Nature |volume=577 |issue=7791 |pages=461–462 |doi=10.1038/d41586-020-00120-6|pmid=31965099 |bibcode=2020Natur.577..461C |doi-access=free }}</ref><ref>{{Cite web |url=https://gilkalai.wordpress.com/2020/01/17/amazing-zhengfeng-ji-anand-natarajan-thomas-vidick-john-wright-and-henry-yuen-proved-that-mip-re-and-thus-disproved-connes-1976-embedding-conjecture-and-provided-a-negative-answer-to-tsirelso/ |title=Amazing: Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen proved that MIP* = RE and thus disproved Connes 1976 Embedding Conjecture, and provided a negative answer to Tsirelson's problem. |last=Kalai |first=Gil |date=2020-01-17 |website=Combinatorics and more |language=en |access-date=2020-03-06}}</ref><ref>{{Cite web |url=https://windowsontheory.org/2020/01/14/mipre-connes-embedding-conjecture-disproved/ |title=MIP*=RE, disproving Connes embedding conjecture. |last=Barak |first=Boaz |date=2020-01-14 |website=Windows On Theory |language=en |access-date=2020-03-06}}</ref><ref>{{Cite web |url=https://www.scottaaronson.com/blog/?p=4512 |title=MIP*=RE |last=Aaronson |first=Scott |date=16 January 2020 |website=Shtetl-Optimized |language=en-US |access-date=2020-03-06}}</ref><ref>{{Cite web |url=https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/ |title=Halting Is Poly-Time Quantum Provable |last=Regan |first=Kenneth W. |date=2020-01-15 |website=Gödel's Lost Letter and P=NP |language=en |access-date=2020-03-06}}</ref><ref>{{Cite web |url=https://mycqstate.wordpress.com/2020/01/14/a-masters-project/ |title=A Masters project |last=Vidick |first=Thomas |date=2020-01-14 |website=MyCQstate |language=en |access-date=2020-03-06}}</ref><ref>{{Cite web|url=https://www.quantamagazine.org/landmark-computer-science-proof-cascades-through-physics-and-math-20200304/|title=Landmark Computer Science Proof Cascades Through Physics and Math|last=Hartnett|first=Kevin|website=Quanta Magazine| date=4 March 2020 |language=en|access-date=2020-03-09}}</ref>
The non-signalling requirement imposes further conditions on the joint probability, in that the probability of a particular output ''a'' or ''b'' should depend only on its associated input. This allows for the notion of a reduced or [[marginal probability|marginal]] probability on both Alice and Bob's measurements, and is formalised by the conditions:


Tsirelson's problem can be shown equivalent to [[Connes embedding problem]],<ref>{{cite journal|last=Junge|first= M | author2= Navascués, M|author3= Palazuelos, C|author4= Pérez-García, D|author5= Scholz, VB|author6= Werner, RF |title= Connes' embedding problem and Tsirelson's problem|journal= J. Math. Phys.|volume= 52|issue= 1 |pages= 012102|year= 2011|doi= 10.1063/1.3514538 |bibcode= 2011JMP....52a2102J |arxiv= 1008.1142 |s2cid= 12321570 }}</ref><ref>{{cite journal|first=Tobias|last= Fritz|title= Tsirelson's problem and Kirchberg's conjecture|journal= Rev. Math. Phys. |volume=24|issue=5|pages= 1250012 |year=2012|doi= 10.1142/S0129055X12500122|bibcode= 2012RvMaP..2450012F|arxiv= 1008.1168|s2cid= 17162262}}</ref><ref>{{cite journal |first=Narutaka|last= Ozawa|title= About the Connes Embedding Conjecture---Algebraic approaches---|journal= Jpn. J. Math.|volume= 8|pages= 147–183|year= 2013|doi= 10.1007/s11537-013-1280-5|hdl= 2433/173118|s2cid= 121154563|hdl-access= free}}</ref> a famous conjecture in the theory of operator algebras.
:<math>\sum_{b} P \left ( {a,b}{|}{A,B} \right ) = \sum_{b} P \left ( {a,b}{|}{A,B'} \right ) \equiv P \left ( {a}{|}{A} \right ) \quad \forall {a,A,B,B'}</math>


===Characterization of quantum correlations===
and


Since the dimensions of <math>H_A</math> and <math>H_B</math> are, in principle, unbounded, determining whether a given box <math>P(a,b|x,y)</math> admits a quantum realization is a complicated problem. In fact, the dual problem of establishing whether a quantum box can have a perfect score at a non-local game is known to be undecidable.<ref name=SLOFSTRA/> Moreover, the problem of deciding whether <math>P(a,b|x,y)</math> can be approximated by a quantum system with precision <math>1/\operatorname{poly}(|X||Y|)</math> is NP-hard.<ref>{{cite arXiv|last=Ito|first= T.|author2= Kobayashi, H.|author3= Matsumoto, K. |title=Oracularization and two-prover one-round interactive proofs against nonlocal strategies| eprint= 0810.0693 |year= 2008|class= quant-ph}}</ref> Characterizing quantum boxes is equivalent to characterizing the cone of completely positive semidefinite matrices under a set of linear constraints.<ref name="CONES1">{{cite journal|first=Jamie|last= Sikora|author2= Varvitsiotis, Antonios|title= Linear conic formulations for two-party correlations and values of nonlocal games|journal= Mathematical Programming|volume= 162| issue= 1–2|pages= 431–463|year= 2017|doi= 10.1007/s10107-016-1049-8|arxiv= 1506.07297|s2cid= 8234910}}</ref>
:<math>\sum_{a} P \left ( {a,b}{|}{A,B} \right ) = \sum_{a} P \left ( {a,b}{|}{A',B} \right ) \equiv P \left ( {b}{|}{B} \right ) \quad \forall {b,B,A,A'}</math>


For small fixed dimensions <math>d_A, d_B</math>, one can explore, using variational methods, whether <math>P(a,b|x,y)</math> can be realized in a bipartite quantum system <math>H_A\otimes H_B</math>, with <math>\dim(H_A)=d_A</math>, <math>\dim(H_B)=d_B</math>. That method, however, can just be used to prove the realizability of <math>P(a,b|x,y)</math>, and not its unrealizability with quantum systems.
The constraints above are all linear, and so define a polytope representing the set of all non-signalling boxes with a given number of inputs and outputs. Moreover, the polytope is convex because any two boxes that exist in the polytope can be mixed (as above, according to some variable <math>\lambda</math> with probabilities <math>p(\lambda)</math>) to produce another box that also exists within the polytope.


To prove unrealizability, the most known method is the Navascués–Pironio–Acín (NPA) hierarchy.<ref name= "NPA">{{cite journal|last=Navascués|first= Miguel|author2= Pironio, S|author3= Acín, A| year=2007|title= Bounding the Set of Quantum Correlations| journal=Physical Review Letters|volume= 98 |issue=1|pages= 010401|doi= 10.1103/physrevlett.98.010401|pmid= 17358458|bibcode= 2007PhRvL..98a0401N|arxiv= quant-ph/0607119|s2cid= 41742170}}</ref> This is an infinite decreasing sequence of sets of correlations <math>Q^1\supset Q^2\supset Q^3\supset...</math> with the properties:
Local boxes are clearly non-signalling, however nonlocal boxes may or may not be non-signalling. Since this polytope contains all possible non-signalling boxes of a given number of inputs and outputs, it has as subsets both local boxes and those boxes which can achieve Tsirelson's bound in accord with quantum mechanical correlations. Indeed, the set of local boxes form a convex sub-polytope of the non-signalling polytope.


# If <math>P(a,b|x,y)\in Q_c</math>, then <math>P(a,b|x,y)\in Q^k</math> for all <math>k</math>.
Popescu and Rohrlich's maximum algebraic violation of the CHSH inequality can be reached by a non-signalling box, referred to as a standard PR box after these authors, with joint probability given by:
# If <math>P(a,b|x,y)\not\in Q_c</math>, then there exists <math>k</math> such that <math>P(a,b|x,y)\not\in Q^k</math>.
# For any <math>k</math>, deciding whether <math>P(a,b|x,y)\in Q^k</math> can be cast as a [[Semidefinite programming|semidefinite program]].


The NPA hierarchy thus provides a computational characterization, not of <math>Q</math>, but of <math>Q_c</math>. If <math>\bar{Q}\not=Q_c</math>, (as claimed by Ji, Natarajan, Vidick, Wright, and Yuen) then a new method to detect the non-realizability of the correlations in <math>Q_c- \bar{Q}</math> is needed.
:<math> P \left ( {a,b}{|}{A,B} \right ) =
If Tsirelson's problem was solved in the affirmative, namely, <math>\bar{Q}=Q_c</math>, then the above two methods would provide a practical characterization of <math>\bar{Q}</math>.
\begin{cases}
\frac{1}{2}, & \mbox{if } a \oplus b = AB \\
0, & \mbox{otherwise}
\end{cases} </math>


===The physics of supra-quantum correlations===
where <math>\oplus</math> denotes addition modulo two.<ref>{{cite journal | last = Barrett| first = Jonathan |author2=Pironio, Stefano | title = Popescu-Rohrlich Correlations as a Unit of Nonlocality | journal = [[Physical Review Letters]] | volume = 95 | issue = 14 | pages = 140401 |date=September 2005 | doi = 10.1103/PhysRevLett.95.140401 | pmid = 16241631 |arxiv = quant-ph/0506180 |bibcode = 2005PhRvL..95n0401B }}</ref>


The works listed above describe what the quantum set of correlations looks like, but they do not explain why. Are quantum correlations unavoidable, even in post-quantum physical theories, or on the contrary, could there exist correlations outside <math>\bar{Q}</math> which nonetheless do not lead to any unphysical operational behavior?
Various attempts have been made to argue why Nature does not (or should not) allow for stronger nonlocality than quantum theory is already known to permit. For example, it was found in the late 2000's that quantum mechanics cannot be more nonlocal without violating the Heisenberg [[uncertainty principle]].<ref>{{cite journal |author1=Michael M. Wolf |author2=David Perez-Garcia |author3=Carlos Fernandez |title=Measurements Incompatible in Quantum Theory Cannot Be Measured Jointly in Any Other No-Signaling Theory |journal=Physical Review Letters |doi=10.1103/PhysRevLett.103.230402 |year=2009 |volume= 103|issue=23 |pages=230402 |arxiv=0905.2998|bibcode = 2009PhRvL.103w0402W |pmid=20366131}}</ref><ref name="JS2010">{{cite journal |author1=Jonathan Oppenheim |author2=Stephanie Wehner |title=The uncertainty principle determines the non-locality of quantum mechanics |journal = Science |doi=10.1126/science.1192065 |year=2010 |volume=330 |issue=6007 |pages=1072–1074 |arxiv=1004.2507|bibcode = 2010Sci...330.1072O |pmid=21097930}}</ref> Strikingly, it was also discovered that if PR boxes did exist, any [[distributed computation]] could be performed with only one [[bit]] of communication.<ref>{{cite arXiv | last = van Dam| first = Wim |title = Implausible Consequences of Superstrong Nonlocality |eprint=quant-ph/0501159 | year = 2005}}</ref> An even stronger result is that for any nonlocal box theory which violates Tsirelson's bound, there cannot be a sensible measure of [[mutual information]] between pairs of systems.<ref>{{cite journal | last1 = Pawlowski| first1 = M. | last2 = Paterek | first2=T. | last3= Kaszlikowski | first3 = D. | last4= Scarani | first4 = V. | last5 = Winter | first5 = A.| last6= Zukowski | first6 = M.| title = Information Causality as a Physical Principle | journal = [[Nature (journal)|Nature]] | volume = 461 | pages = 1101–1104 |date=October 2009 | doi = 10.1038/nature08400 | pmid = 19847260 | issue = 7267 |bibcode = 2009Natur.461.1101P |arxiv = 0905.2292 }}</ref> This suggests a deep link between nonlocality and the information-theoretic properties of quantum mechanics. Nevertheless, the PR-box is ruled out by a plausible postulate of information theory.<ref>{{Cite journal|arxiv=1210.0194|last1=Pfister|first1=Corsin|title=If no information gain implies no disturbance, then any discrete physical theory is classical|journal=Nature Communications|volume=4|issue=1851|pages=1851|last2=Wehner|first2=Stephanie|doi=10.1038/ncomms2821|pmid=23673636|year=2013}}</ref>


