Jump to content

Quantum walk: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Nitrious (talk | contribs)
mNo edit summary
 
(197 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Quantum variations of random walks}}
[[Image:QRW_1Dim_3by3.jpeg|thumb|right|300px|The probability distribution for a one-dimensional QRW using the below [[unitary matrix]], after 1000 timesteps.]]
{{Use dmy dates|date=April 2020}}
'''Quantum Random Walks''', a [[mathematical]] model, simulate particle movement given a [[unitary matrix]] operator, which allows for an extra degree of freedom, [[chirality]], compared to its classical counterpart. This results in [[quantum interference]] which causes the probability distribution to diffuse towards the edges.
'''Quantum walks''' are [[Quantum mechanics|quantum]] analogs of classical [[Random walk|random walks]]. In contrast to the classical random walk, where the walker occupies definite states and the randomness arises due to [[stochastic]] [[Transition of state|transitions between states]], in quantum walks randomness arises through (1) [[quantum superposition]] of states, (2) non-random, reversible unitary evolution and (3) collapse of the [[wave function]] due to [[Measurement in quantum mechanics|state measurements]]. Quantum walks are a technique for building [[Quantum algorithm|quantum algorithms]].


As with classical random walks, quantum walks admit formulations in both [[discrete time and continuous time]].


==Definition==
== Motivation ==
Quantum walks are motivated by the widespread use of classical random walks in the design of randomized algorithms and are part of several [[quantum algorithm]]s. For some [[Test oracle|oracular problem]]s, quantum walks provide an exponential speedup over any classical algorithm.<ref>A. M. Childs, [[Richard Cleve|R. Cleve]], E. Deotto, [[Edward Farhi|E. Farhi]], S. Gutmann, and [[Daniel Spielman|D. A. Spielman]], Exponential
A quantum random walk starts with:
algorithmic speedup by quantum walk, Proc. 35th ACM Symposium on Theory of Computing, pp. 59–68, 2003, {{arxiv|quant-ph/0209131}}.</ref><ref>A. M. Childs, L. J. Schulman, and [[Umesh Vazirani|U. V. Vazirani]], Quantum algorithms for hidden nonlinear structures, Proc. 48th IEEE Symposium on Foundations of Computer Science, pp. 395–404, 2007, {{arxiv|0705.2784}}.</ref> Quantum walks also give [[polynomial]] speedups over classical algorithms for many practical problems, such as the [[element distinctness problem]],<ref>[[Andris Ambainis]], Quantum walk algorithm for element distinctness, SIAM J. Comput. 37 (2007), no. 1, 210–239, {{arxiv|quant-ph/0311001}}, preliminary version in FOCS 2004.</ref> the [[triangle finding problem]],<ref>F. Magniez, M. Santha, and [[Mario Szegedy|M. Szegedy]], Quantum algorithms for the triangle problem, Proc. 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1109–1117, 2005, quant-ph/0310134.</ref> and evaluating NAND trees.<ref>E. Farhi, [[Jeffrey Goldstone|J. Goldstone]], and S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree, Theory of Computing 4 (2008), no. 1, 169–190, quant-ph/0702144</ref> The well-known [[Grover's algorithm|Grover search algorithm]] can also be viewed as a quantum walk algorithm.


== Distinction from classical random walks ==
* <math>n</math> x <math>n</math> [[unitary matrix]]
Quantum walks exhibit very different features from classical random walks. In particular, they do not converge to [[Limiting distribution|limiting distributions]] and due to the power of [[quantum interference]], they may spread significantly faster or slower than their classical equivalents. There is also no randomness in quantum walks. Due to the laws of quantum mechanics, the evolution of an isolated quantum system is deterministic. This means that by using current conditions, you can exactly predict the future behaviors of the system. Randomness only occurs in quantum walks when the system is measured and classical information is gathered. Also, instead of the "coin flip" used in classical systems, quantum walks enlarge the space of the physical system to create more data.<ref>{{Cite journal |last=Kemp |first=J. |date=February 1, 2008 |title=Quantum random walks - an introductory overview |journal=Contemporary Physics|volume=44 |issue=4 |pages=307–327 |doi=10.1080/00107151031000110776 |arxiv=quant-ph/0303081 |bibcode=2003ConPh..44..307K }}</ref>
* <math>n</math> predefined [[chirality|chiralities]] (step sizes and directions)
* starting location
* starting [[chirality]]


