Ring-opening polymerization: Difference between revisions
→Additional reading: rescuing refs |
ref |
||
(57 intermediate revisions by 23 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Chain polymerization involving cyclic monomers}} |
|||
{{Quote box |
{{Quote box |
||
|title = [[International Union of Pure and Applied Chemistry|IUPAC]] definition |
|title = [[International Union of Pure and Applied Chemistry|IUPAC]] definition |
||
|quote = A [[polymerization]] in which a [[Cyclic compound|cyclic]] [[monomer]] yields a monomeric unit which is [[Open-chain compound|acyclic]] or contains fewer cycles than the monomer. |
|quote = A [[polymerization]] in which a [[Cyclic compound|cyclic]] [[monomer]] yields a monomeric unit which is [[Open-chain compound|acyclic]] or contains fewer cycles than the monomer. |
||
Note: |
Note: |
||
If |
If monomer is [[Polycyclic compound|polycyclic]], the opening of a single ring is sufficient to classify the [[Chemical reaction|reaction]] as ring-opening polymerization. |
||
Modified from the earlier definition<ref name="Goldbook">{{GoldBookRef|title=Ring-opening polymerization| |
Modified from the earlier definition.<ref name="Goldbook">{{GoldBookRef|title=Ring-opening polymerization|file=R05396|accessdate=Mar 10, 2014}}</ref><ref name=PAC1996>{{cite journal |
||
.<ref name=PAC1996>{{cite journal |
|||
|url= http://iupac.org/publications/pac/68/12/2287/ |
|url= http://iupac.org/publications/pac/68/12/2287/ |
||
|doi = 10.1351/pac199668122287 |
|doi = 10.1351/pac199668122287 |
||
Line 13: | Line 12: | ||
|last1= Jenkins |first1= A. D. |last2= Kratochvíl |first2= P. |last3= Stepto |first3= R. F. T. |last4= Suter |first4= U. W. |
|last1= Jenkins |first1= A. D. |last2= Kratochvíl |first2= P. |last3= Stepto |first3= R. F. T. |last4= Suter |first4= U. W. |
||
|journal= Pure and Applied Chemistry |volume=68 |year=1996 |pages=2287–2311 |
|journal= Pure and Applied Chemistry |volume=68 |year=1996 |pages=2287–2311 |
||
|issue= 12}}</ref> |
|issue= 12|doi-access= free}}</ref> |
||
|source = [http://www.iupac.org/publications/pac/80/10/2163/ Penczek S.; Moad, G. ''Pure Appl. Chem.'', '''2008''', 80(10), 2163-2193] |
|source = [http://www.iupac.org/publications/pac/80/10/2163/ Penczek S.; Moad, G. ''Pure Appl. Chem.'', '''2008''', 80(10), 2163-2193] |
||
|align = right |
|align = right |
||
Line 19: | Line 18: | ||
[[File:General scheme ionic prop.png|thumb|600px|General scheme ionic propagation. Propagating center can be radical, cationic or anionic.]] |
[[File:General scheme ionic prop.png|thumb|600px|General scheme ionic propagation. Propagating center can be radical, cationic or anionic.]] |
||
In [[polymer chemistry]], '''ring-opening polymerization''' ('''ROP''') is a form of [[chain-growth polymerization]], in which the terminal end of a [[polymer]] chain acts as a [[reactive center]] where further [[cyclic compound|cyclic monomers]] can react by opening its ring system and form a longer polymer chain (see figure). The propagating center can be [[Radical (chemistry)|radical]], [[anion]]ic or [[cation]]ic. Some cyclic monomers such as [[norbornene]] or [[cyclooctadiene]] can be [[polymerization|polymerized]] to high [[molecular mass|molecular weight]] polymers by using metal [[Catalysis|catalysts]]. ROP continues to be the most versatile method of synthesis of major groups of [[biopolymer]]s, particularly when they are required in quantity. |
|||
