Sea Dragon (rocket): Difference between revisions
Fixed typo Tags: Mobile edit Mobile web edit |
m →Design: Spelling/grammar/punctuation/typographical correction |
||
(97 intermediate revisions by 78 users not shown) | |||
Line 1: | Line 1: | ||
{{ |
{{Short description|1962 concept for a reusable, sea-launched rocket}} |
||
{{Infobox rocket |
|||
⚫ | |||
| name = Sea Dragon |
|||
[[Image:Saturn v schematic.jpg|thumb|[[Saturn V]]. Its second stage would fit inside the first stage engine and nozzle of the Sea Dragon.]] |
|||
| image = SeaDragonRocketv2.gif |
|||
⚫ | The '''Sea Dragon''' was a 1962 conceptualized design study for a [[two |
||
⚫ | |||
| function = Orbital super heavy-lift launch vehicle |
|||
| manufacturer = |
|||
| country-origin = United States |
|||
| height = {{convert|150|m|abbr=on}} |
|||
| diameter = {{convert|23|m|abbr=on}} |
|||
| mass = {{convert|18143|t|lb|abbr=on}} |
|||
| stages = 2 |
|||
| capacities = |
|||
{{Infobox rocket/Payload |
|||
| location =[[Low Earth orbit|LEO]] |
|||
| altitude = {{convert|229|km|nmi|abbr=on}} |
|||
| inclination = |
|||
| mass = {{convert|550|t|lb|abbr=on}} |
|||
}} |
|||
{{Infobox rocket/Stage |
|||
| type = stage |
|||
| stageno = First |
|||
| name = |
|||
| engines = 1 |
|||
| thrust = {{convert|350|MN|lbf|abbr=on}} sea level |
|||
| burntime = 81 seconds |
|||
| SI = |
|||
| fuel = [[RP-1]] / [[Liquid oxygen|LOX]] |
|||
}} |
|||
{{Infobox rocket/Stage |
|||
| type = stage |
|||
| stageno = Second |
|||
| name = |
|||
| engines = 1 |
|||
| thrust = {{convert|59|MN|lbf|abbr=on}} vacuum |
|||
| burntime = 260 seconds |
|||
| SI = |
|||
| fuel = [[LH2|LH<sub>2</sub>]] / [[Liquid oxygen|LOX]] |
|||
}} |
|||
}} |
|||
⚫ | The '''Sea Dragon''' was a 1962 conceptualized design study for a [[two-stage-to-orbit|two-stage]] sea-launched orbital [[super heavy-lift launch vehicle]]. The project was led by [[Robert Truax]] while working at [[Aerojet]], one of a number of designs he created that were to be launched by floating the rocket in the ocean. Although there was some interest at both [[NASA]] and [[Vigor Shipyards|Todd Shipyards]], the project was not implemented. |
||
With dimensions of {{convert|150|m|ft|abbr=on}} long and {{convert|23|m|ft|abbr=on}} in diameter, Sea Dragon would have been the largest rocket ever built. {{Asof|2024}}, among rockets that have been fully conceived but not built, it is by far the largest ever and, in terms of payload into [[low Earth orbit]] (LEO), equaled only by the [[Interplanetary Transport System]] concept (the predecessor to [[SpaceX Starship]]) in the latter's expendable configuration with both designed for 550 tonnes. |
|||
==Design== |
==Design== |
||
Truax's basic idea was to produce a low-cost heavy launcher, a concept now called "[[big dumb booster]] |
Truax's basic idea was to produce a low-cost heavy launcher, a concept now called "[[big dumb booster]]." To lower the cost of operation, the rocket itself was launched from the ocean, requiring little in the way of support systems. A large ballast tank system attached to the bottom of the first-stage [[de Laval nozzle|engine bell]] was used to "hoist" the rocket vertical for launch. In this orientation the payload at the top of the second stage was just above the waterline, making it easy to access. Truax had already experimented with this basic system in the Sea Bee<ref>Astronautix.com, [https://web.archive.org/web/20161025063452/http://www.astronautix.com/s/seabee.html Sea Bee]</ref><ref group=NB>Sea Bee was a proof of principle program to validate the sea-launch concept. A surplus [[Aerobee]] rocket was modified so that it could be fired underwater. The rocket worked properly the first time in restrained mode. Later tests of repeat firings proved so simple that the cost of turn-around was about 7% that of a new unit.