In their seminal 1994 paper, [[Sandu Popescu|Popescu]] and Rohrlich explore whether quantum correlations can be explained by appealing to relativistic causality alone.<ref name="popescu1994">{{cite journal | last = Popescu | first = Sandu |author2=Rohrlich, Daniel | title = Nonlocality as an axiom | journal = [[Foundations of Physics]] | volume = 24| pages = 379–385 | year = 1994 | doi = 10.1007/BF02058098 | issue = 3 |bibcode = 1994FoPh...24..379P |citeseerx=10.1.1.508.4193| s2cid = 120333148 }}</ref> Namely, whether any hypothetical box <math>P(a,b|x,y)\not\in\bar{Q}</math> would allow building a device capable of transmitting information faster than the speed of light. At the level of correlations between two parties, Einstein's causality translates in the requirement that Alice's measurement choice should not affect Bob's statistics, and vice versa. Otherwise, Alice (Bob) could signal Bob (Alice) instantaneously by choosing her (his) measurement setting <math>x</math> <math>(y)</math> appropriately. Mathematically, Popescu and Rohrlich's no-signalling conditions are:
Non-signaling adversaries have recently been considered in [[quantum cryptography]].<ref name="BHK">{{cite journal
<math display="block"> \sum_a P(a,b|x,y)= \sum_a P(a,b|x^\prime,y)=:P_B(b|y),</math>
|title=No Signalling and Quantum Key Distribution
<math display="block">\sum_b P(a,b|x,y)= \sum_b P(a,b|x,y^\prime)=:P_A(a|x). </math>
|first1=Jonathan|last1=Barrett|first2=Lucien|last2=Hardy|first3=Adrian|last3=Kent
|journal=Physical Review Letters
|volume=95|issue=1|pages=010503|year=2005
|doi=10.1103/PhysRevLett.95.010503
|pmid=16090597|arxiv=quant-ph/0405101
|bibcode = 2005PhRvL..95a0503B }}</ref>
Such an adversary is constrained only by the non-signaling principle, and so may potentially be more powerful than a quantum adversary.


Like the set of classical boxes, when represented in probability space, the set of no-signalling boxes forms a [[polytope]]. Popescu and Rohrlich identified a box <math>P(a,b|x,y)</math> that, while complying with the no-signalling conditions, violates Tsirelson's bound, and is thus unrealizable in quantum physics. Dubbed the PR-box, it can be written as:
<math display="block">P(a,b|x,y)=\frac{1}{2}\delta_{xy,a\oplus b}.</math>


Here <math>a,b,x,y</math> take values in <math>{0,1}</math>, and <math>a\oplus b</math> denotes the sum modulo two. It can be verified that the CHSH value of this box is 4 (as opposed to the Tsirelson bound of <math>2\sqrt{2}\approx 2.828</math>). This box had been identified earlier, by Rastall<ref>{{cite journal | last = Rastall | first = Peter | title = Locality, Bell's theorem, and quantum mechanics | journal = Foundations of Physics | volume = 15 | issue = 9 | pages = 963–972 | year = 1985 | doi=10.1007/bf00739036| bibcode = 1985FoPh...15..963R | s2cid = 122298281 }}</ref> and Khalfin and [[Boris Tsirelson|Tsirelson]].<ref>{{cite conference |title=Quantum and quasi-classical analogs of Bell inequalities |author=Khalfin, L.A. |author2= Tsirelson, B.S. |year=1985 |conference=Symposium on the Foundations of Modern Physics |editor=Lahti|display-editors=etal|publisher=World Sci. Publ. |pages=441–460 }}</ref>
==Nonlocality and uncertainty relations==


In view of this mismatch, Popescu and Rohrlich pose the problem of identifying a physical principle, stronger than the no-signalling conditions, that allows deriving the set of quantum correlations. Several proposals followed:
Nonlocal correlations are fundamentally bounded by the parties’ uncertainty relations. This fact was noted already in <ref name="JS2010"/> and was shown to be a characteristic of any physical theory where nonlocal correlations are consistent with relativistic causality <ref name="CC2019">{{cite journal |author1=Avishy Carmi |author2=Eliahu Cohen |title=Relativistic independence bounds nonlocality |journal = Science Advances |doi=10.1126/sciadv.aav8370 |year=2019 |volume=5 |issue=4}}</ref>. As an example, consider the Bell-CHSH scenario, where Alice measures either <math>A_0</math> or <math>A_1</math>, and Bob measures either <math>B_0</math> or <math>B_1</math>. Here, <math>A_i</math>, <math>i=0,1</math> and <math>B_j</math>,
# Non-trivial [[communication complexity]] (NTCC).<ref name="NTCC">{{cite journal|last=Brassard|first= G| author2= Buhrman, H|author3= Linden, N|author4= Methot, AA|author5= Tapp, A| author6= Unger, F |title=Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial|journal= Physical Review Letters|volume= 96|pages= 250401|year=2006|issue= 25|doi= 10.1103/PhysRevLett.96.250401|pmid= 16907289|arxiv= quant-ph/0508042|bibcode= 2006PhRvL..96y0401B|s2cid= 6135971}}</ref> This principle stipulates that nonlocal correlations should not be so strong as to allow two parties to solve all 1-way communication problems with some probability <math>p>1/2</math> using just one bit of communication. It can be proven that any box violating Tsirelson's bound by more than <math>2\sqrt{2}\left(\frac{2}{\sqrt{3}}-1\right)\approx 0.4377</math> is incompatible with NTCC.
<math>j=0,1</math> are self-adjoint operators with eigenvalues <math>\pm 1</math>. The Hilbert-space structure of quantum mechanics affords a statistical
# No Advantage for Nonlocal Computation (NANLC).<ref name="NANLC">{{cite journal|first=N. |last=Linden|author2= Popescu, S.|author3= Short, A. J.| author4= Winter, A. |title= Quantum Nonlocality and Beyond: Limits from Nonlocal Computation|journal= Physical Review Letters|volume= 99|issue=18| pages=180502| year=2007|doi=10.1103/PhysRevLett.99.180502|pmid=17995388|bibcode=2007PhRvL..99r0502L|arxiv=quant-ph/0610097}}</ref> The following scenario is considered: given a function <math> f_{0,1}^n\to 1</math>, two parties are distributed the strings of <math>n</math> bits <math>x,y</math> and asked to output the bits <math>a,b</math> so that <math>a\oplus b</math> is a good guess for <math>f(x\oplus y)</math>. The principle of NANLC states that non-local boxes should not give the two parties any advantage to play this game. It is proven that any box violating Tsirelson's bound would provide such an advantage.
covariance matrix for these observables, a generalization of the covariance matrix from probability theory. The quantum covariance matrix of <math>A_0</math>, <math>A_1</math>, and <math>B_j</math> is expressed as
# [[Information causality|Information Causality]] (IC).<ref name="IC">{{cite journal | last1 = Pawlowski| first1 = M. | last2 = Paterek | first2=T. | last3= Kaszlikowski | first3 = D. | last4= Scarani | first4 = V. | last5 = Winter | first5 = A.| last6= Zukowski | first6 = M.| title = Information Causality as a Physical Principle | journal = [[Nature (journal)|Nature]] | volume = 461 | pages = 1101–1104 |date=October 2009 | doi = 10.1038/nature08400 | pmid = 19847260 | issue = 7267 |bibcode = 2009Natur.461.1101P |arxiv = 0905.2292 | s2cid = 4428663 }}</ref> The starting point is a bipartite communication scenario where one of the parts (Alice) is handed a random string <math>x</math> of <math>n</math> bits. The second part, Bob, receives a random number <math>k\in\{1,...,n\}</math>. Their goal is to transmit Bob the bit <math>x_k</math>, for which purpose Alice is allowed to transmit Bob <math>s</math> bits. The principle of IC states that the sum over <math>k</math> of the mutual information between Alice's bit and Bob's guess cannot exceed the number <math>s</math> of bits transmitted by Alice. It is shown that any box violating Tsirelson's bound would allow two parties to violate IC.
:<math>
# Macroscopic Locality (ML).<ref name="ML">{{cite journal|first=M. |last=Navascués|author2= H. Wunderlich|title= A Glance Beyond the Quantum Model|journal= Proc. R. Soc. A|volume= 466|issue=2115|pages=881–890|year=2009|doi=10.1098/rspa.2009.0453|doi-access=free|arxiv=0907.0372}}</ref> In the considered setup, two separate parties conduct extensive low-resolution measurements over a large number of independently prepared pairs of correlated particles. ML states that any such “macroscopic” experiment must admit a local hidden variable model. It is proven that any microscopic experiment capable of violating Tsirelson's bound would also violate standard Bell nonlocality when brought to the macroscopic scale. Besides Tsirelson's bound, the principle of ML fully recovers the set of all two-point quantum correlators.
C(A_0,A_1,B_j) = \begin{bmatrix}
# Local Orthogonality (LO).<ref name ="LO">{{cite journal|first=T. |last=Fritz|author2= A. B. Sainz|author3= R. Augusiak|author4= J. B. Brask|author5= R. Chaves|author6= A. Leverrier|author7= A. Acín|title= Local orthogonality as a multipartite principle for quantum correlations|journal= Nature Communications|volume= 4|pages= 2263 |year=2013|doi= 10.1038/ncomms3263|pmid=23948952|bibcode=2013NatCo...4.2263F|arxiv=1210.3018|s2cid=14759956}}</ref> This principle applies to multipartite Bell scenarios, where <math>n</math> parties respectively conduct experiments <math>x_1,...,x_n</math> in their local labs. They respectively obtain the outcomes <math>a_1,...,a_n</math>. The pair of vectors <math>(\bar{a}|\bar{x})</math> is called an event. Two events <math>(\bar{a}|\bar{x})</math>, <math>(\bar{a}^\prime|\bar{x}^\prime)</math> are said to be locally orthogonal if there exists <math>k</math> such that <math>x_k=x_k^\prime </math> and <math>a_k\not=a_k^\prime </math>. The principle of LO states that, for any multipartite box, the sum of the probabilities of any set of pair-wise locally orthogonal events cannot exceed 1. It is proven that any bipartite box violating Tsirelson's bound by an amount of <math>0.052</math> violates LO.
\langle B_j^2 \rangle - \langle B_j \rangle^2 & \langle A_0 \otimes
B_j \rangle - \langle A_0 \rangle \langle B_j \rangle & \langle A_1 \otimes
B_j \rangle - \langle A_1 \rangle \langle B_j \rangle \\
\langle A_0\otimes
B_j \rangle - \langle A_0 \rangle \langle B_j \rangle & \langle A_0^2
\rangle - \langle A_0\rangle^2 & \langle A_0 A_1 \rangle - \langle A_0
\rangle \langle A_1 \rangle \\
\langle A_1\otimes
B_j \rangle - \langle A_1 \rangle \langle B_j \rangle &
\langle A_1 A_0 \rangle - \langle A_1
\rangle \langle A_0 \rangle & \langle A_1^2
\rangle - \langle A_1\rangle^2
\end{bmatrix}
</math>
which is a self-adjoint positive semi-definite matrix <ref name="CC2019"/>. It is sometimes convenient to normalize the rows and columns of <math>C(A_0,A_1,B_j)</math> by the respective standard deviations of <math>A_i</math> and <math>B_j</math> so as to obtain the quantum analog of a [[correlation matrix]],
:<math>
\mathrm{Corr}(A_0,A_1,B_j) = \begin{bmatrix}
1 & \varrho(A_0 \otimes 1, 1 \otimes B_j) & \varrho(A_1 \otimes 1, 1
\otimes B_j) \\
\varrho(A_0 \otimes 1, 1 \otimes B_j) & 1 & \varrho(A_0, A_1) \\
\varrho(A_1 \otimes 1, 1 \otimes B_j) & \varrho(A_1, A_0) & 1
\end{bmatrix}
</math>
where
:<math>
\varrho(X,Y) = \frac{\langle X Y \rangle - \langle X \rangle \langle Y
\rangle}{\sqrt{\langle X^2 \rangle - \langle X \rangle^2}
\sqrt{\langle Y^2 \rangle - \langle Y \rangle^2}}
</math>
is the quantum counterpart of the [[Pearson correlation]]. This correlation matrix is similarly positive semi-definite, namely, it satisfies
:<math>
\mathrm{Corr}(A_0,A_1) \succeq \begin{bmatrix}
\varrho(A_0 \otimes 1, 1 \otimes B_j) \\
\varrho(A_1 \otimes 1, 1 \otimes B_j)
\end{bmatrix}
\begin{bmatrix}
\varrho(A_0 \otimes 1, 1 \otimes B_j) & \varrho(A_1 \otimes 1, 1 \otimes B_j)
\end{bmatrix}
</math>
by the Schur complement condition for positive semi-definiteness. The correlation matrix on the left, <math>\mathrm{Corr}(A_0,A_1)</math>, is the <math>2
\times 2</math> lower submatrix in <math>\mathrm{Corr}(A_0,A_1,B_j)</math>. Its non-negativity is equivalent to the Schrödinger-Robertson uncertainty
relation, which follows from the non-negativity of its determinant, <math>1 - |\varrho(A_0, A_1)|^2 \geq 0</math>. Here, however, it may be recognized that Alice's uncertainty relations become tighter due to the presence of Bob -- the (matrix) lower bound on <math>\mathrm{Corr}(A_0,A_1)</math> is no longer zero. Alternatively, the above matrix inequality can be viewed as Alice's local bound (<math>\mathrm{Corr}(A_0,A_1)</math>) on the nonlocal Alice-Bob correlations (<math>\varrho(A_i \otimes 1, 1 \otimes B_j)</math>). Clearly, the roles of Alice and Bob can be switched to get a similar bound on nonlocal correlations, this time with Bob's local uncertainty relations, <math>\mathrm{Corr}(B_0,B_1)</math>.