In [[polymer chemistry]], '''ring-opening polymerization''' ('''ROP''') is a form of [[chain-growth polymerization]] in which the [[End group|terminus]] of a [[polymer]] chain attacks [[cyclic compound|cyclic monomers]] to form a longer polymer (see figure). The reactive center can be [[Radical (chemistry)|radical]], [[anion]]ic or [[cation]]ic. |
|||
The driving force for the ring-opening of cyclic monomers is via the relief of [[ring strain|bond-angle strain]] or [[steric effects|steric repulsions]] between atoms at the center of a ring. Thus, as is the case for other types of polymerization, the [[enthalpy]] change in ring-opening is negative.<ref name=Young>{{cite book|last=Young|first=Robert J.|title=Introduction to Polymers|year=2011|publisher=CRC Press|location=Boca Raton|isbn=978-0-8493-3929-5}}</ref> |
|||
Ring-opening of cyclic monomers is often driven by the relief of [[ring strain|bond-angle strain]]. Thus, as is the case for other types of polymerization, the [[enthalpy]] change in ring-opening is negative.<ref name=Young>{{cite book|last=Young|first=Robert J.|title=Introduction to Polymers|year=2011|publisher=CRC Press|location=Boca Raton|isbn=978-0-8493-3929-5}}</ref> Many rings undergo ROP.<ref>{{cite journal |doi=10.1007/s00726-006-0432-9}}</ref> |
|||
==Monomers== |
==Monomers== |
||
Many [[cyclic compound|cyclic monomers]] are amenable to ROP.<ref>{{cite journal |doi=10.3390/polym5020361|doi-access=free |title=Ring-Opening Polymerization—An Introductory Review |date=2013 |last1=Nuyken |first1=Oskar |last2=Pask |first2=Stephen |journal=Polymers |volume=5 |issue=2 |pages=361–403 }}</ref> These include [[epoxide]]s,<ref name=Sarazin>{{cite journal|title=Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides|author=Yann Sarazin |author2=Jean-François Carpentier |journal=Chemical Reviews|year=2015|volume=115|issue=9|pages=3564–3614|doi=10.1021/acs.chemrev.5b00033|pmid=25897976}}</ref><ref name=Longo>{{cite journal|title=Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships|first1=Julie M.|last1=Longo|first2=Maria J.|last2= Sanford|first3=Geoffrey W.|last3=Coates|journal=Chemical Reviews|year=2016|volume=116|issue=24|pages=15167–15197|doi=10.1021/acs.chemrev.6b00553|pmid=27936619}}</ref> cyclic trisiloxanes,{{cn|date=December 2023}} some lactones<ref name=Sarazin/><ref name=Jerome>{{Cite journal|last1=JEROME|first1=C|last2=LECOMTE|first2=P|date=2008-06-10|title=Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization☆|journal=Advanced Drug Delivery Reviews|volume=60|issue=9|pages=1056–1076|doi=10.1016/j.addr.2008.02.008|pmid=18403043|hdl=2268/3723|issn=0169-409X|url=http://orbi.ulg.ac.be/handle/2268/3723|hdl-access=free}}</ref> and [[lactide]]s,<ref name=Jerome/> cyclic [[anhydride]]s,<ref name=Longo/> [[cyclic carbonate]]s,<ref>{{cite journal|last=Matsumura|first=Shuichi|author2=Tsukada, Keisuke |author3=Toshima, Kazunobu |title=Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate)|journal=Macromolecules|date=May 1997|volume=30|issue=10|pages=3122–3124|doi=10.1021/ma961862g|bibcode=1997MaMol..30.3122M}} |
|||
[[cyclic compound|Cyclic monomers]] that are polymerized using ROP encompass a variety of functional groups, such as: |
|||