== Continuous time ==
The [[random walk]] can then give a probability distribution of where a particle could be after any number of timesteps. The modeling of each timestep can be broken into two parts. First, the [[unitary matrix]] changes the [[chirality]] of the particle, splitting it into several particles each with new [[amplitude|amplitudes]]. Second, these new particles move based on their new [[chirality|chiralities]]. This is a quantum random walk because after several timesteps, the [[amplitude|amplitudes]] of particles may interfere with each other because the [[amplitude|amplitudes]] may be either negative or positive. To find the probability of a particle being at a given location after a given number of steps, sum the squares of the [[amplitude|amplitudes]] of all particles at that location and time.
{{Main|Continuous-time quantum walk}}


Continuous-time quantum walks arise when one replaces the continuum spatial domain in the Schrödinger equation with a discrete set. That is, instead of having a quantum particle propagate in a continuum, one restricts the set of possible position states to the vertex set <math>V</math> of some graph <math>G = (V,E)</math> which can be either finite or countably infinite. Under particular conditions, continuous-time quantum walks can provide a model for universal [[quantum computation]].<ref>Andrew M. Childs, [https://arxiv.org/abs/0806.1972 "Universal Computation by Quantum Walk"].</ref>
==History and Applications==


=== Relation to non-relativistic Schrödinger dynamics ===
Most of the literature on this phenomenon is recent (since 2000) and only a small portion of that is mathematically rigorous. In 2001, A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J Watrous wrote a benchmark paper on one-dimensional QRWs, the proofs of which are still referenced in almost all of today's QRW papers. Today, researchers are examining the possibilities of analyzing these QRWs with generating functions, looking at applications in physics and computer science, and examining higher dimension walks. As discussed in the above paper, “quantum random walks have the potential to offer new tools for quantum algorithms”. Although much more research must be done on the foundations of quantum random walks, the potential for its application is already becoming popular. For example, network routing, search algorithm, and element distinctness are just three arising applications for this remarkable concept.
Consider the dynamics of a non-relativistic, spin-less free quantum particle with mass <math>m</math> propagating on an infinite one-dimensional spatial domain. The particle's motion is completely described by its wave function <math>\psi : \mathbb{R}\times \mathbb{R}_{\geq 0}\to\mathbb{C}</math> which satisfies the one-dimensional, free particle Schrödinger equation
: <math>\textbf{i}\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}</math>
where <math>\textbf{i} = \sqrt{-1}</math> and <math>\hbar</math> is the reduced Planck constant. Now suppose that only the spatial part of the domain is discretized, <math>\mathbb{R}</math> being replaced with <math>\mathbb{Z}_{\Delta x} \equiv \{\ldots,-2\,\Delta x,-\Delta x,0,\Delta x, 2\,\Delta x,\ldots\}</math> where <math>\Delta x</math> is the separation between the spatial sites the particle can occupy. The wave function becomes the map <math>\psi : \mathbb{Z}_{\Delta x}\times\mathbb{R}_{\geq 0}\to\mathbb{C}</math> and the second spatial partial derivative becomes the discrete laplacian
: <math>\frac{\partial^2\psi}{\partial x^2} \to \frac{L_{\mathbb{Z}}\psi(j\,\Delta x,t)}{\Delta x^2} \equiv \frac{\psi\left((j+1)\,\Delta x,t\right)-2\psi\left(j\,\Delta x,t\right)+\psi\left((j-1)\,\Delta x,t\right)}{\Delta x^2}</math>