All these principles can be experimentally falsified under the assumption that we can decide if two or more events are space-like separated. This sets this research program aside from the axiomatic reconstruction of quantum mechanics via [[Generalized probabilistic theory|Generalized Probabilistic Theories]].
The above matrix inequality was shown in <ref name="CC2019"/> to imply known as well as new characterizations of the set of bipartite quantum correlations. Apart from the well-known Tsirelson's bound, other characterizations may involve nonlinear functions of the
underlying correlations <ref>{{cite journal|author1=M. Navascués|author2=S. Pironio|author3=A. Acín |title=A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations |journal=New J. Phys. |volume=10|pages=073013|year=2008 |doi=10.1088/1367-2630/10/7/073013}}</ref>. To get a more intuitive expression relating the Bell-CHSH parameter and the local uncertainties of Alice and Bob, let us assume the correlations are isotropic, <math>\varrho(A_i \otimes 1, 1 \otimes B_j) = (-1)^{ij} c</math>, for some <math>c \in [-1,1]</math>. The Bell-CHSH parameter in this case is, <math>S_{CHSH} = \sum_{i,j \in \{0,1\}} (-1)^{ij} \varrho(A_i \otimes 1, 1 \otimes B_j) = 4c</math>. Plugging these correlations into the matrix inequality above reads
:<math>
\mathrm{Corr}(A_0,A_1) \succeq c^2 \begin{bmatrix}
1 & (-1)^j \\
(-1)^j & 1
\end{bmatrix}
</math>
which is equivalent to the non-negativity of the determinant of the matrix obtained by subtracting the right side from the left side above,
:<math>
(1-c^2)^2 - |\varrho(A_0, A_1) - (-1)^j c^2|^2 \geq 0 \; \;
\longrightarrow \; \; 2c^2 + |\varrho(A_0,A_1)|^2 - (-1)^j c^2
(\varrho(A_0,A_1) + \varrho(A_1,A_0)) \leq 1
</math>
Adding together the inequalities for <math>j=0,1</math> and recalling that <math>c = S_{CHSH}/4</math> leads to
:<math>
\left( \frac{S_{CHSH}}{2 \sqrt{2} }\right)^2 \leq 1 - |\varrho(A_0,A_1)|^2 = \det\left( \mathrm{Corr}(A_0,A_1) \right)
</math>
and, by switching the roles of Alice and Bob,
:<math>
\left( \frac{S_{CHSH}}{2 \sqrt{2} }\right)^2 \leq 1 -
|\varrho(B_0,B_1)|^2 = \det\left( \mathrm{Corr}(B_0,B_1) \right)
</math>
These show that quantum nonlocality, as measured by the Bell-CHSH parameter, is bounded by Alice's and Bob's local uncertainties, as quantified by determinants of the respective (local) correlation matrices. It can also be noticed that Tsirelson's bound in that case, the <math>2 \sqrt{2}</math>, is
attained for the maximum uncertainty on both sides, when <math>\det\left(
\mathrm{Corr}(A_0,A_1) \right) = \det\left( \mathrm{Corr}(B_0,B_1)
\right) = 1</math>.


The works above rely on the implicit assumption that any physical set of correlations must be closed under wirings.<ref name="WIRINGS">{{cite journal|first=Jonathan|last= Allcock|author2= Nicolas Brunner|author3= Noah Linden|author4= Sandu Popescu|author5= Paul Skrzypczyk|author6= Tamás Vértesi|title=Closed sets of non-local correlations| journal= Physical Review A|volume= 80|issue= 6|pages= 062107 |year=2009|doi= 10.1103/PhysRevA.80.062107|bibcode= 2009PhRvA..80f2107A|arxiv= 0908.1496|s2cid= 118677048}}</ref> This means that any effective box built by combining the inputs and outputs of a number of boxes within the considered set must also belong to the set. Closure under wirings does not seem to enforce any limit on the maximum value of CHSH. However, it is not a void principle: on the contrary, in <ref name="WIRINGS"/> it is shown that many simple, intuitive families of sets of correlations in probability space happen to violate it.
Note that the above argument may be generalized to continuous varaibles using the phase-space formulation of quantum mechanics. In particular, the covariance matrix is evaluated using the underlying Wigner function and Moyal products (see [[Uncertainty Principle|Phase space]]).


Originally, it was unknown whether any of these principles (or a subset thereof) was strong enough to derive all the constraints defining <math>\bar{Q}</math>. This state of affairs continued for some years until the construction of the almost quantum set <math>\tilde{Q}</math>.<ref name=AQ>{{cite journal|first=M. |last=Navascués|author2= Y. Guryanova|author3= M. J. Hoban|author4= A. Acín|title= Almost Quantum Correlations|journal= Nature Communications |volume=6|pages= 6288|year= 2015|doi= 10.1038/ncomms7288|pmid=25697645|bibcode=2015NatCo...6.6288N|arxiv=1403.4621|s2cid=12810715}}</ref> <math>\tilde{Q}</math> is a set of correlations that is closed under wirings and can be characterized via semidefinite programming. It contains all correlations in <math>Q_c\supset \bar{Q}</math>, but also some non-quantum boxes <math>P(a,b|x,y)\not\in Q_c</math>. Remarkably, all boxes within the almost quantum set are shown to be compatible with the principles of NTCC, NANLC, ML and LO. There is also numerical evidence that almost-quantum boxes also comply with IC. It seems, therefore, that, even when the above principles are taken together, they do not suffice to single out the quantum set in the simplest Bell scenario of two parties, two inputs and two outputs.<ref name=AQ/>
==Nonlocality as an axiom versus uncertainty as an axiom==


==Device independent protocols==
Violations of Bell inequalities are experimental fact and hence make part of the predictions of any physical theory which may someday replace
quantum mechanics. On the other hand, violations of relativistic causality have never been witnessed and are believed to lead to grievous
paradoxes. Nevertheless, taking nonlocality as one of the axioms of a physical theory, and no-signalling as the other has proved futile in characterizing the set of quantum correlations -- no-signalling does not limit the strength of nonlocality whatsoever <ref name="popescu1994"/>. Partial characterizations of this set have been derived using reasonable, though not always physical, arguments (see previous sections).


Nonlocality can be exploited to conduct quantum information tasks which do not rely on the knowledge of the inner workings of the prepare-and-measurement apparatuses involved in the experiment. The security or reliability of any such protocol just depends on the strength of the experimentally measured correlations <math>P(a,b|x,y)</math>. These protocols are termed device-independent.
Recently, however, it was shown that once uncertainty relations, broadly understood, are taken as a starting point, relativistic causality, manifested by the locality of uncertainty relations, completely characterizes the set of quantum correlations in a bipartite binary measurement setting <ref name="CC2019"/>. Uncertainty relations in the sense used here refer to the existence of an empirical covariance matrix, which is far less than assuming the Hilbert-space structure of quantum mechanics. Such a covariance may be written for any number of experimenters, with any number of measurement devices, and for both discrete and continuous variables. Further assuming locality of uncertainty relations -- that experimenters cannot tamper with the uncertainty relations of their peers -- restricts the set of nonlocal correlations.


===Device-independent quantum key distribution===
==Blasiak's model==
{{Main|Device-independent quantum cryptography}}
The first device-independent protocol proposed was device-independent quantum key distribution (QKD).<ref name="YAO">{{cite conference|last=Mayers|first= Dominic|author2= Yao, Andrew C.-C.|year=1998|title= Quantum Cryptography with Imperfect Apparatus| conference=IEEE Symposium on Foundations of Computer Science (FOCS) }}</ref> In this primitive, two distant parties, Alice and Bob, are distributed an entangled quantum state, that they probe, thus obtaining the statistics <math>P(a,b|x,y)</math>. Based on how non-local the box <math>P(a,b|x,y)</math> happens to be, Alice and Bob estimate how much knowledge an external quantum adversary Eve (the eavesdropper) could possess on the value of Alice and Bob's outputs. This estimation allows them to devise a reconciliation protocol at the end of which Alice and Bob share a perfectly correlated one-time pad of which Eve has no information whatsoever. The one-time pad can then be used to transmit a secret message through a public channel. Although the first security analyses on device-independent QKD relied on Eve carrying out a specific family of attacks,<ref name="DIQKD">{{cite journal|first=Antonio|last= Acín| author2=Nicolas Gisin|author3= Lluis Masanes|title= From Bell's Theorem to Secure Quantum Key Distribution|journal= Physical Review Letters|volume=97|issue= 12|pages= 120405|year=2006|doi=10.1103/PhysRevLett.97.120405|pmid= 17025944|bibcode= 2006PhRvL..97l0405A|arxiv= quant-ph/0510094|s2cid= 3315286}}</ref> all such protocols have been recently proven unconditionally secure.<ref name="VAZIRANI">{{cite journal|last=Vazirani|first= Umesh|author2= Vidick, Thomas|year=2014|title=Fully Device-Independent Quantum Key Distribution|journal= Physical Review Letters|volume= 113|issue=14|pages= 140501|doi= 10.1103/physrevlett.113.140501|pmid= 25325625|bibcode= 2014PhRvL.113n0501V|arxiv= 1210.1810|s2cid= 119299119}}</ref>