</ref> and [[amino acid N-carboxyanhydride|amino acid ''N''-carboxyanhydride]]s.<ref>{{cite journal|author=Kricheldorf, H. R. |year=2006 |title=Polypeptides and 100 Years of Chemistry of α-Amino Acid ''N''-Carboxyanhydrides|journal=Angewandte Chemie International Edition |volume=45|issue=35|pages=5752–5784|doi= 10.1002/anie.200600693|pmid=16948174 }}</ref><ref>{{cite journal|title=Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides|author=Nikos Hadjichristidis |author2=Hermis Iatrou |author3=Marinos Pitsikalis |author4=Georgios Sakellariou |journal=Chemical Reviews|year=2009|volume=109|issue=11|pages= 5528–5578|doi=10.1021/cr900049t|pmid=19691359}}</ref> Many strained [[cycloalkene]]s, e.g [[norbornene]], are suitable monomers via [[ring-opening metathesis polymerization]]. Even highly strained [[cycloalkane]] rings, such as [[cyclopropane]]<ref>{{cite journal |title= The Polymerization of Cyclopropane |first1= R. J. |last1= Scott |first2= H. E. |last2= Gunning |journal= J. Phys. Chem. |year= 1952 |volume= 56 |issue= 1 |pages= 156–160 |doi= 10.1021/j150493a031 }}</ref> and [[cyclobutane]]<ref>{{cite journal |title= Ring-Opening Polymerization of the Cyclobutane Adduct of Methyl Tricyanoethylenecarboxylate and Ethyl Vinyl Ether |first1= Tsutomu |last1= Yokozawa |first2= Ei-ichi |last2= Tsuruta |journal= Macromolecules |year= 1996 |volume= 29 |issue= 25 |pages= 8053–8056 |doi= 10.1021/ma9608535 }}</ref> derivatives, can undergo ROP. |
|||
*[[alkenes]]. |
|||
*compounds containing [[heteroatoms]] in the ring: |
|||
**[[oxygen]]: [[ethers]],<ref>{{cite journal|title=Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides|authors=Yann Sarazin, Jean-François Carpentier|journal=Chemical Reviews|year=2015|volume=115|pages=3564-3614|doi=10.1021/acs.chemrev.5b00033}}</ref> [[acetals]], [[esters]] ([[lactones]], [[lactides]],<ref>{{cite journal|title=Controlled Ring-Opening Polymerization of Lactide and Glycolide |
|||
|authors=Odile Dechy-Cabaret, Blanca Martin-Vaca, Didier Bourissou|journal=Chemical Reviews|year= 2004|volume=104 |pages=6147-6176|doi=10.1021/cr040002s}}</ref> and [[carbonates]]), and [[anhydrides]], |
|||
**[[sulfur]]: polysulfur, [[sulfides]] and [[polysulfides]], |
|||
**[[nitrogen]]: [[amine]]s, [[amide]]s (lactames), [[imides]], [[Amino acid N-carboxyanhydride|N-carboxyanhydrides]] and 1,3-oxaza derivatives, |
|||
**[[phosphorus]]: [[phosphates]], [[phosphonates]], [[phosphites]], [[phosphines]] and phosphazenes, |
|||
**[[silicon]]: [[siloxanes]], silathers, carbosilanes and [[silanes]]. |
|||
==History== |
==History== |
||
Ring-opening polymerization has been used since the beginning of the 1900s to produce [[polymer]]s. Synthesis of [[polypeptides]] which has the oldest history of ROP, dates back to the work in 1906 by Leuchs.<ref>{{cite journal|title=Glycine-carbonic acid|last=Leuchs|first=H.|journal= |
Ring-opening polymerization has been used since the beginning of the 1900s to produce [[polymer]]s. Synthesis of [[polypeptides]] which has the oldest history of ROP, dates back to the work in 1906 by Leuchs.<ref>{{cite journal|title=Glycine-carbonic acid|last=Leuchs|first=H.|journal=Berichte der Deutschen Chemischen Gesellschaft|year=1906|volume=39|page=857|doi=10.1002/cber.190603901133|url=https://zenodo.org/record/1426172}}</ref> Subsequently, the ROP of anhydro [[sugars]] provided [[polysaccharides]], including synthetic [[dextran]], [[xanthan gum]], [[welan gum]], [[gellan gum]], diutan gum, and [[pullulan]]. Mechanisms and thermodynamics of ring-opening polymerization were established in the 1950s.<ref>{{cite journal|last=Dainton|first=F. S.