Jump to content

Stellar wind: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Tags: Reverted Visual edit Mobile edit Mobile web edit
spaces; converted px to upright
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Flow of gas ejected from the upper atmosphere of a star}}
{{Short description|Flow of gas ejected from the upper atmosphere of a star}}
{{About|gas ejected from the atmosphere of stars}}
{{About|gas ejected from the atmosphere of stars}}
[[File:52706main hstorion lg.jpg|thumb|This image shows the wind from the star LL Orionis generating a [[bow shock]] (the bright arc) as it collides with material in the surrounding [[Orion Nebula]].]]
[[File:52706main hstorion lg.jpg|thumb|upright=1.2|This image shows the wind from the star LL Orionis generating a [[bow shock]] (the bright arc) as it collides with material in the surrounding [[Orion Nebula]].]]
A '''stellar wind''' is a flow of gas ejected from the [[stellar atmosphere|upper atmosphere]] of a [[star]]. It is distinguished from the [[bipolar outflow]]s characteristic of young stars by being less [[collimated]], although stellar winds are not generally spherically symmetric.
A '''stellar wind''' is a flow of gas ejected from the [[stellar atmosphere|upper atmosphere]] of a [[star]]. It is distinguished from the [[bipolar outflow]]s characteristic of young stars by being less [[collimated]], although stellar winds are not generally spherically symmetric.


Different [[stellar classification|types]] of stars have different types of stellar winds.
Different [[stellar classification|types]] of stars have different types of stellar winds.