===Device-independent randomness certification, expansion and amplification===
In October 2018, physicists reported that [[Quantum mechanics|quantum behavior]] can be [[Quantum nonlocality#Blasiak's model|explained]] with [[classical physics]] for a single particle in an interferometric circuit.<ref name="EA-20181011">{{cite web|url=https://www.eurekalert.org/pub_releases/2018-10/thni-wii101118.php|title=Public Release: 11-OCT-2018 - Where is it, the foundation of quantum reality?|author=Staff|date=11 October 2018|work=[[EurekAlert!]]|accessdate=13 October 2018}}</ref><ref name="PR-20180713">{{cite journal|last=Blasiak|first=Pawel|date=13 July 2018|title=Local model of a qudit: Single particle in optical circuits|journal=[[Physical Review]]|volume=98 (012118)|issue=1|doi=10.1103/PhysRevA.98.012118}}</ref>
Nonlocality can be used to certify that the outcomes of one of the parties in a Bell experiment are partially unknown to an external adversary. By feeding a partially random seed to several non-local boxes, and, after processing the outputs, one can end up with a longer (potentially unbounded) string of comparable randomness<ref name="EXPANSION">{{cite book|last=Colbeck|first= Roger|date=December 2006|title=Chapter 5. Quantum And Relativistic Protocols For Secure Multi-Party Computation (Thesis), University of Cambridge|arxiv= 0911.3814}}</ref> or with a shorter but more random string.<ref name="AMPLIFICATION">{{cite journal|last=Colbeck|first=Roger|author2=Renner, Renato|author-link2=Renato Renner|year=2012|title=Free randomness can be amplified|journal=Nature Physics|volume=8|issue=6|pages=450–453|arxiv=1105.3195|bibcode=2012NatPh...8..450C|doi=10.1038/nphys2300|s2cid=118309394}}</ref> This last primitive can be proven impossible in a classical setting.<ref name="SANTHA">{{cite conference|first=Miklos|last= Santha|author2 =Vazirani, Umesh V.|date= 1984-10-24|title= Generating quasi-random sequences from slightly-random sources|conference= Proceedings of the 25th IEEE Symposium on Foundations of Computer Science. University of California|pages= 434–440}}</ref>


Device-independent (DI) randomness certification, expansion, and amplification are techniques used to generate high-quality random numbers that are secure against any potential attacks on the underlying devices used to generate random numbers. These techniques have critical applications in cryptography, where high-quality random numbers are essential for ensuring the security of cryptographic protocols.
Similarly to [[De Broglie–Bohm theory|de Broglie–Bohm pilot wave theory]], Blasiak's model stipulates in the ontology a particle and a pilot wave, and the pilot wave ensures predictions indistinguishable from the quantum case.<ref name="PR-20180713" /> The main distinction is [[wave function collapse]]. De Broglie–Bohm theory avoids collapse by including the whole universe (with all particle detectors, other devices, observers etc.) into the system. Blasiak's model describes a single particle in a [[quantum circuit]] (called "interferometric circuit") that contains devices such as [[Phase shift module|phase shifters]], [[beam splitter]]s and [[particle detector]]s. Usually, a detector causes collapse ([[Wave function collapse#History and context|non-local, discontinuous change]]) of a wave function. But Blasiak's model treats detection without violating the locality principle, via the following ideas.
Randomness certification is the process of verifying that the output of a random number generator is truly random and has not been tampered with by an adversary. DI randomness certification does this verification without making assumptions about the underlying devices that generate random numbers. Instead, randomness is certified by observing correlations between the outputs of different devices that are generated using the same physical process. Recent research has demonstrated the feasibility of DI randomness certification using entangled quantum systems, such as photons or electrons. Randomness expansion is taking a small amount of initial random seed and expanding it into a much larger sequence of random numbers. In DI randomness expansion, the expansion is done using measurements of quantum systems that are prepared in a highly entangled state. The security of the expansion is guaranteed by the laws of quantum mechanics, which make it impossible for an adversary to predict the expansion output. Recent research has shown that DI randomness expansion can be achieved using entangled photon pairs and measurement devices that violate a Bell inequality.<ref>Colbeck, R. & Kent, A. (2011). Private randomness expansion with untrusted devices. Journal of Physics A: Mathematical and Theoretical, 44(9), 095305. doi: 10.1088/1751-8113/44/9/095305</ref>
Randomness amplification is the process of taking a small amount of initial random seed and increasing its randomness by using a cryptographic algorithm. In DI randomness amplification, this process is done using entanglement properties and quantum mechanics. The security of the amplification is guaranteed by the fact that any attempt by an adversary to manipulate the algorithm's output will inevitably introduce errors that can be detected and corrected. Recent research has demonstrated the feasibility of DI randomness amplification using quantum entanglement and the violation of a Bell inequality.<ref>{{cite journal|vauthors= Pironio, S, etal|title=Random numbers certified by Bell's theorem|journal=Nature|volume=464|issue=7291|pages= 1021–1024|year= 2010 |doi=10.1038/nature09008|pmid=20393558|bibcode=2010Natur.464.1021P|arxiv=0911.3427|s2cid=4300790}}</ref>


DI randomness certification, expansion, and amplification are powerful techniques for generating high-quality random numbers that are secure against any potential attacks on the underlying devices used to generate random numbers. These techniques have critical applications in cryptography and are likely to become increasingly crucial as quantum computing technology advances. In addition, a milder approach called semi-DI exists where random numbers can be generated with some assumptions on the working principle of the devices, environment, dimension, energy, etc., in which it benefits from ease-of-implementation and high generation rate.<ref>Tebyanian, H., Zahidy, M., Avesani, M., Stanco, A., Villoresi, P., & Vallone, G. (2021). Semi-device independent randomness generation based on quantum state's indistinguishability. Quantum Science and Technology, 6(4), 045026. doi: 10.1088/2058-9565/ac2047. URL: https://iopscience.iop.org/article/10.1088/2058-9565/ac2047
The wave function consists of fragments. Each fragment emerges from a detection, and propagates from the point of detection, gradually crowding out older fragments. The particle moves inside the expanding region occupied by the most recent fragment. Thus, obsolete fragments are harmless, they never pilot the particle. Gradual elimination of older fragments is implemented via the third ontological component, a field that carries information on the time of the most recent detection in the causal past of a given space-time point.
}</ref>


===Self-testing===
==No information can travel faster-than-light==
Sometimes, the box <math>P(a,b|x,y)</math> shared by Alice and Bob is such that it only admits a unique quantum realization. This means that there exist measurement operators <math>E^x_a, F^y_b</math> and a quantum state <math>\left|\psi\right\rangle</math> giving rise to <math>P(a,b|x,y)</math> such that any other physical realization <math> \tilde{E}^x_a, \tilde{F}^y_b ,\left|\tilde{\psi}\right\rangle</math> of <math>P(a,b|x,y)</math> is connected to <math> E^x_a, F^y_b ,\left|\psi\right\rangle</math> via local unitary transformations. This phenomenon, that can be interpreted as an instance of device-independent quantum tomography, was first pointed out by [[Boris Tsirelson|Tsirelson]]<ref name=TLM&RIGIDITY/> and named self-testing by Mayers and Yao.<ref name="YAO"/> Self-testing is known to be robust against systematic noise, i.e., if the experimentally measured statistics are close enough to <math>P(a,b|x,y)</math>, one can still determine the underlying state and measurement operators up to error bars.<ref name="YAO"/>
Nonlocality does not mean that information can travel faster-than-light. Indeed, [[quantum field theory]] preserves [[causality]], meaning that no influence can be projected between two points faster than the speed-of-light.


===Dimension witnesses===
This can be shown by noting that the [[commutator]] of two [[spacelike]] local [[Operator (physics)#Operators in quantum mechanics|quantum operator]]s is always zero (or [[Commutator#Ring theory|anti-commutator]] for [[fermionic field|fermionic operators]]).<ref>Peskin, M. E., & Schroeder, D. V. (1995). An Introduction To Quantum Field Theory (Frontiers in Physics). Westview Press Incorporated. pp. 25-29</ref>
The degree of non-locality of a quantum box <math>P(a,b|x,y)</math> can also provide lower bounds on the Hilbert space dimension of the local systems accessible to Alice and Bob.<ref name="WITNESS">{{cite journal|first=Nicolas|last= Brunner|author2= Pironio, Stefano|author3= Acín, Antonio|author4= Gisin, Nicolas|author5= Methot, Andre Allan|author6= Scarani, Valerio|title= Testing the Hilbert space dimension|journal= Physical Review Letters|volume= 100|issue= 21|pages= 210503|year=2008|doi= 10.1103/PhysRevLett.100.210503|pmid= 18518591|arxiv= 0802.0760|bibcode= 2008arXiv0802.0760B|s2cid= 119256543}}</ref> This problem is equivalent to deciding the existence of a matrix with low completely positive semidefinite rank.<ref name="CONES2">{{cite journal|first=Anupam|last= Prakash|author2= Sikora, Jamie| author3=Varvitsiotis, Antonios|author4= Wei Zhaohui|title= Completely positive semidefinite rank|journal=Mathematical Programming| volume= 171| issue= 1–2|pages= 397–431|year=2018|doi= 10.1007/s10107-017-1198-4|arxiv= 1604.07199|s2cid= 17885968}}</ref> Finding lower bounds on the Hilbert space dimension based on statistics happens to be a hard task, and current general methods only provide very low estimates.<ref name="FINITE">{{cite journal|first=Miguel|last= Navascués| author2= Vértesi, Tamás|title= Bounding the set of finite dimensional quantum correlations|journal= Physical Review Letters|volume= 115|issue= 2|pages= 020501|year= 2015|doi=10.1103/PhysRevLett.115.020501|pmid= 26207454|bibcode= 2015PhRvL.115b0501N|arxiv= 1412.0924|s2cid= 12226163}}</ref> However, a Bell scenario with five inputs and three outputs suffices to provide arbitrarily high lower bounds on the underlying Hilbert space dimension.<ref name="COLA">{{ cite arXiv|first=Andrea|last=Coladangelo|author2= Stark, Jalex|title= Unconditional separation of finite and infinite-dimensional quantum correlations| eprint=1804.05116|class=quant-ph|year=2018}}</ref> Quantum communication protocols which assume a knowledge of the local dimension of Alice and Bob's systems, but otherwise do not make claims on the mathematical description of the preparation and measuring devices involved are termed semi-device independent protocols. Currently, there exist semi-device independent protocols for quantum key distribution <ref name="SEMIQKD">{{cite journal|first=Marcin|last= Pawlowski |author2= Brunner, Nicolas| title=Semi-device-independent security of one-way quantum key distribution|journal= Physical Review A|volume=84|issue= 1 |pages= 010302(R)|year= 2011|doi= 10.1103/PhysRevA.84.010302 |bibcode= 2011PhRvA..84a0302P |arxiv= 1103.4105 |s2cid= 119300029 }}</ref> and randomness expansion.<ref name = "SEMIEXP">{{cite journal|first=Hong-Wei|last= Li|author2= Yin, Zhen-Qiang|author3= Wu, Yu-Chun|author4= Zou, Xu-Bo |author5= Wang, Shuang|author6= Chen, Wei|author7= Guo, Guang-Can| author8= Han, Zheng-Fu|title= Semi-device-independent random-number expansion without entanglement|journal= Physical Review A|volume= 84|issue= 3|pages= 034301|year= 2011|doi= 10.1103/PhysRevA.84.034301|bibcode= 2011PhRvA..84c4301L|arxiv= 1108.1480|s2cid= 118407749}}</ref>


==See also==
==See also==
Line 259: Line 203:
==Further reading==
==Further reading==
* {{cite book |author1=Grib, AA |author2=Rodrigues, WA |title=Nonlocality in Quantum Physics|publisher=Springer Verlag |year=1999 |isbn=978-0-306-46182-8 }}
* {{cite book |author1=Grib, AA |author2=Rodrigues, WA |title=Nonlocality in Quantum Physics|publisher=Springer Verlag |year=1999 |isbn=978-0-306-46182-8 }}
* {{cite book |author=Cramer, JG |title=The Quantum Handshake: Entanglement, Nonlocality and Transactions |publisher=Springer Verlag |location= |year=2015 |isbn=978-3-319-24642-0 }}
* {{cite book |author=Cramer, JG |title=The Quantum Handshake: Entanglement, Nonlocality and Transactions |publisher=Springer Verlag |year=2015 |isbn=978-3-319-24642-0 }}
* {{cite book |author=[[F. J. Duarte|Duarte, FJ]] |title=Fundamentals of Quantum Entanglement |publisher=Institute of Physics (UK) |year=2019 |isbn=978-0-7503-2226-3 }}