The evolution equation for a continuous time quantum walk on <math>\mathbb{Z}_{\Delta x}</math> is thus
==One-dimensional QRWs==
: <math>\textbf{i}\frac{\partial\psi}{\partial t} = -\omega_{\Delta x} L_{\mathbb{Z}}\psi</math>
[[Image:QRW_Unitary.jpeg|thumb|down|300px|A particle of chirality two would split up into 3 new particles, the first with chirality 1 and -6/11 x the original [[amplitude]], the second with chirality 2 and -6/11 x the original [[amplitude]], and the third with chirality 3 and -7/11 x the original [[amplitude]].]]
A one dimensional QRW models the movement of a particle along the number line. Each [[chirality]] encodes one choice for how far right or left the particle can move. A particle starts at a certain location, with an amplitude of 1 and a set [[chirality]]. During the first step, the unitary matrix splits this particle into n different particles based on the unitary matrix and the original chirality (see diagram below). All of the particles are then moved according to their [[chirality|chiralities]]. During all future timesteps, the [[unitary matrix]] acts upon all of the particles, creating an ever increasing number of particle probabilities. Because [[amplitude|amplitudes]] are allowed to be negative, particles can interfere with each other during the walk. By squaring the [[amplitude|amplitudes]] of all of the particles, and adding the squares of those particles in the same location, the probability distribution of the particles location after <math>t</math> steps can be found. A picture of one such probability distribution is shown to the right.


where <math>\omega_{\Delta x} \equiv \hbar/2m\,\Delta x^2</math> is a characteristic frequency. This construction naturally generalizes to the case that the discretized spatial domain is an arbitrary graph <math>G = (V,E)</math> and the discrete laplacian <math>L_\mathbb{Z}</math> is replaced by the graph Laplacian <math>L_G \equiv D_G - A_G</math> where <math>D_G</math> and <math>A_G</math> are the [[degree matrix]] and the [[adjacency matrix]], respectively. Common choices of graphs that show up in the study of continuous time quantum walks are the ''d''-dimensional lattices <math>\mathbb{Z}^d</math>, cycle graphs <math>\mathbb{Z}/N\mathbb{Z}</math>, ''d''-dimensional discrete tori <math>(\mathbb{Z}/N\mathbb{Z})^d</math>, the ''d''-dimensional hypercube <math>\mathbb{Q}^d</math> and random graphs.
==Higher dimensioned QRWs==

[[Image:QRW_2D.jpeg|thumb|right|400px|In this 300 timestep example, the [[chirality|chiralities]] were set to one step in each direction. Because every other space would have a probability of zero on any given time step, these zeroes were eliminated in this plot to increase clarity.]]
== Discrete time ==
For two-dimensional QRW's, a degree of freedom needs to be added both to the location of particles and the [[chirality|chiralities]], in order to describe how the particle moves in the new dimension. The [[unitary matrix]] still describes how a particle of each [[chirality]] breaks down into particles with the other [[chirality|chiralities]]. To plot a two-dimensional probability distribution, a density plot is used. On the example to the right, the darker sections represent higher probabilities of the particle being at the given location.
{{Expand section|date=December 2009}}

=== Discrete-time quantum walks on <math>\mathbb{Z}</math> ===
[[File:One dimensional quantum random walk.svg|thumb|right|Probability distribution resulting from one-dimensional discrete time random walks. The quantum walk created using the [[Hadamard coin]] is plotted ({{color|orange|orange}}) vs a classical walk ({{color|blue|blue}}) after 50 time steps.]]
The evolution of a quantum walk in discrete time is specified by the product of two unitary operators: (1) a "coin flip" operator and (2) a conditional shift operator, which are applied repeatedly. The following example is instructive here.<ref>{{Cite journal|last=Kempe|first=Julia|author-link=Julia Kempe|date=2003-07-01|title=Quantum random walks – an introductory overview|journal=Contemporary Physics|volume=44|issue=4|pages=307–327|doi=10.1080/00107151031000110776|issn=0010-7514|arxiv=quant-ph/0303081|bibcode=2003ConPh..44..307K|s2cid=17300331}}</ref> Imagine a particle with a spin-1/2-degree of freedom propagating on a linear array of discrete sites. If the number of such sites is countably infinite, we identify the state space with <math>\mathbb{Z}</math>. The particle's state can then be described by a product state
: <math>|\Psi\rangle = |s\rangle \otimes |\psi \rangle</math>
consisting of an internal spin state
: <math>|s\rangle \in \mathcal{H}_C=\left\{a_{\uparrow}|{\uparrow}\rangle + a_{\downarrow}|{\downarrow}\rangle: a_{\uparrow/\downarrow} \in \mathbb{C} \right\}</math>
and a position state
: <math>|\psi\rangle \in \mathcal{H}_P=\left\{ \sum_{x\in\mathbb{Z}}\alpha_x|x\rangle: \sum_{x\in\mathbb{Z}} |\alpha_x|^2 < \infty \right\}</math>
where <math>\mathcal{H}_C = \mathbb{C}^2</math> is the "coin space" and <math>\mathcal{H}_P = \ell^2(\mathbb{Z})</math> is the space of physical quantum position states. The product <math>\otimes</math> in this setting is the Kronecker (tensor) product. The conditional shift operator for the quantum walk on the line is given by
: <math>S = |{\uparrow}\rangle \langle{\uparrow}| \otimes \sum\limits_i |i+1\rangle\langle i| + |{\downarrow}\rangle \langle{\downarrow}| \otimes \sum\limits_i |i-1\rangle \langle i|,</math>
i.e. the particle jumps right if it has spin up and left if it has spin down. Explicitly, the conditional shift operator acts on product states according to
: <math>S(|{\uparrow}\rangle \otimes |i\rangle) = |{\uparrow}\rangle \otimes |i+1\rangle</math>
: <math>S(|{\downarrow}\rangle \otimes |i\rangle) = |{\downarrow}\rangle \otimes |i-1\rangle</math>