</ref> and Sea Horse.<ref>Astronautix.com, [https://web.archive.org/web/20160728041625/http://www.astronautix.com/s/seahorse.html Sea Horse]</ref><ref group=NB>Sea Horse demonstrated sea-launch at a larger scale and on a rocket with a complex set of guidance and control systems. It used a surplus {{convert|9000|kgf|lbf N|abbr=on}} pressure fed, acid/aniline [[Corporal missile]] on a barge in San Francisco Bay. This was first fired several metres above the water, then lowered and fired in successive steps until reaching a considerable depth. Firing from underwater posed no problems and there was substantial noise attenuation.</ref> To lower the cost of the rocket, he intended it to be built of inexpensive materials, specifically {{cvt|8|mm}} [[steel sheeting]]. The rocket would be built at a sea-side shipbuilder and towed to sea for launch. It would use wide engineering margins with strong simple materials to further enhance reliability and reduce cost and complexity. The system would be at least partially reusable with passive reentry and recovery of rocket sections for refurbishment and relaunch.<ref name=PopMech-2017-04-07>{{cite magazine |url= http://www.popularmechanics.com/space/rockets/a25915/sea-dragon-history-curious-droid/ |title= The Enormous Sea-Launched Rocket That Never Flew |first=David |last=Grossman |date= 3 April 2017 |magazine= Popular Mechanics }}</ref><ref name=CiS-2013-01>{{cite web |url= http://www.citizensinspace.org/2013/01/historical-note-the-legend-of-the-sea-dragon/ |title= The Legend of the Sea Dragon |date= January 2013 |publisher= Citizens in Space }}</ref> |
||
The first stage was to be powered by a single |
The first stage was to be powered by a single {{convert|36000000|kgf|MN lbf|abbr=on}} thrust engine burning [[RP-1]] and LOX ([[liquid oxygen]]). The tank pressure was {{convert|32|atm|kPa psi|abbr=on}} for the RP-1 and {{convert|17|atm|kPa psi|abbr=on}} for the LOX, providing a chamber pressure of {{convert|20|atm|kPa psi|abbr=on}} at liftoff. As the vehicle climbed the pressures dropped off, eventually burning out after 81 seconds. By this point the vehicle was {{convert|25|mi|km}} up and {{convert|20|mi|km|abbr=on}} downrange, traveling at a speed of {{convert|4,000|mph|kph km/s|abbr=on}}. The normal mission profile expended the stage in a high-speed splashdown some {{convert|180|mi|km}} downrange. Plans for stage recovery were studied as well. |
||
The second stage was also equipped with a single very large engine, in this case a {{convert|6000000|kgf|MN lbf|abbr=on}} thrust engine burning [[liquid hydrogen]] and LOX. |
The second stage was also equipped with a single very large engine, in this case a {{convert|6000000|kgf|MN lbf|abbr=on}} thrust engine burning [[liquid hydrogen]] and LOX. It was also pressure-fed, at a constant lower pressure of {{convert|7|atm|kPa psi|abbr=on}} throughout the entire 260 second burn, at which point it was {{convert|142|mi|km|abbr=on}} up and {{convert|584|mi|km|abbr=on}} downrange. To improve performance, the engine featured an expanding engine bell, changing from 7:1 to 27:1 expansion as it climbed. The overall height of the rocket was shortened somewhat by making the "nose" of the first stage pointed, lying inside the second-stage engine bell. |
||
A typical launch sequence would start with the rocket being refurbished and mated to its cargo and ballast tanks on shore. The RP-1 |