{{Quantum mechanics topics}}
{{Quantum mechanics topics}}


[[Category:Quantum measurement]]
[[Category:Quantum measurement|Nonlocality]]
[[Category:Quantum field theory]]
[[Category:Quantum field theory|Nonlocality]]
[[Category:Theoretical physics]]

Latest revision as of 05:57, 11 November 2024

In theoretical physics, quantum nonlocality refers to the phenomenon by which the measurement statistics of a multipartite quantum system do not allow an interpretation with local realism. Quantum nonlocality has been experimentally verified under a variety of physical assumptions.[1][2][3][4][5]

Quantum nonlocality does not allow for faster-than-light communication,[6] and hence is compatible with special relativity and its universal speed limit of objects. Thus, quantum theory is local in the strict sense defined by special relativity and, as such, the term "quantum nonlocality" is sometimes considered a misnomer.[7] Still, it prompts many of the foundational discussions concerning quantum theory.[7]

History

[edit]

Einstein, Podolsky and Rosen

[edit]

In the 1935 EPR paper,[8] Albert Einstein, Boris Podolsky and Nathan Rosen described "two spatially separated particles which have both perfectly correlated positions and momenta"[9] as a direct consequence of quantum theory. They intended to use the classical principle of locality to challenge the idea that the quantum wavefunction was a complete description of reality, but instead they sparked a debate on the nature of reality.[10] Afterwards, Einstein presented a variant of these ideas in a letter to Erwin Schrödinger,[11] which is the version that is presented here. The state and notation used here are more modern, and akin to David Bohm's take on EPR.[12] The quantum state of the two particles prior to measurement can be written as where .[13]

Here, subscripts “A” and “B” distinguish the two particles, though it is more convenient and usual to refer to these particles as being in the possession of two experimentalists called Alice and Bob. The rules of quantum theory give predictions for the outcomes of measurements performed by the experimentalists. Alice, for example, will measure her particle to be spin-up in an average of fifty percent of measurements. However, according to the Copenhagen interpretation, Alice's measurement causes the state of the two particles to collapse, so that if Alice performs a measurement of spin in the z-direction, that is with respect to the basis , then Bob's system will be left in one of the states . Likewise, if Alice performs a measurement of spin in the x-direction, that is, with respect to the basis , then Bob's system will be left in one of the states . Schrödinger referred to this phenomenon as "steering".[14] This steering occurs in such a way that no signal can be sent by performing such a state update; quantum nonlocality cannot be used to send messages instantaneously and is therefore not in direct conflict with causality concerns in special relativity.[13]

In the Copenhagen view of this experiment, Alice's measurement—and particularly her measurement choice—has a direct effect on Bob's state. However, under the assumption of locality, actions on Alice's system do not affect the "true", or "ontic" state of Bob's system. We see that the ontic state of Bob's system must be compatible with one of the quantum states or , since Alice can make a measurement that concludes with one of those states being the quantum description of his system. At the same time, it must also be compatible with one of the quantum states or for the same reason. Therefore, the ontic state of Bob's system must be compatible with at least two quantum states; the quantum state is therefore not a complete descriptor of his system. Einstein, Podolsky and Rosen saw this as evidence of the incompleteness of the Copenhagen interpretation of quantum theory, since the wavefunction is explicitly not a complete description of a quantum system under this assumption of locality. Their paper concludes:[8]

While we have thus shown that the wave function does not provide a complete description of the physical reality, we left open the question of whether or not such a description exists. We believe, however, that such a theory is possible.

Although various authors (most notably Niels Bohr) criticised the ambiguous terminology of the EPR paper,[15][16] the thought experiment nevertheless generated a great deal of interest. Their notion of a "complete description" was later formalised by the suggestion of hidden variables that determine the statistics of measurement results, but to which an observer does not have access.[17] Bohmian mechanics provides such a completion of quantum mechanics, with the introduction of hidden variables; however the theory is explicitly nonlocal.[18] The interpretation therefore does not give an answer to Einstein's question, which was whether or not a complete description of quantum mechanics could be given in terms of local hidden variables in keeping with the "Principle of Local Action".[19]

Bell inequality

[edit]

In 1964 John Bell answered Einstein's question by showing that such local hidden variables can never reproduce the full range of statistical outcomes predicted by quantum theory.[20] Bell showed that a local hidden variable hypothesis leads to restrictions on the strength of correlations of measurement results. If the Bell inequalities are violated experimentally as predicted by quantum mechanics, then reality cannot be described by local hidden variables and the mystery of quantum nonlocal causation remains. However, Bell notes that the non-local hidden variable model of Bohm are different:[20]

This [grossly nonlocal structure] is characteristic ... of any such theory which reproduces exactly the quantum mechanical predictions.

Clauser, Horne, Shimony and Holt (CHSH) reformulated these inequalities in a manner that was more conducive to experimental testing (see CHSH inequality).[21]

In the scenario proposed by Bell (a Bell scenario), two experimentalists, Alice and Bob, conduct experiments in separate labs. At each run, Alice (Bob) conducts an experiment in her (his) lab, obtaining outcome . If Alice and Bob repeat their experiments several times, then they can estimate the probabilities , namely, the probability that Alice and Bob respectively observe the results when they respectively conduct the experiments x,y. In the following, each such set of probabilities will be denoted by just . In the quantum nonlocality slang, is termed a box.[22]

Bell formalized the idea of a hidden variable by introducing the parameter to locally characterize measurement results on each system:[20] "It is a matter of indifference ... whether λ denotes a single variable or a set ... and whether the variables are discrete or continuous". However, it is equivalent (and more intuitive) to think of as a local "strategy" or "message" that occurs with some probability when Alice and Bob reboot their experimental setup. Bell's assumption of local causality then stipulates that each local strategy defines the distributions of independent outcomes if Alice conducts experiment x and Bob conducts experiment :

Here () denotes the probability that Alice (Bob) obtains the result when she (he) conducts experiment and the local variable describing her (his) experiment has value ().

Suppose that can take values from some set . If each pair of values has an associated probability of being selected (shared randomness is allowed, i.e., can be correlated), then one can average over this distribution to obtain a formula for the joint probability of each measurement result:

A box admitting such a decomposition is called a Bell local or a classical box. Fixing the number of possible values which can each take, one can represent each box as a finite vector with entries . In that representation, the set of all classical boxes forms a convex polytope. In the Bell scenario studied by CHSH, where can take values within , any Bell local box must satisfy the CHSH inequality:

where

The above considerations apply to model a quantum experiment. Consider two parties conducting local polarization measurements on a bipartite photonic state. The measurement result for the polarization of a photon can take one of two values (informally, whether the photon is polarized in that direction, or in the orthogonal direction). If each party is allowed to choose between just two different polarization directions, the experiment fits within the CHSH scenario. As noted by CHSH, there exist a quantum state and polarization directions which generate a box with equal to . This demonstrates an explicit way in which a theory with ontological states that are local, with local measurements and only local actions cannot match the probabilistic predictions of quantum theory, disproving Einstein's hypothesis. Experimentalists such as Alain Aspect have verified the quantum violation of the CHSH inequality [1] as well as other formulations of Bell's inequality, to invalidate the local hidden variables hypothesis and confirm that reality is indeed nonlocal in the EPR sense.

Possibilistic nonlocality

[edit]

Bell's demonstration is probabilistic in the sense that it shows that the precise probabilities predicted by quantum mechanics for some entangled scenarios cannot be met by a local hidden variable theory. (For short, here and henceforth "local theory" means "local hidden variables theory".) However, quantum mechanics permits an even stronger violation of local theories: a possibilistic one, in which local theories cannot even agree with quantum mechanics on which events are possible or impossible in an entangled scenario. The first proof of this kind was due to Daniel Greenberger, Michael Horne, and Anton Zeilinger in 1993[23] The state involved is often called the GHZ state.

In 1993, Lucien Hardy demonstrated a logical proof of quantum nonlocality that, like the GHZ proof is a possibilistic proof.[24][25][26] It starts with the observation that the state defined below can be written in a few suggestive ways: where, as above, .

The experiment consists of this entangled state being shared between two experimenters, each of whom has the ability to measure either with respect to the basis or . We see that if they each measure with respect to , then they never see the outcome . If one measures with respect to and the other , they never see the outcomes However, sometimes they see the outcome when measuring with respect to , since

This leads to the paradox: having the outcome we conclude that if one of the experimenters had measured with respect to the basis instead, the outcome must have been or , since and are impossible. But then, if they had both measured with respect to the basis, by locality the result must have been , which is also impossible.

Nonlocal hidden variable models with a finite propagation speed

[edit]

The work of Bancal et al.[27] generalizes Bell's result by proving that correlations achievable in quantum theory are also incompatible with a large class of superluminal hidden variable models. In this framework, faster-than-light signaling is precluded. However, the choice of settings of one party can influence hidden variables at another party's distant location, if there is enough time for a superluminal influence (of finite, but otherwise unknown speed) to propagate from one point to the other. In this scenario, any bipartite experiment revealing Bell nonlocality can just provide lower bounds on the hidden influence's propagation speed. Quantum experiments with three or more parties can, nonetheless, disprove all such non-local hidden variable models.[27]

Analogs of Bell’s theorem in more complicated causal structures

[edit]
A simple Bayesian network. Rain influences whether the sprinkler is activated, and both rain and the sprinkler influence whether the grass is wet.

The random variables measured in a general experiment can depend on each other in complicated ways. In the field of causal inference, such dependencies are represented via Bayesian networks: directed acyclic graphs where each node represents a variable and an edge from a variable to another signifies that the former influences the latter and not otherwise, see the figure. In a standard bipartite Bell experiment, Alice's (Bob's) setting (), together with her (his) local variable (), influence her (his) local outcome (). Bell's theorem can thus be interpreted as a separation between the quantum and classical predictions in a type of causal structures with just one hidden node . Similar separations have been established in other types of causal structures.[28] The characterization of the boundaries for classical correlations in such extended Bell scenarios is challenging, but there exist complete practical computational methods to achieve it.[29][30]

Entanglement and nonlocality

[edit]

Quantum nonlocality is sometimes understood as being equivalent to entanglement. However, this is not the case. Quantum entanglement can be defined only within the formalism of quantum mechanics, i.e., it is a model-dependent property. In contrast, nonlocality refers to the impossibility of a description of observed statistics in terms of a local hidden variable model, so it is independent of the physical model used to describe the experiment.

It is true that for any pure entangled state there exists a choice of measurements that produce Bell nonlocal correlations, but the situation is more complex for mixed states. While any Bell nonlocal state must be entangled, there exist (mixed) entangled states which do not produce Bell nonlocal correlations[31] (although, operating on several copies of some of such states,[32] or carrying out local post-selections,[33] it is possible to witness nonlocal effects). Moreover, while there are catalysts for entanglement,[34] there are none for nonlocality.[35] Finally, reasonably simple examples of Bell inequalities have been found for which the quantum state giving the largest violation is never a maximally entangled state, showing that entanglement is, in some sense, not even proportional to nonlocality.[36][37][38]

Quantum correlations

[edit]

As shown, the statistics achievable by two or more parties conducting experiments in a classical system are constrained in a non-trivial way. Analogously, the statistics achievable by separate observers in a quantum theory also happen to be restricted. The first derivation of a non-trivial statistical limit on the set of quantum correlations, due to B. Tsirelson,[39] is known as Tsirelson's bound. Consider the CHSH Bell scenario detailed before, but this time assume that, in their experiments, Alice and Bob are preparing and measuring quantum systems. In that case, the CHSH parameter can be shown to be bounded by

The sets of quantum correlations and Tsirelson’s problem

[edit]

Mathematically, a box admits a quantum realization if and only if there exists a pair of Hilbert spaces , a normalized vector and projection operators such that

  1. For all , the sets represent complete measurements. Namely, .
  2. , for all .

In the following, the set of such boxes will be called . Contrary to the classical set of correlations, when viewed in probability space, is not a polytope. On the contrary, it contains both straight and curved boundaries.[40] In addition, is not closed:[41] this means that there exist boxes which can be arbitrarily well approximated by quantum systems but are themselves not quantum.