If we first rotate the spin with some unitary transformation <math>C: \mathcal{H}_C \to \mathcal{H}_C</math> and then apply <math>S</math>, we get a non-trivial quantum motion on <math>\mathbb{Z}</math>. A popular choice for such a transformation is the Hadamard gate <math>C = H</math>, which, with respect to the standard ''z''-component spin basis, has matrix representation
: <math>H = \frac{1}{\sqrt{2}}\begin{pmatrix}1 & \;\;1\\ 1 & -1\end{pmatrix}</math>

When this choice is made for the coin flip operator, the operator itself is called the "Hadamard coin" and the resulting quantum walk is called the "Hadamard walk". If the walker is initialized at the origin and in the spin-up state, a single time step of the Hadamard walk on <math>\mathbb{Z}</math> is
: <math>|{\uparrow}\rangle \otimes |0\rangle \;\,\overset{H}{\longrightarrow}\;\, \frac{1}{\sqrt{2}} (|{\uparrow}\rangle + |{\downarrow}\rangle) \otimes |0\rangle \;\,\overset{S}{\longrightarrow}\;\, \frac{1}{\sqrt{2}} (|{\uparrow}\rangle \otimes |1\rangle + |{\downarrow}\rangle \otimes |{-1}\rangle).</math>

Measurement of the system's state at this point would reveal an up spin at position 1 or a down spin at position −1, both with probability 1/2. Repeating the procedure would correspond to a classical simple random walk on <math>\mathbb{Z}</math>. In order to observe non-classical motion, no measurement is performed on the state at this point (and therefore do not force a collapse of the wave function). Instead, repeat the procedure of rotating the spin with the coin flip operator and conditionally jumping with <math>S</math>. This way, quantum correlations are preserved and different position states can interfere with one another. This gives a drastically different probability distribution than the classical random walk (Gaussian distribution) as seen in the figure to the right. Spatially one sees that the distribution is not symmetric: even though the Hadamard coin gives both up and down spin with equal probability, the distribution tends to drift to the right when the initial spin is <math>|{\uparrow}\rangle</math>. This asymmetry is entirely due to the fact that the Hadamard coin treats the <math>|{\uparrow}\rangle</math> and <math>|{\downarrow}\rangle</math> state asymmetrically. A symmetric probability distribution arises if the initial state is chosen to be
: <math>|\Psi^{\text{symm}}_0\rangle = \frac{1}{\sqrt{2}} (|{\uparrow}\rangle - \textbf{i} |{\downarrow}\rangle) \otimes |0\rangle</math>

== Dirac equation ==
Consider what happens when we discretize a massive [[Dirac operator]] over one [[spatial dimension]]. In the absence of a [[mass term]], we have left-movers and right-movers.{{Clarify|What are the movers, & where do they come from?|date=September 2011}} They can be characterized by an internal [[degree of freedom]], "spin" or a "coin". When we turn on a mass term, this corresponds to a rotation in this internal "coin" space. A quantum walk corresponds to iterating the shift and coin operators repeatedly.