|author2=Devlin, T. R. E. |author3=Small, P. A. |title=The thermodynamics of polymerization of cyclic compounds by ring opening|journal=Transactions of the Faraday Society|year=1955|volume=51|page=1710|doi=10.1039/TF9555101710}}</ref><ref>{{cite journal|last=Conix|first=André|author2=Smets, G. |title=Ring opening in lactam polymers|journal=Journal of Polymer Science|date=January 1955|volume=15|issue=79|pages=221–229|doi=10.1002/pol.1955.120157918|bibcode=1955JPoSc..15..221C}}</ref> The first high-molecular weight polymers (M<sub>n</sub> up to 10<sup>5</sup>) with a [[repeat unit|repeating unit]] were prepared by ROP as early as in 1976.<ref>{{cite journal|last1= Kałuz̀ynski|first1=Krzysztof|last2=Libiszowski|first2=Jan|last3=Penczek|first3=Stanisław|title=Poly(2-hydro-2-oxo-1,3,2-dioxaphosphorinane). Preparation and NMR spectra|journal=Die Makromolekulare Chemie|volume=178|issue=10|year=1977|pages=2943–2947|issn=0025-116X|doi=10.1002/macp.1977.021781017}}</ref><ref>{{cite journal|last=Libiszowski|first=Jan|author2=Kałużynski, Krzysztof |author3=Penczek, Stanisław |title=Polymerization of cyclic esters of phosphoric acid. VI. Poly(alkyl ethylene phosphates). Polymerization of 2-alkoxy-2-oxo-1,3,2-dioxaphospholans and structure of polymers|journal=Journal of Polymer Science: Polymer Chemistry Edition|date=June 1978|volume=16|issue=6|pages=1275–1283|doi=10.1002/pol.1978.170160610|bibcode=1978JPoSA..16.1275L}}</ref> |
||
An industrial application is the production of [[nylon-6]]. |
An industrial application is the production of [[nylon-6]] from [[caprolactam]]. |
||
==Mechanisms== |
==Mechanisms== |
||
Ring-opening polymerization can proceed via [[Radical (chemistry)|radical]], anionic or cationic polymerization as described below. ROP |
Ring-opening polymerization can proceed via [[Radical (chemistry)|radical]], anionic, or cationic polymerization as described below.<ref name=nuyken>{{cite journal|last=Nuyken|first=Oskar|author2=Stephen D. Pask |title=Ring-Opening Polymerization—An Introductory Review|journal=Polymers|date=25 April 2013|volume=5|issue=2|pages=361–403|doi=10.3390/polym5020361|doi-access=free}}</ref> Additionally, radical ROP is useful in producing polymers with [[functional group]]s incorporated in the backbone chain that cannot otherwise be synthesized via conventional [[chain-growth polymerization]] of [[Vinyl group|vinyl]] monomers. For instance, radical ROP can produce polymers with [[ethers]], [[esters]], [[amide]]s, and [[carbonates]] as functional groups along the main chain.<ref name=nuyken /><ref name=dubois>{{cite book|last=Dubois|first=Philippe|title=Handbook of ring-opening polymerization|year=2008|publisher=Wiley-VCH|location=Weinheim|isbn=978-3-527-31953-4|edition=1. Aufl.}}</ref> |
||
=== |
===Anionic ring-opening polymerization (AROP)=== |
||
{{main article|Radical polymerization}} |
|||
With radical ring-opening polymerization, it is possible to produce polymers of the same or lower density than the monomers. This is important for applications that require constant volume after polymerization, such as [[Dental restoration|tooth fillings]], coatings, and the molding of electrical and electronic components.<ref name=nuyken>{{cite journal|last=Nuyken|first=Oskar|author2=Stephen D. Pask |title=Ring-Opening Polymerization—An Introductory Review|journal=Polymers|date=25 April 2013|volume=5|pages=361–403|doi=10.3390/polym5020361}}</ref> Additionally, radical ROP is useful in producing polymers with [[functional group]]s incorporated in the backbone chain that cannot otherwise be synthesized via conventional [[chain-growth polymerization]] of [[Vinyl group|vinyl]] monomers. For instance, radical ROP can produce polymers with [[ethers]], [[esters]], [[amide]]s, and [[carbonates]] as functional groups along the main chain.