A typical launch sequence would start with the rocket being refurbished and mated to its cargo and ballast tanks on shore. The RP-1 would also be loaded at this point. The rocket would then be towed to a launch site, where the LOX and LH2 would be generated on-site using [[electrolysis]]; Truax suggested using a nuclear-powered [[aircraft carrier]] as a power supply during this phase. The ballast tanks, which also served as a cap and protection for the first-stage engine bell, would then be filled with water, sinking the rocket to vertical with the second stage above the waterline. Last minute checks could then be carried out and the rocket launched. |
||
The rocket would have been able to carry a payload of up to {{convert|550|t|LT ST}} or {{convert|{{convert|550|t|kg|disp=number}}|kg|lb|abbr=on}} into LEO. Payload costs were estimated to be between $59 |
The rocket would have been able to carry a payload of up to {{convert|550|t|LT ST}} or {{convert|{{convert|550|t|kg|disp=number}}|kg|lb|abbr=on}} into LEO. Payload costs, in 1963, were estimated to be between $59 and $600 per kg (roughly $500 to $5,060 per kg in 2020 dollars<ref>{{cite web|url=https://www.bls.gov/data/inflation_calculator.htm|title=CPI Inflation Calculator|access-date=August 19, 2020}}</ref>). [[TRW Inc.|TRW]] (Space Technology Laboratories, Inc.) conducted a program review and validated the design and its expected costs.<ref>"Study of Large Sea-Launch Space Vehicle," Contract NAS8-2599, Space Technology Laboratories, Inc./Aerojet General Corporation Report #8659-6058-RU-000, Vol. 1 – Design, |
||
January 1963</ref> However, budget pressures led to the closing of the Future Projects Branch, ending work on the super-heavy launchers they had proposed for a |
January 1963</ref> However, budget pressures led to the closing of the Future Projects Branch, ending work on the super-heavy launchers they had proposed for a crewed mission to Mars. |
||
[[File:Sea-Dragon.jpg|alt=Principle of the Sea Dragon rocket|center|thumb|800x800px|Principle of the Sea Dragon]] |
[[File:Sea-Dragon.jpg|alt=Principle of the Sea Dragon rocket|center|thumb|800x800px|Principle of the Sea Dragon]] |
||
[[File:SVSD-4.png|thumb|Composite of two NASA technical drawings, of the Saturn V rocket and the proposed Sea Dragon rocket, to the same scale]] |
[[File:SVSD-4.png|thumb|Composite of two NASA technical drawings, of the Saturn V rocket and the proposed Sea Dragon rocket, to the same scale. The second stage of Saturn V would fit inside the first-stage engine and nozzle of the Sea Dragon.]] |
||
[[File:Sea_Dragon.jpg|thumb|A composite visualization of the Sea Dragon standing in front of the NASA [[Vehicle Assembly Building]] for scale.]] |
|||
== Sea Dragon in fiction == |
|||
The Sea Dragon appears in the first-season finale of the 2019 [[Apple TV+]] series [[For All Mankind (TV series)|''For All Mankind'']]. The series is set in an [[alternate history]] timeline in which the 1960s-era [[space race]] did not end. In the post-credits scene, which takes place in 1983, a Sea Dragon is depicted launching from the Pacific Ocean to resupply the US lunar colony. An astronaut says in a voice-over that the ocean launch is being used as a safety measure because the payload includes plutonium.<ref>{{cite web |title=Sea Dragon Launch - For All Mankind |url=https://www.youtube.com/watch?v=vQDe0rCsd0Q |archive-url=https://ghostarchive.org/varchive/youtube/20211212/vQDe0rCsd0Q| archive-date=2021-12-12 |url-status=live|website=YouTube.com | date=19 January 2020 |publisher=YouTube |access-date=25 February 2020}}{{cbignore}}</ref> The Sea Dragon continues to play a role in season 2; its high payload capacity is used to resupply an expansive lunar base and is the subject of a lunar blockade by the Soviet Union.