In the above definition, the space-like separation of the two parties conducting the Bell experiment was modeled by imposing that their associated operator algebras act on different factors of the overall Hilbert space describing the experiment. Alternatively, one could model space-like separation by imposing that these two algebras commute. This leads to a different definition:

admits a field quantum realization if and only if there exists a Hilbert space , a normalized vector and projection operators such that

  1. For all , the sets represent complete measurements. Namely, .
  2. , for all .
  3. , for all .

Call the set of all such correlations .

How does this new set relate to the more conventional defined above? It can be proven that is closed. Moreover, , where denotes the closure of . Tsirelson's problem[42] consists in deciding whether the inclusion relation is strict, i.e., whether or not . This problem only appears in infinite dimensions: when the Hilbert space in the definition of is constrained to be finite-dimensional, the closure of the corresponding set equals .[42]

In January 2020, Ji, Natarajan, Vidick, Wright, and Yuen claimed a result in quantum complexity theory[43] that would imply that , thus solving Tsirelson's problem.[44][45][46][47][48][49][50]

Tsirelson's problem can be shown equivalent to Connes embedding problem,[51][52][53] a famous conjecture in the theory of operator algebras.

Characterization of quantum correlations

[edit]

Since the dimensions of and are, in principle, unbounded, determining whether a given box admits a quantum realization is a complicated problem. In fact, the dual problem of establishing whether a quantum box can have a perfect score at a non-local game is known to be undecidable.[41] Moreover, the problem of deciding whether can be approximated by a quantum system with precision is NP-hard.[54] Characterizing quantum boxes is equivalent to characterizing the cone of completely positive semidefinite matrices under a set of linear constraints.[55]

For small fixed dimensions , one can explore, using variational methods, whether can be realized in a bipartite quantum system , with , . That method, however, can just be used to prove the realizability of , and not its unrealizability with quantum systems.

To prove unrealizability, the most known method is the Navascués–Pironio–Acín (NPA) hierarchy.[56] This is an infinite decreasing sequence of sets of correlations with the properties:

  1. If , then for all .
  2. If , then there exists such that .
  3. For any , deciding whether can be cast as a semidefinite program.

The NPA hierarchy thus provides a computational characterization, not of , but of . If , (as claimed by Ji, Natarajan, Vidick, Wright, and Yuen) then a new method to detect the non-realizability of the correlations in is needed. If Tsirelson's problem was solved in the affirmative, namely, , then the above two methods would provide a practical characterization of .

The physics of supra-quantum correlations

[edit]

The works listed above describe what the quantum set of correlations looks like, but they do not explain why. Are quantum correlations unavoidable, even in post-quantum physical theories, or on the contrary, could there exist correlations outside which nonetheless do not lead to any unphysical operational behavior?

In their seminal 1994 paper, Popescu and Rohrlich explore whether quantum correlations can be explained by appealing to relativistic causality alone.[57] Namely, whether any hypothetical box would allow building a device capable of transmitting information faster than the speed of light. At the level of correlations between two parties, Einstein's causality translates in the requirement that Alice's measurement choice should not affect Bob's statistics, and vice versa. Otherwise, Alice (Bob) could signal Bob (Alice) instantaneously by choosing her (his) measurement setting appropriately. Mathematically, Popescu and Rohrlich's no-signalling conditions are:

Like the set of classical boxes, when represented in probability space, the set of no-signalling boxes forms a polytope. Popescu and Rohrlich identified a box that, while complying with the no-signalling conditions, violates Tsirelson's bound, and is thus unrealizable in quantum physics. Dubbed the PR-box, it can be written as:

Here take values in , and denotes the sum modulo two. It can be verified that the CHSH value of this box is 4 (as opposed to the Tsirelson bound of ). This box had been identified earlier, by Rastall[58] and Khalfin and Tsirelson.[59]

In view of this mismatch, Popescu and Rohrlich pose the problem of identifying a physical principle, stronger than the no-signalling conditions, that allows deriving the set of quantum correlations. Several proposals followed:

  1. Non-trivial communication complexity (NTCC).[60] This principle stipulates that nonlocal correlations should not be so strong as to allow two parties to solve all 1-way communication problems with some probability using just one bit of communication. It can be proven that any box violating Tsirelson's bound by more than is incompatible with NTCC.
  2. No Advantage for Nonlocal Computation (NANLC).[61] The following scenario is considered: given a function , two parties are distributed the strings of bits and asked to output the bits so that is a good guess for . The principle of NANLC states that non-local boxes should not give the two parties any advantage to play this game. It is proven that any box violating Tsirelson's bound would provide such an advantage.
  3. Information Causality (IC).[62] The starting point is a bipartite communication scenario where one of the parts (Alice) is handed a random string of bits. The second part, Bob, receives a random number . Their goal is to transmit Bob the bit , for which purpose Alice is allowed to transmit Bob bits. The principle of IC states that the sum over of the mutual information between Alice's bit and Bob's guess cannot exceed the number of bits transmitted by Alice. It is shown that any box violating Tsirelson's bound would allow two parties to violate IC.
  4. Macroscopic Locality (ML).[63] In the considered setup, two separate parties conduct extensive low-resolution measurements over a large number of independently prepared pairs of correlated particles. ML states that any such “macroscopic” experiment must admit a local hidden variable model. It is proven that any microscopic experiment capable of violating Tsirelson's bound would also violate standard Bell nonlocality when brought to the macroscopic scale. Besides Tsirelson's bound, the principle of ML fully recovers the set of all two-point quantum correlators.
  5. Local Orthogonality (LO).[64] This principle applies to multipartite Bell scenarios, where parties respectively conduct experiments in their local labs. They respectively obtain the outcomes . The pair of vectors is called an event. Two events , are said to be locally orthogonal if there exists such that and . The principle of LO states that, for any multipartite box, the sum of the probabilities of any set of pair-wise locally orthogonal events cannot exceed 1. It is proven that any bipartite box violating Tsirelson's bound by an amount of violates LO.

All these principles can be experimentally falsified under the assumption that we can decide if two or more events are space-like separated. This sets this research program aside from the axiomatic reconstruction of quantum mechanics via Generalized Probabilistic Theories.

The works above rely on the implicit assumption that any physical set of correlations must be closed under wirings.[65] This means that any effective box built by combining the inputs and outputs of a number of boxes within the considered set must also belong to the set. Closure under wirings does not seem to enforce any limit on the maximum value of CHSH. However, it is not a void principle: on the contrary, in [65] it is shown that many simple, intuitive families of sets of correlations in probability space happen to violate it.

Originally, it was unknown whether any of these principles (or a subset thereof) was strong enough to derive all the constraints defining . This state of affairs continued for some years until the construction of the almost quantum set .[66] is a set of correlations that is closed under wirings and can be characterized via semidefinite programming. It contains all correlations in , but also some non-quantum boxes . Remarkably, all boxes within the almost quantum set are shown to be compatible with the principles of NTCC, NANLC, ML and LO. There is also numerical evidence that almost-quantum boxes also comply with IC. It seems, therefore, that, even when the above principles are taken together, they do not suffice to single out the quantum set in the simplest Bell scenario of two parties, two inputs and two outputs.[66]

Device independent protocols

[edit]

Nonlocality can be exploited to conduct quantum information tasks which do not rely on the knowledge of the inner workings of the prepare-and-measurement apparatuses involved in the experiment. The security or reliability of any such protocol just depends on the strength of the experimentally measured correlations . These protocols are termed device-independent.

Device-independent quantum key distribution

[edit]

The first device-independent protocol proposed was device-independent quantum key distribution (QKD).[67] In this primitive, two distant parties, Alice and Bob, are distributed an entangled quantum state, that they probe, thus obtaining the statistics . Based on how non-local the box happens to be, Alice and Bob estimate how much knowledge an external quantum adversary Eve (the eavesdropper) could possess on the value of Alice and Bob's outputs. This estimation allows them to devise a reconciliation protocol at the end of which Alice and Bob share a perfectly correlated one-time pad of which Eve has no information whatsoever. The one-time pad can then be used to transmit a secret message through a public channel. Although the first security analyses on device-independent QKD relied on Eve carrying out a specific family of attacks,[68] all such protocols have been recently proven unconditionally secure.[69]

Device-independent randomness certification, expansion and amplification

[edit]

Nonlocality can be used to certify that the outcomes of one of the parties in a Bell experiment are partially unknown to an external adversary. By feeding a partially random seed to several non-local boxes, and, after processing the outputs, one can end up with a longer (potentially unbounded) string of comparable randomness[70] or with a shorter but more random string.[71] This last primitive can be proven impossible in a classical setting.[72]

Device-independent (DI) randomness certification, expansion, and amplification are techniques used to generate high-quality random numbers that are secure against any potential attacks on the underlying devices used to generate random numbers. These techniques have critical applications in cryptography, where high-quality random numbers are essential for ensuring the security of cryptographic protocols. Randomness certification is the process of verifying that the output of a random number generator is truly random and has not been tampered with by an adversary. DI randomness certification does this verification without making assumptions about the underlying devices that generate random numbers. Instead, randomness is certified by observing correlations between the outputs of different devices that are generated using the same physical process. Recent research has demonstrated the feasibility of DI randomness certification using entangled quantum systems, such as photons or electrons. Randomness expansion is taking a small amount of initial random seed and expanding it into a much larger sequence of random numbers. In DI randomness expansion, the expansion is done using measurements of quantum systems that are prepared in a highly entangled state. The security of the expansion is guaranteed by the laws of quantum mechanics, which make it impossible for an adversary to predict the expansion output. Recent research has shown that DI randomness expansion can be achieved using entangled photon pairs and measurement devices that violate a Bell inequality.[73] Randomness amplification is the process of taking a small amount of initial random seed and increasing its randomness by using a cryptographic algorithm. In DI randomness amplification, this process is done using entanglement properties and quantum mechanics. The security of the amplification is guaranteed by the fact that any attempt by an adversary to manipulate the algorithm's output will inevitably introduce errors that can be detected and corrected. Recent research has demonstrated the feasibility of DI randomness amplification using quantum entanglement and the violation of a Bell inequality.[74]

DI randomness certification, expansion, and amplification are powerful techniques for generating high-quality random numbers that are secure against any potential attacks on the underlying devices used to generate random numbers. These techniques have critical applications in cryptography and are likely to become increasingly crucial as quantum computing technology advances. In addition, a milder approach called semi-DI exists where random numbers can be generated with some assumptions on the working principle of the devices, environment, dimension, energy, etc., in which it benefits from ease-of-implementation and high generation rate.[75]

Self-testing

[edit]

Sometimes, the box shared by Alice and Bob is such that it only admits a unique quantum realization. This means that there exist measurement operators and a quantum state giving rise to such that any other physical realization of is connected to via local unitary transformations. This phenomenon, that can be interpreted as an instance of device-independent quantum tomography, was first pointed out by Tsirelson[40] and named self-testing by Mayers and Yao.[67] Self-testing is known to be robust against systematic noise, i.e., if the experimentally measured statistics are close enough to , one can still determine the underlying state and measurement operators up to error bars.[67]

Dimension witnesses

[edit]