<ref name=nuyken /><ref name=dubois>{{cite book|last=Dubois|first=Philippe|title=Handbook of ring-opening polymerization|year=2008|publisher=Wiley-VCH|location=Weinheim|isbn=978-3-527-31953-4|edition=1. Aufl.}}</ref><ref name=mori>{{cite journal|last=Mori|first=Hideharu|author2=Shigeki Masuda |author3=Takeshi Endo |title=Ring-Opening RAFT Polymerization Based on Aromatization as Driving Force: Synthesis of Well-Defined Polymers Containing Anthracene Units in the Main Chain|journal=Macromolecules|date=July 20, 2006|volume=39|pages=5976–5978|doi=10.1021/ma0612879|bibcode=2006MaMol..39.5976M}}</ref> |
|||
[[Radical polymerization|Free radical polymerization]] allows control radical of [[Molecular mass|molecular weight]]. [[Reversible addition−fragmentation chain-transfer polymerization|Reversible Addition Fragmentation Transfer (RAFT)]] has been applied to radical ROP of a cyclopropane monomer.<ref name=dubois /> For instance, the RAFT polymerization of the [[cyclic compound|cyclic monomer]] to synthesize polymers with [[anthracene]] along the backbone chain has been demonstrated.<ref name=mori /> |
|||
Examples of monomers that undergo radical ROP include vinyl substituted cyclic monomers, [[methylene group|methylene]] substituted cyclic monomers, bicyclobutanes, spiro monomers (which undergo double ring-opening). Degradable [[polyester]] can be synthesized via radical ring-opening homo- and [[copolymer]]ization.<ref name=nuyken /> |
|||
====Mechanism==== |
|||
In free radical ROP, the [[cyclic compound|cyclic]] structure will undergo [[Homolysis (chemistry)|homolytic dissociation]] rather than undergoing [[Heterolysis (chemistry)|heterolytic dissociation]] (as is the case for any ionic ROP). There are two typical mechanistic schemes in radical ROP. |
|||
'''Scheme 1:''' The terminal vinyl group accepts a [[Radical (chemistry)|radical]]. The radical will be transformed into a [[carbon]] radical stabilized by [[functional group]]s (i.e. [[halogen]], [[aromaticity|aromatic]], or [[ester]] groups). This will lead to the generation of an internal [[Alkene|olefin]]. |
|||
[[File:Grace figure revised.tif|thumb|800px|center|Radical ring-opening polymerization of vinyl cyclopropane]] |
|||
'''Scheme 2:''' In this case, the [[methylene group|exo-methylene group]] is the radical [[electron acceptor|acceptor]]. The ring-opening reaction will form an ester bond, and the radical produced is stabilized by a [[phenyl group]].<ref name=dubois /> |
|||
[[File:Radical ROP of ketene acetal..png|thumb|800px|center|Radical ROP of ketene acetal.]] |
|||
===Anionic ring-opening polymerization=== |
|||
{{main article|Anionic polymerization}} |
{{main article|Anionic polymerization}} |
||
[[File:Wiki566665.tif|thumb|400px|The general mechanism for anionic ring-opening polymerization. Polarized functional group is represented by X-Y, where the atom X (usually a carbon atom) becomes electron deficient due to the highly electron-withdrawing nature of Y (usually an oxygen, nitrogen, sulfur, etc.). The nucleophile will attack atom X, thus releasing Y |
[[File:Wiki566665.tif|thumb|400px|center|The general mechanism for anionic ring-opening polymerization. Polarized functional group is represented by X-Y, where the atom X (usually a carbon atom) becomes electron deficient due to the highly electron-withdrawing nature of Y (usually an oxygen, nitrogen, sulfur, etc.). The nucleophile will attack atom X, thus releasing Y<sup>−</sup>. The newly formed nucleophile will then attack the atom X in another monomer molecule, and the sequence would repeat until the polymer is formed.<ref name=dubois />]] |