<ref>{{cite web |title=For All Mankind - Pathfinder Fires its Missiles at Sea Dragon |url=https://www.youtube.com/watch?v=Jm-ivjNvGVI |archive-url=https://ghostarchive.org/varchive/youtube/20211212/Jm-ivjNvGVI| archive-date=2021-12-12 |url-status=live|website=YouTube.com | date=23 April 2021 |publisher=YouTube |access-date=24 November 2021}}{{cbignore}}</ref> There are some small changes from the original concept compared to the version in the series, namely a lack of Launch Abort System for the Apollo capsule at the top of the rocket, and the lack of expanding second stage nozzle, instead using a large, more standard rocket engine, with four additional engines surrounding. |
|||
== See also == |
== See also == |
||
* [[Aquarius (rocket)]] |
* [[Aquarius (rocket)]] |
||
Line 28: | Line 76: | ||
==References== |
==References== |
||
{{Reflist}} |
{{Reflist}} |
||
⚫ | |||
==Further reading== |
|||
*[http://neverworld.net/truax/ Truax Engineering Multimedia Archive] |
|||
⚫ | |||
==External links== |
==External links== |
||
Line 35: | Line 84: | ||
* [http://neverworld.net/truax/ Truax Engineering Multimedia Archive] |
* [http://neverworld.net/truax/ Truax Engineering Multimedia Archive] |
||
* [http://neverworld.net/truax/Sea_Dragon_Concept_Volume_1.pdf Sea Dragon Concept Volume 1 (Summary)], LRP 297 (NASA-CR-52817), 1963-01-28. |
* [http://neverworld.net/truax/Sea_Dragon_Concept_Volume_1.pdf Sea Dragon Concept Volume 1 (Summary)], LRP 297 (NASA-CR-52817), 1963-01-28. |
||
* [https://archive.org/details/sea-dragon-redacted Sea Dragon Concept Volume 2], LRP 297, 1963-02-12. |
|||
* [http://neverworld.net/truax/Sea_Dragon_Concept_Volume_3.pdf Sea Dragon Concept Volume 3 (Preliminary program plan)], LRP 297 (NASA-CR-51034), 1963-02-12. |
* [http://neverworld.net/truax/Sea_Dragon_Concept_Volume_3.pdf Sea Dragon Concept Volume 3 (Preliminary program plan)], LRP 297 (NASA-CR-51034), 1963-02-12. |
||
* YouTube Channel Link: [https://www.youtube.com/watch?v=SRMDcC0QvFQ For All Mankind s01e10 post-credits scene. The Sea Dragon launch] |
|||
* Encyclopedia Astronautica, [https://web.archive.org/web/20050206233144/http://astronautix.com/lvs/searagon.htm Sea Dragon] |
* Encyclopedia Astronautica, [https://web.archive.org/web/20050206233144/http://astronautix.com/lvs/searagon.htm Sea Dragon] |
||
* [https://web.archive.org/web/19990220012929/http://www.optipoint.com/far/far8.htm Big Dumb Rockets] |
* [https://web.archive.org/web/19990220012929/http://www.optipoint.com/far/far8.htm Big Dumb Rockets] |
||
Line 52: | Line 103: | ||
[[Category:Sea launch to orbit]] |
[[Category:Sea launch to orbit]] |
||
[[Category:Cancelled space launch vehicles]] |
[[Category:Cancelled space launch vehicles]] |
||
[[Category:Proposed reusable |
[[Category:Proposed reusable launch systems]] |
Latest revision as of 22:40, 19 November 2024
Function | Orbital super heavy-lift launch vehicle |
---|---|
Country of origin | United States |
Size | |
Height | 150 m (490 ft) |
Diameter | 23 m (75 ft) |
Mass | 18,143 t (39,998,000 lb) |
Stages | 2 |
Capacity | |
Payload to LEO | |
Altitude | 229 km (124 nmi) |
Mass | 550 t (1,210,000 lb) |
First stage | |
Powered by | 1 |
Maximum thrust | 350 MN (79,000,000 lbf) sea level |
Burn time | 81 seconds |
Propellant | RP-1 / LOX |
Second stage | |
Powered by | 1 |
Maximum thrust | 59 MN (13,000,000 lbf) vacuum |
Burn time | 260 seconds |
Propellant | LH2 / LOX |
The Sea Dragon was a 1962 conceptualized design study for a two-stage sea-launched orbital super heavy-lift launch vehicle. The project was led by Robert Truax while working at Aerojet, one of a number of designs he created that were to be launched by floating the rocket in the ocean. Although there was some interest at both NASA and Todd Shipyards, the project was not implemented.