The degree of non-locality of a quantum box can also provide lower bounds on the Hilbert space dimension of the local systems accessible to Alice and Bob.[76] This problem is equivalent to deciding the existence of a matrix with low completely positive semidefinite rank.[77] Finding lower bounds on the Hilbert space dimension based on statistics happens to be a hard task, and current general methods only provide very low estimates.[78] However, a Bell scenario with five inputs and three outputs suffices to provide arbitrarily high lower bounds on the underlying Hilbert space dimension.[79] Quantum communication protocols which assume a knowledge of the local dimension of Alice and Bob's systems, but otherwise do not make claims on the mathematical description of the preparation and measuring devices involved are termed semi-device independent protocols. Currently, there exist semi-device independent protocols for quantum key distribution [80] and randomness expansion.[81]

See also

[edit]

References

[edit]
  1. ^ a b Aspect, Alain; Dalibard, Jean; Roger, Gérard (1982-12-20). "Experimental Test of Bell's Inequalities Using Time- Varying Analyzers". Physical Review Letters. 49 (25): 1804–1807. Bibcode:1982PhRvL..49.1804A. doi:10.1103/PhysRevLett.49.1804.
  2. ^ Rowe MA, et al. (February 2001). "Experimental violation of a Bell's Inequality with efficient detection". Nature. 409 (6822): 791–794. Bibcode:2001Natur.409..791R. doi:10.1038/35057215. hdl:2027.42/62731. PMID 11236986. S2CID 205014115.
  3. ^ Hensen, B, et al. (October 2015). "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres". Nature. 526 (7575): 682–686. arXiv:1508.05949. Bibcode:2015Natur.526..682H. doi:10.1038/nature15759. PMID 26503041. S2CID 205246446.
  4. ^ Giustina, M, et al. (December 2015). "Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons". Physical Review Letters. 115 (25): 250401. arXiv:1511.03190. Bibcode:2015PhRvL.115y0401G. doi:10.1103/PhysRevLett.115.250401. PMID 26722905. S2CID 13789503.
  5. ^ Shalm, LK, et al. (December 2015). "Strong Loophole-Free Test of Local Realism". Physical Review Letters. 115 (25): 250402. arXiv:1511.03189. Bibcode:2015PhRvL.115y0402S. doi:10.1103/PhysRevLett.115.250402. PMC 5815856. PMID 26722906.
  6. ^ Ghirardi, G.C.; Rimini, A.; Weber, T. (March 1980). "A general argument against superluminal transmission through the quantum mechanical measurement process". Lettere al Nuovo Cimento. 27 (10): 293–298. doi:10.1007/BF02817189. S2CID 121145494.
  7. ^ a b Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu; Tze, Chia-Hsiung (2011). "Bell's Inequalities, Superquantum Correlations, and String Theory". Advances in High Energy Physics. 2011: 1–11. doi:10.1155/2011/593423. hdl:10919/48902. ISSN 1687-7357.
  8. ^ a b Einstein, A.; Podolsky, B.; Rosen, N. (1935-05-15). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?". Physical Review. 47 (10): 777–780. Bibcode:1935PhRv...47..777E. doi:10.1103/PhysRev.47.777. ISSN 0031-899X.
  9. ^ Reid, M. D.; Drummond, P. D.; Bowen, W. P.; Cavalcanti, E. G.; Lam, P. K.; Bachor, H. A.; Andersen, U. L.; Leuchs, G. (2009-12-10). "Colloquium : The Einstein-Podolsky-Rosen paradox: From concepts to applications". Reviews of Modern Physics. 81 (4): 1727–1751. arXiv:0806.0270. Bibcode:2009RvMP...81.1727R. doi:10.1103/RevModPhys.81.1727. hdl:10072/37941. ISSN 0034-6861.
  10. ^ Clauser, John F., and Abner Shimony. "Bell's theorem. Experimental tests and implications." Reports on Progress in Physics 41.12 (1978): 1881.
  11. ^ Einstein, Albert. "Letter to E. Schrödinger" [Letter]. Einstein Archives, ID: Call Number 22-47. Hebrew University of Jerusalem.
  12. ^ Jevtic, S.; Rudolph, T (2015). "How Einstein and/or Schrödinger should have discovered Bell's theorem in 1936". Journal of the Optical Society of America B. 32 (4): 50–55. arXiv:1411.4387. Bibcode:2015JOSAB..32A..50J. doi:10.1364/JOSAB.32.000A50. S2CID 55579565.
  13. ^ a b Nielsen, Michael A.; Chuang, Isaac L. (2000). Quantum Computation and Quantum Information. Cambridge University Press. pp. 112–113. ISBN 978-0-521-63503-5.
  14. ^ Wiseman, H.M.; Jones, S.J.; Doherty, A.C. (April 2007). "Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox". Physical Review Letters. 98 (14): 140402. arXiv:quant-ph/0612147. Bibcode:2007PhRvL..98n0402W. doi:10.1103/physrevlett.98.140402. PMID 17501251. S2CID 30078867.
  15. ^ Bohr, N (July 1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?". Physical Review. 48 (8): 696–702. Bibcode:1935PhRv...48..696B. doi:10.1103/PhysRev.48.696.
  16. ^ Furry, W.H. (March 1936). "Remarks on Measurements in Quantum Theory". Physical Review. 49 (6): 476. Bibcode:1936PhRv...49..476F. doi:10.1103/PhysRev.49.476.
  17. ^ von Neumann, J. (1932/1955). In Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, translated into English by Beyer, R.T., Princeton University Press, Princeton, cited by Baggott, J. (2004) Beyond Measure: Modern physics, philosophy, and the meaning of quantum theory, Oxford University Press, Oxford, ISBN 0-19-852927-9, pages 144–145.
  18. ^ Maudlin, Tim (2011). Quantum Non-Locality and Relativity : Metaphysical Intimations of Modern Physics (3rd ed.). John Wiley & Sons. p. 111. ISBN 9781444331264.
  19. ^ Fine, Arthur (Winter 2017). "The Einstein-Podolsky-Rosen Argument in Quantum Theory". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 6 December 2018.
  20. ^ a b c Bell, John (1964). "On the Einstein Podolsky Rosen paradox". Physics Physique Физика. 1 (3): 195–200. doi:10.1103/PhysicsPhysiqueFizika.1.195.
  21. ^ Clauser, John F.; Horne, Michael A.; Shimony, Abner; Holt, Richard A. (October 1969). "Proposed Experiment to Test Local Hidden-Variable Theories". Physical Review Letters. 23 (15): 880–884. Bibcode:1969PhRvL..23..880C. doi:10.1103/PhysRevLett.23.880. S2CID 18467053.
  22. ^ Barrett, J.; Linden, N.; Massar, S.; Pironio, S.; Popescu, S.; Roberts, D. (2005). "Non-local correlations as an information theoretic resource". Physical Review A. 71 (2): 022101. arXiv:quant-ph/0404097. Bibcode:2005PhRvA..71b2101B. doi:10.1103/PhysRevA.71.022101. S2CID 13373771.
  23. ^ Daniel M. Greenberger; Michael A. Horne; Anton Zeilinger (2007), Going beyond Bell's Theorem, arXiv:0712.0921, Bibcode:2007arXiv0712.0921G
  24. ^ Hardy, Lucien (1993). "Nonlocality for two particles without inequalities for almost all entangled states". Physical Review Letters. 71 (11): 1665–1668. Bibcode:1993PhRvL..71.1665H. doi:10.1103/PhysRevLett.71.1665. PMID 10054467. S2CID 11839894.
  25. ^ Braun, D.; Choi, M.-S. (2008). "Hardy's test versus the Clauser-Horne-Shimony-Holt test of quantum nonlocality: Fundamental and practical aspects". Physical Review A. 78 (3): 032114. arXiv:0808.0052. Bibcode:2008PhRvA..78c2114B. doi:10.1103/physreva.78.032114. S2CID 119267461.
  26. ^ Nikolić, Hrvoje (2007). "Quantum Mechanics: Myths and Facts". Foundations of Physics. 37 (11): 1563–1611. arXiv:quant-ph/0609163. Bibcode:2007FoPh...37.1563N. doi:10.1007/s10701-007-9176-y. S2CID 9613836.
  27. ^ a b Bancal, Jean-Daniel; Pironio, Stefano; Acin, Antonio; Liang, Yeong-Cherng; Scarani, Valerio; Gisin, Nicolas (2012). "Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling". Nature Physics. 8 (867): 867–870. arXiv:1110.3795. Bibcode:2012NatPh...8..867B. doi:10.1038/nphys2460. S2CID 13922531.
  28. ^ Fritz, Tobias (2012). "Beyond Bell's Theorem: Correlation Scenarios". New J. Phys. 14 (10): 103001. arXiv:1206.5115. Bibcode:2012NJPh...14j3001F. doi:10.1088/1367-2630/14/10/103001. S2CID 4847110.
  29. ^ Wolfe, Elie; Spekkens, R. W.; Fritz, T (2019). "The Inflation Technique for Causal Inference with Latent Variables". Causal Inference. 7 (2). arXiv:1609.00672. doi:10.1515/jci-2017-0020. S2CID 52476882.
  30. ^ Navascués, Miguel; Wolfe, Elie (2020). "The Inflation Technique Completely Solves the Causal Compatibility Problem". Journal of Causal Inference. 8: 70–91. arXiv:1707.06476. doi:10.1515/jci-2018-0008. S2CID 155100141.
  31. ^ Werner, R.F. (1989). "Quantum States with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model". Physical Review A. 40 (8): 4277–4281. Bibcode:1989PhRvA..40.4277W. doi:10.1103/PhysRevA.40.4277. PMID 9902666.
  32. ^ Palazuelos, Carlos (2012). "Super-activation of quantum non-locality". Physical Review Letters. 109 (19): 190401. arXiv:1205.3118. Bibcode:2012PhRvL.109s0401P. doi:10.1103/PhysRevLett.109.190401. PMID 23215363. S2CID 4613963.
  33. ^ Popescu, Sandu (1995). "Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality". Physical Review Letters. 74 (14): 2619–2622. arXiv:quant-ph/9502005. Bibcode:1995PhRvL..74.2619P. doi:10.1103/PhysRevLett.74.2619. PMID 10057976. S2CID 35478562.
  34. ^ Jonathan, Daniel; Plenio, Martin B. (1999-10-25). "Entanglement-Assisted Local Manipulation of Pure Quantum States". Physical Review Letters. 83 (17): 3566–3569. arXiv:quant-ph/9905071. Bibcode:1999PhRvL..83.3566J. doi:10.1103/PhysRevLett.83.3566. hdl:10044/1/245. ISSN 0031-9007. S2CID 392419.
  35. ^ Karvonen, Martti (2021-10-13). "Neither Contextuality nor Nonlocality Admits Catalysts". Physical Review Letters. 127 (16): 160402. arXiv:2102.07637. Bibcode:2021PhRvL.127p0402K. doi:10.1103/PhysRevLett.127.160402. ISSN 0031-9007. PMID 34723585. S2CID 231924967.
  36. ^ Junge, Marius; Palazuelos, C (2011). "Large violation of Bell inequalities with low entanglement". Communications in Mathematical Physics. 306 (3): 695–746. arXiv:1007.3043. Bibcode:2011CMaPh.306..695J. doi:10.1007/s00220-011-1296-8. S2CID 673737.
  37. ^ Thomas Vidick; Stephanie Wehner (2011). "More Non-locality with less Entanglement". Physical Review A. 83 (5): 052310. arXiv:1011.5206. Bibcode:2011PhRvA..83e2310V. doi:10.1103/PhysRevA.83.052310. S2CID 6589783.