This is very much like [[Richard Feynman]]'s model of an electron in 1 (one) spatial and 1 (one) time dimension. He summed up the zigzagging paths, with left-moving segments corresponding to one spin (or coin), and right-moving segments to the other. See [[Feynman checkerboard]] for more details.

The transition probability for a 1-dimensional quantum walk behaves like the [[Hermite function]]s which
(1) [[asymptotically]] oscillate in the classically allowed region,
(2) is approximated by the [[Airy function]] around the wall of the potential,{{clarify|date=December 2014}} and
(3) exponentially decay in the classically hidden region.<ref>[[Toshikazu Sunada|T. Sunada]] and T. Tate, Asymptotic behavior of quantum walks on the line, Journal of Functional Analysis 262 (2012) 2608–2645</ref>

== Markov Chains ==
Another approach to quantizing classical random walks is through [[Continuous-time Markov chain|continuous-time Markov chains]]. Unlike the coin-based mechanism used in discrete-time random walks, [[Markov chain|Markov chains]] do not rely on a coin flip to determine the direction of movement.<ref>{{Cite web |title=Markov Chains explained visually |url=https://setosa.io/ev/markov-chains/ |access-date=2024-11-20 |website=Explained Visually}}</ref> In this framework, time is treated as a continuous variable, allowing the walker to transition between adjacent vertices at any point in time. As time progresses, the probability of finding the walker at a neighboring vertex increases, while the likelihood of remaining at the current vertex decreases. The transition rate between neighboring vertices serves as the probability factor, replacing the need for a coin flip.<ref name=":1">{{Cite book |last=Portugal |first=R. |title=Quantum Walks and Search Algorithms |date=2018 |publisher=Springer Cham |isbn=978-3-319-97812-3 |edition=2nd |location=Switzerland |publication-date=2018}}</ref>

== Quantum Walks on Infinite Graphs ==
Quantum walks on infinite graphs represent a distinctive area of study, characterized by the walk's unbounded spread over time.<ref>{{Cite journal |last1=Krovi |first1=Hari |last2=Brun |first2=Todd A. |date=2006-10-27 |title=Quantum walks with infinite hitting times |journal=Physical Review A |volume=74 |issue=4 |pages=042334 |doi=10.1103/PhysRevA.74.042334 |arxiv=quant-ph/0606094 |issn=1050-2947}}</ref> In this context, the expected distance from the origin can be quantified by the standard deviation of the probability distribution. This measurement has been explored on both one-dimensional and two-dimensional lattices, where the standard deviation grows in direct proportion to the evolution time. Classically, the standard deviation of the random walk would be proportional to the square root of the evolution time.<ref name=":1" />

== Realization ==
Atomic lattice is the leading quantum platform in terms of scalability. Coined and coinless discrete-time quantum-walk could be realized in the atomic lattice via a distance-selective spin-exchange interaction.<ref name=":0">{{Cite journal |last=Khazali |first=Mohammadsadegh |date=2022-03-03 |title=Discrete-Time Quantum-Walk & Floquet Topological Insulators via Distance-Selective Rydberg-Interaction |url=https://quantum-journal.org/papers/q-2022-03-03-664/ |journal=Quantum |language=en |volume=6 |pages=664 |doi=10.22331/q-2022-03-03-664 |arxiv=2101.11412 |bibcode=2022Quant...6..664K |s2cid=246635019 |issn=2521-327X|doi-access=free }}</ref> Remarkably the platform preserves the coherence over couple of hundred sites and steps in 1, 2 or 3 dimensions in the spatial space. The long-range dipolar interaction allows designing periodic boundary conditions, facilitating the QW over topological surfaces.<ref name=":0" />

== See also ==
* [[Path integral formulation]]
* [[Quantum walk search]]