With dimensions of 150 m (490 ft) long and 23 m (75 ft) in diameter, Sea Dragon would have been the largest rocket ever built. As of 2024[update], among rockets that have been fully conceived but not built, it is by far the largest ever and, in terms of payload into low Earth orbit (LEO), equaled only by the Interplanetary Transport System concept (the predecessor to SpaceX Starship) in the latter's expendable configuration with both designed for 550 tonnes.
Design
[edit]Truax's basic idea was to produce a low-cost heavy launcher, a concept now called "big dumb booster." To lower the cost of operation, the rocket itself was launched from the ocean, requiring little in the way of support systems. A large ballast tank system attached to the bottom of the first-stage engine bell was used to "hoist" the rocket vertical for launch. In this orientation the payload at the top of the second stage was just above the waterline, making it easy to access. Truax had already experimented with this basic system in the Sea Bee[1][NB 1] and Sea Horse.[2][NB 2] To lower the cost of the rocket, he intended it to be built of inexpensive materials, specifically 8 mm (0.31 in) steel sheeting. The rocket would be built at a sea-side shipbuilder and towed to sea for launch. It would use wide engineering margins with strong simple materials to further enhance reliability and reduce cost and complexity. The system would be at least partially reusable with passive reentry and recovery of rocket sections for refurbishment and relaunch.[3][4]
The first stage was to be powered by a single 36,000,000 kgf (350 MN; 79,000,000 lbf) thrust engine burning RP-1 and LOX (liquid oxygen). The tank pressure was 32 atm (3,200 kPa; 470 psi) for the RP-1 and 17 atm (1,700 kPa; 250 psi) for the LOX, providing a chamber pressure of 20 atm (2,000 kPa; 290 psi) at liftoff. As the vehicle climbed the pressures dropped off, eventually burning out after 81 seconds. By this point the vehicle was 25 miles (40 km) up and 20 mi (32 km) downrange, traveling at a speed of 4,000 mph (6,400 km/h; 1.8 km/s). The normal mission profile expended the stage in a high-speed splashdown some 180 miles (290 km) downrange. Plans for stage recovery were studied as well.
The second stage was also equipped with a single very large engine, in this case a 6,000,000 kgf (59 MN; 13,000,000 lbf) thrust engine burning liquid hydrogen and LOX. It was also pressure-fed, at a constant lower pressure of 7 atm (710 kPa; 100 psi) throughout the entire 260 second burn, at which point it was 142 mi (229 km) up and 584 mi (940 km) downrange. To improve performance, the engine featured an expanding engine bell, changing from 7:1 to 27:1 expansion as it climbed. The overall height of the rocket was shortened somewhat by making the "nose" of the first stage pointed, lying inside the second-stage engine bell.
A typical launch sequence would start with the rocket being refurbished and mated to its cargo and ballast tanks on shore. The RP-1 would also be loaded at this point. The rocket would then be towed to a launch site, where the LOX and LH2 would be generated on-site using electrolysis; Truax suggested using a nuclear-powered aircraft carrier as a power supply during this phase. The ballast tanks, which also served as a cap and protection for the first-stage engine bell, would then be filled with water, sinking the rocket to vertical with the second stage above the waterline. Last minute checks could then be carried out and the rocket launched.