  38. ^ Yeong-Cherng Liang; Tamás Vértesi; Nicolas Brunner (2010). "Semi-device-independent bounds on entanglement". Physical Review A. 83 (2): 022108. arXiv:1012.1513. Bibcode:2011PhRvA..83b2108L. doi:10.1103/PhysRevA.83.022108. S2CID 73571969.
  39. ^ Cirel'son, BS (1980). "Quantum generalizations of Bell's inequality". Letters in Mathematical Physics. 4 (2): 93–100. Bibcode:1980LMaPh...4...93C. doi:10.1007/bf00417500. S2CID 120680226.
  40. ^ a b Tsirel'son, B.S. (1987). "Quantum analogues of the Bell inequalities. The case of two spatially separated domains". Journal of Soviet Mathematics. 36 (4): 557–570. doi:10.1007/BF01663472. S2CID 119363229.
  41. ^ a b Slofstra, William (2017). "The set of quantum correlations is not closed". arXiv:1703.08618 [quant-ph].
  42. ^ a b "Bell inequalities and operator algebras". Open quantum problems. Archived from the original on 2019-12-06. Retrieved 2019-12-05.
  43. ^ Ji, Zhengfeng; Natarajan, Anand; Vidick, Thomas; Wright, John; Yuen, Henry (2020). "MIP*=RE". arXiv:2001.04383. Bibcode:2020arXiv200104383J. {{cite journal}}: Cite journal requires |journal= (help)
  44. ^ Castelvecchi, Davide (2020). "How 'spooky' is quantum physics? The answer could be incalculable". Nature. 577 (7791): 461–462. Bibcode:2020Natur.577..461C. doi:10.1038/d41586-020-00120-6. PMID 31965099.
  45. ^ Kalai, Gil (2020-01-17). "Amazing: Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen proved that MIP* = RE and thus disproved Connes 1976 Embedding Conjecture, and provided a negative answer to Tsirelson's problem". Combinatorics and more. Retrieved 2020-03-06.
  46. ^ Barak, Boaz (2020-01-14). "MIP*=RE, disproving Connes embedding conjecture". Windows On Theory. Retrieved 2020-03-06.
  47. ^ Aaronson, Scott (16 January 2020). "MIP*=RE". Shtetl-Optimized. Retrieved 2020-03-06.
  48. ^ Regan, Kenneth W. (2020-01-15). "Halting Is Poly-Time Quantum Provable". Gödel's Lost Letter and P=NP. Retrieved 2020-03-06.
  49. ^ Vidick, Thomas (2020-01-14). "A Masters project". MyCQstate. Retrieved 2020-03-06.
  50. ^ Hartnett, Kevin (4 March 2020). "Landmark Computer Science Proof Cascades Through Physics and Math". Quanta Magazine. Retrieved 2020-03-09.
  51. ^ Junge, M; Navascués, M; Palazuelos, C; Pérez-García, D; Scholz, VB; Werner, RF (2011). "Connes' embedding problem and Tsirelson's problem". J. Math. Phys. 52 (1): 012102. arXiv:1008.1142. Bibcode:2011JMP....52a2102J. doi:10.1063/1.3514538. S2CID 12321570.
  52. ^ Fritz, Tobias (2012). "Tsirelson's problem and Kirchberg's conjecture". Rev. Math. Phys. 24 (5): 1250012. arXiv:1008.1168. Bibcode:2012RvMaP..2450012F. doi:10.1142/S0129055X12500122. S2CID 17162262.
  53. ^ Ozawa, Narutaka (2013). "About the Connes Embedding Conjecture---Algebraic approaches---". Jpn. J. Math. 8: 147–183. doi:10.1007/s11537-013-1280-5. hdl:2433/173118. S2CID 121154563.
  54. ^ Ito, T.; Kobayashi, H.; Matsumoto, K. (2008). "Oracularization and two-prover one-round interactive proofs against nonlocal strategies". arXiv:0810.0693 [quant-ph].
  55. ^ Sikora, Jamie; Varvitsiotis, Antonios (2017). "Linear conic formulations for two-party correlations and values of nonlocal games". Mathematical Programming. 162 (1–2): 431–463. arXiv:1506.07297. doi:10.1007/s10107-016-1049-8. S2CID 8234910.
  56. ^ Navascués, Miguel; Pironio, S; Acín, A (2007). "Bounding the Set of Quantum Correlations". Physical Review Letters. 98 (1): 010401. arXiv:quant-ph/0607119. Bibcode:2007PhRvL..98a0401N. doi:10.1103/physrevlett.98.010401. PMID 17358458. S2CID 41742170.
  57. ^ Popescu, Sandu; Rohrlich, Daniel (1994). "Nonlocality as an axiom". Foundations of Physics. 24 (3): 379–385. Bibcode:1994FoPh...24..379P. CiteSeerX 10.1.1.508.4193. doi:10.1007/BF02058098. S2CID 120333148.
  58. ^ Rastall, Peter (1985). "Locality, Bell's theorem, and quantum mechanics". Foundations of Physics. 15 (9): 963–972. Bibcode:1985FoPh...15..963R. doi:10.1007/bf00739036. S2CID 122298281.
  59. ^ Khalfin, L.A.; Tsirelson, B.S. (1985). Lahti; et al. (eds.). Quantum and quasi-classical analogs of Bell inequalities. Symposium on the Foundations of Modern Physics. World Sci. Publ. pp. 441–460.
  60. ^ Brassard, G; Buhrman, H; Linden, N; Methot, AA; Tapp, A; Unger, F (2006). "Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial". Physical Review Letters. 96 (25): 250401. arXiv:quant-ph/0508042. Bibcode:2006PhRvL..96y0401B. doi:10.1103/PhysRevLett.96.250401. PMID 16907289. S2CID 6135971.
  61. ^ Linden, N.; Popescu, S.; Short, A. J.; Winter, A. (2007). "Quantum Nonlocality and Beyond: Limits from Nonlocal Computation". Physical Review Letters. 99 (18): 180502. arXiv:quant-ph/0610097. Bibcode:2007PhRvL..99r0502L. doi:10.1103/PhysRevLett.99.180502. PMID 17995388.
  62. ^ Pawlowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Zukowski, M. (October 2009). "Information Causality as a Physical Principle". Nature. 461 (7267): 1101–1104. arXiv:0905.2292. Bibcode:2009Natur.461.1101P. doi:10.1038/nature08400. PMID 19847260. S2CID 4428663.
  63. ^ Navascués, M.; H. Wunderlich (2009). "A Glance Beyond the Quantum Model". Proc. R. Soc. A. 466 (2115): 881–890. arXiv:0907.0372. doi:10.1098/rspa.2009.0453.
  64. ^ Fritz, T.; A. B. Sainz; R. Augusiak; J. B. Brask; R. Chaves; A. Leverrier; A. Acín (2013). "Local orthogonality as a multipartite principle for quantum correlations". Nature Communications. 4: 2263. arXiv:1210.3018. Bibcode:2013NatCo...4.2263F. doi:10.1038/ncomms3263. PMID 23948952. S2CID 14759956.
  65. ^ a b Allcock, Jonathan; Nicolas Brunner; Noah Linden; Sandu Popescu; Paul Skrzypczyk; Tamás Vértesi (2009). "Closed sets of non-local correlations". Physical Review A. 80 (6): 062107. arXiv:0908.1496. Bibcode:2009PhRvA..80f2107A. doi:10.1103/PhysRevA.80.062107. S2CID 118677048.
  66. ^ a b Navascués, M.; Y. Guryanova; M. J. Hoban; A. Acín (2015). "Almost Quantum Correlations". Nature Communications. 6: 6288. arXiv:1403.4621. Bibcode:2015NatCo...6.6288N. doi:10.1038/ncomms7288. PMID 25697645. S2CID 12810715.
  67. ^ a b c Mayers, Dominic; Yao, Andrew C.-C. (1998). Quantum Cryptography with Imperfect Apparatus. IEEE Symposium on Foundations of Computer Science (FOCS).
  68. ^ Acín, Antonio; Nicolas Gisin; Lluis Masanes (2006). "From Bell's Theorem to Secure Quantum Key Distribution". Physical Review Letters. 97 (12): 120405. arXiv:quant-ph/0510094. Bibcode:2006PhRvL..97l0405A. doi:10.1103/PhysRevLett.97.120405. PMID 17025944. S2CID 3315286.
  69. ^ Vazirani, Umesh; Vidick, Thomas (2014). "Fully Device-Independent Quantum Key Distribution". Physical Review Letters. 113 (14): 140501. arXiv:1210.1810. Bibcode:2014PhRvL.113n0501V. doi:10.1103/physrevlett.113.140501. PMID 25325625. S2CID 119299119.
  70. ^ Colbeck, Roger (December 2006). Chapter 5. Quantum And Relativistic Protocols For Secure Multi-Party Computation (Thesis), University of Cambridge. arXiv:0911.3814.
  71. ^ Colbeck, Roger; Renner, Renato (2012). "Free randomness can be amplified". Nature Physics. 8 (6): 450–453. arXiv:1105.3195. Bibcode:2012NatPh...8..450C. doi:10.1038/nphys2300. S2CID 118309394.
  72. ^ Santha, Miklos; Vazirani, Umesh V. (1984-10-24). Generating quasi-random sequences from slightly-random sources. Proceedings of the 25th IEEE Symposium on Foundations of Computer Science. University of California. pp. 434–440.
  73. ^ Colbeck, R. & Kent, A. (2011). Private randomness expansion with untrusted devices. Journal of Physics A: Mathematical and Theoretical, 44(9), 095305. doi: 10.1088/1751-8113/44/9/095305
  74. ^ Pironio, S, et al. (2010). "Random numbers certified by Bell's theorem". Nature. 464 (7291): 1021–1024. arXiv:0911.3427. Bibcode:2010Natur.464.1021P. doi:10.1038/nature09008. PMID 20393558. S2CID 4300790.
  75. ^ Tebyanian, H., Zahidy, M., Avesani, M., Stanco, A., Villoresi, P., & Vallone, G. (2021). Semi-device independent randomness generation based on quantum state's indistinguishability. Quantum Science and Technology, 6(4), 045026. doi: 10.1088/2058-9565/ac2047. URL: https://iopscience.iop.org/article/10.1088/2058-9565/ac2047 }
  76. ^ Brunner, Nicolas; Pironio, Stefano; Acín, Antonio; Gisin, Nicolas; Methot, Andre Allan; Scarani, Valerio (2008). "Testing the Hilbert space dimension". Physical Review Letters. 100 (21): 210503. arXiv:0802.0760. Bibcode:2008arXiv0802.0760B. doi:10.1103/PhysRevLett.100.210503. PMID 18518591. S2CID 119256543.
  77. ^ Prakash, Anupam; Sikora, Jamie; Varvitsiotis, Antonios; Wei Zhaohui (2018). "Completely positive semidefinite rank". Mathematical Programming. 171 (1–2): 397–431. arXiv:1604.07199. doi:10.1007/s10107-017-1198-4. S2CID 17885968.
  78. ^ Navascués, Miguel; Vértesi, Tamás (2015). "Bounding the set of finite dimensional quantum correlations". Physical Review Letters. 115 (2): 020501. arXiv:1412.0924. Bibcode:2015PhRvL.115b0501N. doi:10.1103/PhysRevLett.115.020501. PMID 26207454. S2CID 12226163.
  79. ^ Coladangelo, Andrea; Stark, Jalex (2018). "Unconditional separation of finite and infinite-dimensional quantum correlations". arXiv:1804.05116 [quant-ph].
  80. ^ Pawlowski, Marcin; Brunner, Nicolas (2011). "Semi-device-independent security of one-way quantum key distribution". Physical Review A. 84 (1): 010302(R). arXiv:1103.4105. Bibcode:2011PhRvA..84a0302P. doi:10.1103/PhysRevA.84.010302. S2CID 119300029.
  81. ^ Li, Hong-Wei; Yin, Zhen-Qiang; Wu, Yu-Chun; Zou, Xu-Bo; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu (2011). "Semi-device-independent random-number expansion without entanglement". Physical Review A. 84 (3): 034301. arXiv:1108.1480. Bibcode:2011PhRvA..84c4301L. doi:10.1103/PhysRevA.84.034301. S2CID 118407749.

Further reading

[edit]