Post-[[main sequence|main-sequence]] [[star]]s nearing the ends of their lives often eject large quantities of mass in massive (<math> \scriptstyle \dot{M} > 10^{-3}</math> solar masses per year), slow (v = 10&nbsp;km/s) winds. These include [[red giant]]s and [[Red supergiant|supergiants]], and [[asymptotic giant branch]] stars. These winds are understood to be driven by [[radiation pressure]] on [[Cosmic dust|dust]] condensing in the upper atmosphere of the stars.<ref>{{Cite book|title=Introduction to stellar winds|author=Lamers, Henny J. G. L. M.|date=1999|publisher=Cambridge University Press|others=Cassinelli, Joseph P.|isbn=0521593980|location=Cambridge, U.K.|oclc=38738913}}</ref><ref>{{cite web|title=Dust Envelopes|url=http://www.aip.de/groups/sternphysik/stp/dust-env_neu.html|work=Stellar Physics|publisher=Astrophysical Institute Potsdam|access-date=7 April 2014|archive-date=1 October 2016|archive-url=https://web.archive.org/web/20161001214442/http://www.aip.de/groups/sternphysik/stp/dust-env_neu.html|url-status=dead}}</ref><ref>{{Cite journal|last1=Mattsson|first1=L.|last2=Wahlin|first2=R.|last3=Höfner|first3=S.|date=January 2010|title=Dust driven mass loss from carbon stars as a function of stellar parameters|journal=Astronomy and Astrophysics|language=en|volume=509|pages=A14|doi=10.1051/0004-6361/200912084|issn=0004-6361|arxiv=1107.1771|s2cid=17360256}}</ref><ref>{{Cite journal|last1=Höfner|first1=S.|last2=Gautschy–Loidl|first2=R.|last3=Aringer|first3=B.|last4=Jørgensen|first4=U. G.|date=February 2003|title=Dynamic model atmospheres of AGB stars|journal=Astronomy & Astrophysics|language=en|volume=399|issue=2|pages=589–601|doi=10.1051/0004-6361:20021757|issn=0004-6361|doi-access=free}}</ref><ref>{{Cite journal|last1=Sandin|first1=C.|last2=Höfner|first2=S.|date=June 2003|title=Three-component modeling of C-rich AGB star winds|journal=Astronomy & Astrophysics|language=en|volume=404|issue=3|pages=789–807|doi=10.1051/0004-6361:20030515 |arxiv=astro-ph/0304278|issn=0004-6361|doi-access=free}}</ref><ref>{{Cite journal|last1=Sandin|first1=C.|last2=Höfner|first2=S.|date=January 2004|title=Three-component modeling of C-rich AGB star winds|journal=Astronomy & Astrophysics|language=en|volume=413|issue=3|pages=789–798|doi=10.1051/0004-6361:20031530|issn=0004-6361|arxiv=astro-ph/0309822|s2cid=15641925}}</ref>
Post-[[main sequence|main-sequence]] [[star]]s nearing the ends of their lives often eject large quantities of mass in massive (<math> \scriptstyle \dot{M} > 10^{-3}</math> solar masses per year), slow (v = 10&nbsp;km/s) winds. These include [[red giant]]s and [[Red supergiant|supergiants]], and [[asymptotic giant branch]] stars. These winds are understood to be driven by [[radiation pressure]] on [[Cosmic dust|dust]] condensing in the upper atmosphere of the stars.<ref>{{Cite book |author=Lamers, Henny J. G. L. M. |title=Introduction to stellar winds |date=1999 |publisher=Cambridge University Press |others=Cassinelli, Joseph P. |isbn=0521593980 |location=Cambridge, England |oclc=38738913}}</ref><ref>{{cite web|title=Dust Envelopes|url=http://www.aip.de/groups/sternphysik/stp/dust-env_neu.html|work=Stellar Physics|publisher=Astrophysical Institute Potsdam|access-date=7 April 2014|archive-date=1 October 2016|archive-url=https://web.archive.org/web/20161001214442/http://www.aip.de/groups/sternphysik/stp/dust-env_neu.html|url-status=dead}}</ref><ref>{{Cite journal|last1=Mattsson|first1=L.|last2=Wahlin|first2=R.|last3=Höfner|first3=S.|date=January 2010|title=Dust driven mass loss from carbon stars as a function of stellar parameters|journal=Astronomy and Astrophysics|language=en|volume=509|pages=A14|doi=10.1051/0004-6361/200912084|issn=0004-6361|arxiv=1107.1771|s2cid=17360256}}</ref><ref>{{Cite journal|last1=Höfner|first1=S.|last2=Gautschy–Loidl|first2=R.|last3=Aringer|first3=B.|last4=Jørgensen|first4=U. G.|date=February 2003|title=Dynamic model atmospheres of AGB stars|journal=Astronomy & Astrophysics|language=en|volume=399|issue=2|pages=589–601|doi=10.1051/0004-6361:20021757|issn=0004-6361|doi-access=free}}</ref><ref>{{Cite journal|last1=Sandin|first1=C.|last2=Höfner|first2=S.|date=June 2003|title=Three-component modeling of C-rich AGB star winds|journal=Astronomy & Astrophysics|language=en|volume=404|issue=3|pages=789–807|doi=10.1051/0004-6361:20030515 |arxiv=astro-ph/0304278|issn=0004-6361|doi-access=free}}</ref><ref>{{Cite journal|last1=Sandin|first1=C.|last2=Höfner|first2=S.|date=January 2004|title=Three-component modeling of C-rich AGB star winds|journal=Astronomy & Astrophysics|language=en|volume=413|issue=3|pages=789–798|doi=10.1051/0004-6361:20031530|issn=0004-6361|arxiv=astro-ph/0309822|s2cid=15641925}}</ref>


Young [[T Tauri star]]s often have very powerful stellar winds.{{citation needed|date=August 2020}}
Young [[T Tauri star]]s often have very powerful stellar winds.{{citation needed|date=August 2020}}