||
Anionic ring-opening polymerizations (AROP) |
Anionic ring-opening polymerizations (AROP) involve [[nucleophile|nucleophilic reagents]] as initiators. Monomers with a three-member ring structure - such as [[epoxides]], [[aziridines]], and [[episulfides]] - undergo anionic ROP.<ref name=dubois /> |
||
A typical example of anionic ROP is that of [[caprolactone|ε-caprolactone]], initiated by an [[alkoxide]] |
A typical example of anionic ROP is that of [[caprolactone|ε-caprolactone]], initiated by an [[alkoxide]].<ref name=dubois /> |
||
[[File:Wiki65656.tif|thumb|600px|center|The anionic ring-opening polymerization of ε - caprolactone, initiated by alkoxide function]] |
|||
====Initiation==== |
|||
Common [[nucleophile|nucleophilic]] reagents used for the initiation of AROP usually will include [[Organometallic chemistry|organometals]] (e.g. [[Organolithium reagent|alkyl lithium]], alkyl magnesium bromide, alkyl aluminum, etc.), metal [[amide]]s, [[alkoxides]], [[phosphines]], [[amine]]s, [[alcohols]] and water. The monomers that undergo AROP will contain [[polar bond|polarized bonds]] ([[ester]] [[carbonate]], [[amide]], [[Carbamate|urethane]], and [[phosphate]]), which respectively leads to the production of the corresponding [[polyester]], [[polycarbonate]], [[polyamide]], [[polyurethane]] and [[polyphosphate]].<ref name=dubois /> |
|||
Monomer rings that are unsymmetrically substituted will open with [[nucleophile|nucleophilic]] attack on the least substituted carbon atom.<ref name=nuyken /> |
|||
====Propagation==== |
|||
The general mechanism of propagation for anionic ROP relies on the [[nucleophile|nucleophilic]] attack of a propagating chain end to a monomer. |
|||
Another possible mechanism for propagation is the [[nucleophile|nucleophilic]] attack of an activated monomer to the growing chain end. [[caprolactam|ε-caprolactam]] and N-carboxyanhydride undergo this kind of mechanism.<ref name=dubois /> |
|||
====Transfer and termination==== |
|||
Termination in AROP can be described as [[chain transfer]] reactions to monomer that is available. The [[Active center (polymer science)|active centers]] of AROP monomers are [[nucleophile|nucleophilic]] and also act as [[base (chemistry)|bases]] to abstract [[proton]]s from the monomer, initiating new chains. Thus, AROP often results in low [[molecular mass|molecular-weight]] polymers. A possible method to increase the molecular mass of the polymer products is by adding [[crown ether]]s as [[Chelation|complexing agents]] for [[Counterion|counter-ions]] in the polymerization system. This causes the free-ions to preferentially add to monomer rather than abstract protons.<ref name=nuyken /> |
|||
===Cationic ring-opening polymerization=== |
===Cationic ring-opening polymerization=== |
||
{{main article|Cationic polymerization}} |
{{main article|Cationic polymerization}} |
||
Cationic ring-opening polymerization (CROP) |