== References ==
{{reflist}}

== Further reading ==
{{refbegin}}
* {{cite journal | author=Julia Kempe | title=Quantum random walks – an introductory overview | journal=Contemporary Physics | year=2003 | volume=44 | pages=307&ndash;327 | arxiv=quant-ph/0303081 | doi=10.1080/00107151031000110776|bibcode = 2003ConPh..44..307K | issue=4 | s2cid=17300331 }}
* {{cite journal | author=Andris Ambainis | author-link=Andris Ambainis | title=Quantum walks and their algorithmic applications | journal=International Journal of Quantum Information | year=2003 | volume=1 | pages=507&ndash;518 | arxiv=quant-ph/0403120 | doi=10.1142/S0219749903000383 | issue=4| s2cid=10324299 }}
* {{cite book |arxiv=0808.0059|doi=10.1007/978-3-540-79228-4_3 |chapter=Quantum Walk Based Search Algorithms |title=Theory and Applications of Models of Computation |series=Lecture Notes in Computer Science |date=2008 |last1=Santha |first1=Miklos |volume=4978 |pages=31–46 |isbn=978-3-540-79227-7 }}
* {{cite journal | author=Salvador E. Venegas-Andraca | title=Quantum walks: a comprehensive review | journal=Quantum Information Processing | year=2012 | volume = 11 | issue = 5 | pages=1015&ndash;1106 | arxiv=1201.4780 | doi=10.1007/s11128-012-0432-5| s2cid=27676690 }}
* {{cite book | author=Salvador E. Venegas-Andraca |title= Quantum Walks for Computer Scientists |year = 2008|publisher= Morgan & Claypool Publishers |isbn = 978-1598296563}}
* {{cite book | author=Kia Manouchehri, Jingbo Wang |title= Physical Implementation of Quantum Walks |year = 2014|publisher= Springer |isbn = 978-3-642-36014-5}}
{{refend}}

== External links ==
* [http://www.th.phys.titech.ac.jp/~shikano/dtqw/ International Workshop on Mathematical and Physical Foundations of Discrete Time Quantum Walk]
* [https://soulstreet.web.fc2.com/quantumwalk/english Quantum walk]
* [https://short.classiq.io/discrete_quantum_walk Implementations of Discrete Quantum Walks with Classiq]

[[Category:Quantum algorithms]]

Latest revision as of 02:49, 21 November 2024

Quantum walks are quantum analogs of classical random walks. In contrast to the classical random walk, where the walker occupies definite states and the randomness arises due to stochastic transitions between states, in quantum walks randomness arises through (1) quantum superposition of states, (2) non-random, reversible unitary evolution and (3) collapse of the wave function due to state measurements. Quantum walks are a technique for building quantum algorithms.

As with classical random walks, quantum walks admit formulations in both discrete time and continuous time.

Motivation

[edit]

Quantum walks are motivated by the widespread use of classical random walks in the design of randomized algorithms and are part of several quantum algorithms. For some oracular problems, quantum walks provide an exponential speedup over any classical algorithm.[1][2] Quantum walks also give polynomial speedups over classical algorithms for many practical problems, such as the element distinctness problem,[3] the triangle finding problem,[4] and evaluating NAND trees.[5] The well-known Grover search algorithm can also be viewed as a quantum walk algorithm.

Distinction from classical random walks

[edit]

Quantum walks exhibit very different features from classical random walks. In particular, they do not converge to limiting distributions and due to the power of quantum interference, they may spread significantly faster or slower than their classical equivalents. There is also no randomness in quantum walks. Due to the laws of quantum mechanics, the evolution of an isolated quantum system is deterministic. This means that by using current conditions, you can exactly predict the future behaviors of the system. Randomness only occurs in quantum walks when the system is measured and classical information is gathered. Also, instead of the "coin flip" used in classical systems, quantum walks enlarge the space of the physical system to create more data.[6]

Continuous time

[edit]

Continuous-time quantum walks arise when one replaces the continuum spatial domain in the Schrödinger equation with a discrete set. That is, instead of having a quantum particle propagate in a continuum, one restricts the set of possible position states to the vertex set of some graph which can be either finite or countably infinite. Under particular conditions, continuous-time quantum walks can provide a model for universal quantum computation.[7]