Massive stars of [[stellar classification|types]] [[O star|O]] and [[B V star|B]] have stellar winds with lower mass loss rates (<math>\scriptstyle \dot{M} < 10^{-6}</math> solar masses per year) but very high velocities (v > 1–2000&nbsp;km/s). Such winds are driven by radiation pressure on the resonance absorption lines of heavy elements such as carbon and nitrogen.<ref>{{cite journal| bibcode=1975ApJ...195..157C| last1=Castor| first1=J.| last2=Abbott|first2=D. C. | last3=Klein|first3=R. I. | author-link3=Richard Klein (astronomer) | title=Radiation-driven winds in Of stars| date=1975| journal=Astrophys. J.| volume=195| pages=157–174| doi=10.1086/153315}}</ref> These high-energy stellar winds blow [[stellar wind bubble]]s.
Massive stars of [[stellar classification|types]] [[O star|O]] and [[B V star|B]] have stellar winds with lower mass loss rates (<math>\scriptstyle \dot{M} < 10^{-6}</math> solar masses per year) but very high velocities (v > 1–2000&nbsp;km/s). Such winds are driven by radiation pressure on the resonance absorption lines of heavy elements such as carbon and nitrogen.<ref>{{cite journal| bibcode=1975ApJ...195..157C| last1=Castor| first1=J.| last2=Abbott|first2=D. C. | last3=Klein|first3=R. I. | author-link3=Richard Klein (astronomer) | title=Radiation-driven winds in Of stars| date=1975| journal=Astrophys. J.| volume=195| pages=157–174| doi=10.1086/153315}}</ref> These high-energy stellar winds blow [[stellar wind bubble]]s.


[[File:The long goodbye.jpg|thumb|In [[planetary nebula]] [[NGC 6565]], a cloud of gas was ejected from the star after strong stellar winds.<ref>{{cite web|title=The long goodbye|url=http://www.spacetelescope.org/images/potw1530a/|access-date=27 July 2015}}</ref>]]
[[File:The long goodbye.jpg|thumb|upright=1.2|In [[planetary nebula]] [[NGC 6565]], a cloud of gas was ejected from the star after strong stellar winds.<ref>{{cite web|title=The long goodbye|url=http://www.spacetelescope.org/images/potw1530a/|access-date=27 July 2015}}</ref>]]


[[G-type main-sequence star|G-type stars]] like the [[Sun]] have a wind driven by their hot, magnetized [[stellar corona|corona]]. The Sun's wind is called the [[solar wind]]. These winds consist mostly of high-energy [[electrons]] and [[proton]]s (about 1 [[electron volt|keV]]) that are able to escape the star's [[gravity]] because of the high [[temperature]] of the [[stellar corona|corona]].
[[G-type main-sequence star|G-type stars]] like the [[Sun]] have a wind driven by their hot, magnetized [[stellar corona|corona]]. The Sun's wind is called the [[solar wind]]. These winds consist mostly of high-energy [[electrons]] and [[proton]]s (about 1 [[electron volt|keV]]) that are able to escape the star's [[gravity]] because of the high [[temperature]] of the [[stellar corona|corona]].


Stellar winds from main-sequence stars do not strongly influence the evolution of lower-mass stars such as the Sun. However, for more massive stars such as O stars, the mass loss can result in a star shedding as much as 50% of its mass while on the main sequence: this clearly has a significant impact on the later stages of evolution. The influence can even be seen for intermediate mass stars, which will become [[white dwarf]]s at the ends of their lives rather than exploding as [[supernova|supernovas]] only because they lost enough mass in their winds.{{citation needed|date=August 2020}}
Stellar winds from main-sequence stars do not strongly influence the evolution of lower-mass stars such as the Sun. However, for more massive stars such as O stars, the mass loss can result in a star shedding as much as 50% of its mass whilst on the main sequence: this clearly has a significant impact on the later stages of evolution. The influence can even be seen for intermediate mass stars, which will become [[white dwarf]]s at the ends of their lives rather than exploding as [[supernova]]e only because they lost enough mass in their winds.{{citation needed|date=August 2020}}


==See also==
==See also==
{{Portal|Space}}
{{Portal|Space}}
{{div col|colwidth=20em}}
* [[Cosmic ray]]
* [[Cosmic ray]]
* [[Cosmic wind]]
* [[Cosmic wind]]
* [[Planetary wind]]
* [[Colliding-wind binary]]
* [[Pulsar wind nebula]]
* [[Galactic superwind]]
* [[Superwind]]
{{div col end}}


==References==
==References==

Latest revision as of 21:02, 18 November 2024

This image shows the wind from the star LL Orionis generating a bow shock (the bright arc) as it collides with material in the surrounding Orion Nebula.