The rocket would have been able to carry a payload of up to 550 tonnes (540 long tons; 610 short tons) or 550,000 kg (1,210,000 lb) into LEO. Payload costs, in 1963, were estimated to be between $59 and $600 per kg (roughly $500 to $5,060 per kg in 2020 dollars[5]). TRW (Space Technology Laboratories, Inc.) conducted a program review and validated the design and its expected costs.[6] However, budget pressures led to the closing of the Future Projects Branch, ending work on the super-heavy launchers they had proposed for a crewed mission to Mars.
Sea Dragon in fiction
[edit]The Sea Dragon appears in the first-season finale of the 2019 Apple TV+ series For All Mankind. The series is set in an alternate history timeline in which the 1960s-era space race did not end. In the post-credits scene, which takes place in 1983, a Sea Dragon is depicted launching from the Pacific Ocean to resupply the US lunar colony. An astronaut says in a voice-over that the ocean launch is being used as a safety measure because the payload includes plutonium.[7] The Sea Dragon continues to play a role in season 2; its high payload capacity is used to resupply an expansive lunar base and is the subject of a lunar blockade by the Soviet Union.[8] There are some small changes from the original concept compared to the version in the series, namely a lack of Launch Abort System for the Apollo capsule at the top of the rocket, and the lack of expanding second stage nozzle, instead using a large, more standard rocket engine, with four additional engines surrounding.
See also
[edit]Notes
[edit]- ^ Sea Bee was a proof of principle program to validate the sea-launch concept. A surplus Aerobee rocket was modified so that it could be fired underwater. The rocket worked properly the first time in restrained mode. Later tests of repeat firings proved so simple that the cost of turn-around was about 7% that of a new unit.
- ^ Sea Horse demonstrated sea-launch at a larger scale and on a rocket with a complex set of guidance and control systems. It used a surplus 9,000 kgf (20,000 lbf; 88,000 N) pressure fed, acid/aniline Corporal missile on a barge in San Francisco Bay. This was first fired several metres above the water, then lowered and fired in successive steps until reaching a considerable depth. Firing from underwater posed no problems and there was substantial noise attenuation.
References
[edit]- ^ Astronautix.com, Sea Bee
- ^ Astronautix.com, Sea Horse
- ^ Grossman, David (3 April 2017). "The Enormous Sea-Launched Rocket That Never Flew". Popular Mechanics.
- ^ "The Legend of the Sea Dragon". Citizens in Space. January 2013.
- ^ "CPI Inflation Calculator". Retrieved August 19, 2020.
- ^ "Study of Large Sea-Launch Space Vehicle," Contract NAS8-2599, Space Technology Laboratories, Inc./Aerojet General Corporation Report #8659-6058-RU-000, Vol. 1 – Design, January 1963
- ^ "Sea Dragon Launch - For All Mankind". YouTube.com. YouTube. 19 January 2020. Archived from the original on 2021-12-12. Retrieved 25 February 2020.
- ^ "For All Mankind - Pathfinder Fires its Missiles at Sea Dragon". YouTube.com. YouTube. 23 April 2021. Archived from the original on 2021-12-12. Retrieved 24 November 2021.
Further reading
[edit]- Astronautix.com, Sea Dragon
External links
[edit]- Truax Engineering Multimedia Archive
- Sea Dragon Concept Volume 1 (Summary), LRP 297 (NASA-CR-52817), 1963-01-28.
- Sea Dragon Concept Volume 2, LRP 297, 1963-02-12.
- Sea Dragon Concept Volume 3 (Preliminary program plan), LRP 297 (NASA-CR-51034), 1963-02-12.
- YouTube Channel Link: For All Mankind s01e10 post-credits scene. The Sea Dragon launch
- Encyclopedia Astronautica, Sea Dragon
- Big Dumb Rockets
- YouTube, Sea Dragon - 8.14 TMRO - Interview show about "Sea Dragon"
- Search "Sea Dragon Concept" at the NASA Technical Report Server to read the unclassified design study:
- Sea Dragon Concept Volume 1 (Summary), LRP 297 (NASA-CR-52817), 1963-01-28.
- Sea Dragon Concept Volume 3 (Preliminary program plan), LRP 297 (NASA-CR-51034), 1963-02-12.