Relation to non-relativistic Schrödinger dynamics

[edit]

Consider the dynamics of a non-relativistic, spin-less free quantum particle with mass propagating on an infinite one-dimensional spatial domain. The particle's motion is completely described by its wave function which satisfies the one-dimensional, free particle Schrödinger equation

where and is the reduced Planck constant. Now suppose that only the spatial part of the domain is discretized, being replaced with where is the separation between the spatial sites the particle can occupy. The wave function becomes the map and the second spatial partial derivative becomes the discrete laplacian

The evolution equation for a continuous time quantum walk on is thus

where is a characteristic frequency. This construction naturally generalizes to the case that the discretized spatial domain is an arbitrary graph and the discrete laplacian is replaced by the graph Laplacian where and are the degree matrix and the adjacency matrix, respectively. Common choices of graphs that show up in the study of continuous time quantum walks are the d-dimensional lattices , cycle graphs , d-dimensional discrete tori , the d-dimensional hypercube and random graphs.

Discrete time

[edit]

Discrete-time quantum walks on

[edit]
Probability distribution resulting from one-dimensional discrete time random walks. The quantum walk created using the Hadamard coin is plotted (orange) vs a classical walk (blue) after 50 time steps.

The evolution of a quantum walk in discrete time is specified by the product of two unitary operators: (1) a "coin flip" operator and (2) a conditional shift operator, which are applied repeatedly. The following example is instructive here.[8] Imagine a particle with a spin-1/2-degree of freedom propagating on a linear array of discrete sites. If the number of such sites is countably infinite, we identify the state space with . The particle's state can then be described by a product state

consisting of an internal spin state

and a position state

where is the "coin space" and is the space of physical quantum position states. The product in this setting is the Kronecker (tensor) product. The conditional shift operator for the quantum walk on the line is given by

i.e. the particle jumps right if it has spin up and left if it has spin down. Explicitly, the conditional shift operator acts on product states according to

If we first rotate the spin with some unitary transformation and then apply , we get a non-trivial quantum motion on . A popular choice for such a transformation is the Hadamard gate , which, with respect to the standard z-component spin basis, has matrix representation

When this choice is made for the coin flip operator, the operator itself is called the "Hadamard coin" and the resulting quantum walk is called the "Hadamard walk". If the walker is initialized at the origin and in the spin-up state, a single time step of the Hadamard walk on is

Measurement of the system's state at this point would reveal an up spin at position 1 or a down spin at position −1, both with probability 1/2. Repeating the procedure would correspond to a classical simple random walk on . In order to observe non-classical motion, no measurement is performed on the state at this point (and therefore do not force a collapse of the wave function). Instead, repeat the procedure of rotating the spin with the coin flip operator and conditionally jumping with . This way, quantum correlations are preserved and different position states can interfere with one another. This gives a drastically different probability distribution than the classical random walk (Gaussian distribution) as seen in the figure to the right. Spatially one sees that the distribution is not symmetric: even though the Hadamard coin gives both up and down spin with equal probability, the distribution tends to drift to the right when the initial spin is . This asymmetry is entirely due to the fact that the Hadamard coin treats the and state asymmetrically. A symmetric probability distribution arises if the initial state is chosen to be

Dirac equation

[edit]

Consider what happens when we discretize a massive Dirac operator over one spatial dimension. In the absence of a mass term, we have left-movers and right-movers.[clarification needed] They can be characterized by an internal degree of freedom, "spin" or a "coin". When we turn on a mass term, this corresponds to a rotation in this internal "coin" space. A quantum walk corresponds to iterating the shift and coin operators repeatedly.

This is very much like Richard Feynman's model of an electron in 1 (one) spatial and 1 (one) time dimension. He summed up the zigzagging paths, with left-moving segments corresponding to one spin (or coin), and right-moving segments to the other. See Feynman checkerboard for more details.