A stellar wind is a flow of gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spherically symmetric.

Different types of stars have different types of stellar winds.

Post-main-sequence stars nearing the ends of their lives often eject large quantities of mass in massive ( solar masses per year), slow (v = 10 km/s) winds. These include red giants and supergiants, and asymptotic giant branch stars. These winds are understood to be driven by radiation pressure on dust condensing in the upper atmosphere of the stars.[1][2][3][4][5][6]

Young T Tauri stars often have very powerful stellar winds.[citation needed]

Massive stars of types O and B have stellar winds with lower mass loss rates ( solar masses per year) but very high velocities (v > 1–2000 km/s). Such winds are driven by radiation pressure on the resonance absorption lines of heavy elements such as carbon and nitrogen.[7] These high-energy stellar winds blow stellar wind bubbles.

In planetary nebula NGC 6565, a cloud of gas was ejected from the star after strong stellar winds.[8]

G-type stars like the Sun have a wind driven by their hot, magnetized corona. The Sun's wind is called the solar wind. These winds consist mostly of high-energy electrons and protons (about 1 keV) that are able to escape the star's gravity because of the high temperature of the corona.

Stellar winds from main-sequence stars do not strongly influence the evolution of lower-mass stars such as the Sun. However, for more massive stars such as O stars, the mass loss can result in a star shedding as much as 50% of its mass whilst on the main sequence: this clearly has a significant impact on the later stages of evolution. The influence can even be seen for intermediate mass stars, which will become white dwarfs at the ends of their lives rather than exploding as supernovae only because they lost enough mass in their winds.[citation needed]

See also

[edit]

References

[edit]
  1. ^ Lamers, Henny J. G. L. M. (1999). Introduction to stellar winds. Cassinelli, Joseph P. Cambridge, England: Cambridge University Press. ISBN 0521593980. OCLC 38738913.
  2. ^ "Dust Envelopes". Stellar Physics. Astrophysical Institute Potsdam. Archived from the original on 1 October 2016. Retrieved 7 April 2014.
  3. ^ Mattsson, L.; Wahlin, R.; Höfner, S. (January 2010). "Dust driven mass loss from carbon stars as a function of stellar parameters". Astronomy and Astrophysics. 509: A14. arXiv:1107.1771. doi:10.1051/0004-6361/200912084. ISSN 0004-6361. S2CID 17360256.
  4. ^ Höfner, S.; Gautschy–Loidl, R.; Aringer, B.; Jørgensen, U. G. (February 2003). "Dynamic model atmospheres of AGB stars". Astronomy & Astrophysics. 399 (2): 589–601. doi:10.1051/0004-6361:20021757. ISSN 0004-6361.
  5. ^ Sandin, C.; Höfner, S. (June 2003). "Three-component modeling of C-rich AGB star winds". Astronomy & Astrophysics. 404 (3): 789–807. arXiv:astro-ph/0304278. doi:10.1051/0004-6361:20030515. ISSN 0004-6361.
  6. ^ Sandin, C.; Höfner, S. (January 2004). "Three-component modeling of C-rich AGB star winds". Astronomy & Astrophysics. 413 (3): 789–798. arXiv:astro-ph/0309822. doi:10.1051/0004-6361:20031530. ISSN 0004-6361. S2CID 15641925.
  7. ^ Castor, J.; Abbott, D. C.; Klein, R. I. (1975). "Radiation-driven winds in Of stars". Astrophys. J. 195: 157–174. Bibcode:1975ApJ...195..157C. doi:10.1086/153315.
  8. ^ "The long goodbye". Retrieved 27 July 2015.
[edit]