Cationic initiators and intermediates characterize cationic ring-opening polymerization (CROP). Examples of [[cyclic compound|cyclic monomers]] that polymerize through this mechanism include [[lactone]]s, [[lactam]]s, [[amine]]s, and [[ether]]s.<ref name="cowie cation">{{cite book|last=Cowie|first=John McKenzie Grant|title=Polymers: Chemistry and Physics of Modern Materials|year=2008|publisher=CRC Press|location=Boca Raton, Florida|isbn=978-0-8493-9813-1|pages=105–107}}</ref> CROP proceeds through an [[SN1 reaction|S<sub>N</sub>1]] or [[SN2 reaction|S<sub>N</sub>2]] propagation, chain-growth process.<ref name=nuyken /> The mechanism is affected by the stability of the resulting [[ion|cationic]] species. For example, if the atom bearing the positive charge is stabilized by [[activating group|electron-donating groups]], polymerization will proceed by the S<sub>N</sub>1 mechanism.<ref name=dubois /> The cationic species is a [[heteroatom]] and the chain grows by the addition of cyclic monomers thereby opening the ring system. |
||
[[File:PTMEG synthesis.svg|450px|center|thumb|Synthesis of [[Spandex]].<ref name="kirk">{{cite encyclopedia |year=1996 |title =Polyethers, Tetrahydrofuran and Oxetane Polymers |first1= Gerfried|last1= Pruckmayr|first2= P.|last2= Dreyfuss|first3= M. P.|last3= Dreyfuss |encyclopedia=Kirk‑Othmer Encyclopedia of Chemical Technology |publisher=John Wiley & Sons }}</ref>]] |
|||
[[File:Cationic ROP..png|thumb|center|900px|S<sub>N</sub>1 and S<sub>N</sub>2 mechanisms of CROP.]] |
|||
The monomers can be activated by [[Brønsted–Lowry acid–base theory|Bronsted acids]], [[carbenium ion]]s, [[Onium compound|onium ions]], and metal cations.<ref name=nuyken /> |
|||
CROP can be a [[living polymerization]] and can be terminated by nucleophilic reagents such as [[Alkoxy group|phenoxy anions]], [[phosphine]]s, or [[Polyelectrolyte|polyanions]].<ref name=nuyken /> When the amount of monomers becomes depleted, termination can occur intra or intermolecularly. The active end can "backbite" the chain, forming a [[macrocycle]]. [[Alkyl]] chain transfer is also possible, where the active end is quenched by transferring an alkyl chain to another polymer. |
|||
Not all cyclic monomers containing an heteroatom undergo CROP. Ring size influences whether the cyclic monomer polymerize through this mechanism. For example, 4, 6 and 7-membered rings of cyclic [[esters]] polymerize through CROP.<ref name="controlled rop">{{cite book|last=Stridsberg|first=Kajsa M.|title=Controlled ring-opening polymerization : polymers with designed macromolecular architecture|year=2000|publisher=Tekniska högsk.|location=Stockholm|isbn=91-7170-522-8}}</ref> When considering the ring size of the monomer, the reactivity toward polymerization is dictated by the ability to release the [[ring strain]]. Therefore, cyclic monomers with small or lacking ring strain will not polymerize.<ref name="poly mat encyclo">{{cite book|title=Polymeric materials encyclopedia|year=1996|publisher=CRC Press|location=Boca Raton|isbn=0-8493-2470-X|page=1931|editor=Joseph C. Salamone}}</ref> |
|||
====Initiation==== |
|||
[[File:CROP initiation..png|thumb|700px|Initiation of CROP.]] |
|||
The monomers can be activated by [[Brønsted–Lowry acid–base theory|Bronsted acids]], [[carbenium ion]]s, [[Onium compound|onium ions]], [[photoinitiator]]s, and [[covalent bond|covalent]] initiators.<ref name=nuyken /> |
|||
====Propagation==== |
|||
The [[ion|cationic]] species is an [[heteroatom]] and the chain grows by the addition of [[cyclic compound|cyclic monomers]] thereby opening the ring system. |
|||
In CROP, three mechanisms are distinguished by the propagating species.<ref name=nuyken /> |
|||
* When the [[ion|cationic]] species is a secondary ion, polymerization proceeds by ring expansion. This mechanism is observed when the monomer is in low concentration. |
|||
* When it is a tertiary ion, polymerization proceeds by [[step-growth polymerization|linear growth]]. |