The transition probability for a 1-dimensional quantum walk behaves like the Hermite functions which (1) asymptotically oscillate in the classically allowed region, (2) is approximated by the Airy function around the wall of the potential,[clarification needed] and (3) exponentially decay in the classically hidden region.[9]

Markov Chains

[edit]

Another approach to quantizing classical random walks is through continuous-time Markov chains. Unlike the coin-based mechanism used in discrete-time random walks, Markov chains do not rely on a coin flip to determine the direction of movement.[10] In this framework, time is treated as a continuous variable, allowing the walker to transition between adjacent vertices at any point in time. As time progresses, the probability of finding the walker at a neighboring vertex increases, while the likelihood of remaining at the current vertex decreases. The transition rate between neighboring vertices serves as the probability factor, replacing the need for a coin flip.[11]

Quantum Walks on Infinite Graphs

[edit]

Quantum walks on infinite graphs represent a distinctive area of study, characterized by the walk's unbounded spread over time.[12] In this context, the expected distance from the origin can be quantified by the standard deviation of the probability distribution. This measurement has been explored on both one-dimensional and two-dimensional lattices, where the standard deviation grows in direct proportion to the evolution time. Classically, the standard deviation of the random walk would be proportional to the square root of the evolution time.[11]

Realization

[edit]

Atomic lattice is the leading quantum platform in terms of scalability. Coined and coinless discrete-time quantum-walk could be realized in the atomic lattice via a distance-selective spin-exchange interaction.[13] Remarkably the platform preserves the coherence over couple of hundred sites and steps in 1, 2 or 3 dimensions in the spatial space. The long-range dipolar interaction allows designing periodic boundary conditions, facilitating the QW over topological surfaces.[13]

See also

[edit]

References

[edit]
  1. ^ A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, Exponential algorithmic speedup by quantum walk, Proc. 35th ACM Symposium on Theory of Computing, pp. 59–68, 2003, arXiv:quant-ph/0209131.
  2. ^ A. M. Childs, L. J. Schulman, and U. V. Vazirani, Quantum algorithms for hidden nonlinear structures, Proc. 48th IEEE Symposium on Foundations of Computer Science, pp. 395–404, 2007, arXiv:0705.2784.
  3. ^ Andris Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Comput. 37 (2007), no. 1, 210–239, arXiv:quant-ph/0311001, preliminary version in FOCS 2004.
  4. ^ F. Magniez, M. Santha, and M. Szegedy, Quantum algorithms for the triangle problem, Proc. 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1109–1117, 2005, quant-ph/0310134.
  5. ^ E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree, Theory of Computing 4 (2008), no. 1, 169–190, quant-ph/0702144
  6. ^ Kemp, J. (1 February 2008). "Quantum random walks - an introductory overview". Contemporary Physics. 44 (4): 307–327. arXiv:quant-ph/0303081. Bibcode:2003ConPh..44..307K. doi:10.1080/00107151031000110776.
  7. ^ Andrew M. Childs, "Universal Computation by Quantum Walk".
  8. ^ Kempe, Julia (1 July 2003). "Quantum random walks – an introductory overview". Contemporary Physics. 44 (4): 307–327. arXiv:quant-ph/0303081. Bibcode:2003ConPh..44..307K. doi:10.1080/00107151031000110776. ISSN 0010-7514. S2CID 17300331.
  9. ^ T. Sunada and T. Tate, Asymptotic behavior of quantum walks on the line, Journal of Functional Analysis 262 (2012) 2608–2645
  10. ^ "Markov Chains explained visually". Explained Visually. Retrieved 20 November 2024.
  11. ^ a b Portugal, R. (2018). Quantum Walks and Search Algorithms (2nd ed.). Switzerland: Springer Cham. ISBN 978-3-319-97812-3.
  12. ^ Krovi, Hari; Brun, Todd A. (27 October 2006). "Quantum walks with infinite hitting times". Physical Review A. 74 (4): 042334. arXiv:quant-ph/0606094. doi:10.1103/PhysRevA.74.042334. ISSN 1050-2947.
  13. ^ a b Khazali, Mohammadsadegh (3 March 2022). "Discrete-Time Quantum-Walk & Floquet Topological Insulators via Distance-Selective Rydberg-Interaction". Quantum. 6: 664. arXiv:2101.11412. Bibcode:2022Quant...6..664K. doi:10.22331/q-2022-03-03-664. ISSN 2521-327X. S2CID 246635019.

Further reading

[edit]
[edit]