|||
* The monomer can likewise be activated (i.e. cationic) and the propagation step will proceed via [[electrophilic addition]] of the activated monomer to the growing chain. |
|||
====Termination==== |
|||
CROP can be considered as a [[living polymerization]] and can be terminated by intentionally adding termination reagents such as [[Alkoxy group|phenoxy anions]], [[phosphine]]s or [[Polyelectrolyte|polyanions]].<ref name=nuyken /> When the amount of monomers becomes depleted, termination can occur intra or intermolecularly. The active end can "backbite" the chain, forming a [[macrocycle]]. [[Alkyl]] chain transfer is also possible, where the active end is quenched by transferring an alkyl chain to another polymer. |
|||
===Ring-opening metathesis polymerization=== |
===Ring-opening metathesis polymerization=== |
||
{{main article|Ring-opening metathesis polymerization}} |
{{main article|Ring-opening metathesis polymerization}} |
||
[[Ring-opening metathesis polymerisation]] (ROMP) produces [[Saturated and unsaturated compounds|unsaturated]] polymers from [[cycloalkene]]s or bicycloalkenes. It requires [[Organometallic chemistry|organometallic catalysts]].<ref name=nuyken /> |
|||
[[File:ROMP of olefin..png|thumb|400px|Ring opening metathesis polymerization of olefin.]] |
|||
[[Ring-opening metathesis polymerisation|Ring-opening metathesis polymerization]] (ROMP) produces [[Saturated and unsaturated compounds|unsaturated]] polymers from [[cycloalkene]]s or bicycloalkenes. It requires [[Organometallic chemistry|organometallic catalysts]].<ref name=nuyken /> |
|||
The mechanism for ROMP follows similar pathways as [[olefin metathesis]]. The initiation process involves the coordination of the cycloalkene monomer to the [[Transition metal carbene complex|metal alkylidene complex]], followed by a [2+2] type [[cycloaddition]] to form the metallacyclobutane intermediate that cycloreverts to form a new alkylidene species.<ref name=sutthasupa>{{cite journal|last=Sutthasupa|first=Sutthira|author2=Shiotsuki, Masashi |author3=Sanda, Fumio |title=Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials|journal=Polymer Journal|date=13 October 2010|volume=42|issue=12|pages=905–915|doi=10.1038/pj.2010.94}}</ref><ref name=hartwig>{{cite book|last=Hartwig|first=John F.| |
The mechanism for ROMP follows similar pathways as [[olefin metathesis]]. The initiation process involves the coordination of the cycloalkene monomer to the [[Transition metal carbene complex|metal alkylidene complex]], followed by a [2+2] type [[cycloaddition]] to form the metallacyclobutane intermediate that cycloreverts to form a new alkylidene species.<ref name=sutthasupa>{{cite journal|last=Sutthasupa|first=Sutthira|author2=Shiotsuki, Masashi |author3=Sanda, Fumio |title=Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials|journal=Polymer Journal|date=13 October 2010|volume=42|issue=12|pages=905–915|doi=10.1038/pj.2010.94|doi-access=free}}</ref><ref name=hartwig>{{cite book|last=Hartwig|first=John F.| author-link = John F. Hartwig | title=Organotransition metal chemistry: from bonding to catalysis|year=2010|publisher=University Science Books|location=Sausalito, California|isbn=978-1-891389-53-5}}</ref> |
||
[[File:Romp mechanism.png|thumb|center|850px|General scheme of the mechanism for ROMP.]] Commercially relevant [[Saturated and unsaturated compounds|unsaturated]] polymers synthesized by ROMP include |
[[File:Romp mechanism.png|thumb|center|850px|General scheme of the mechanism for ROMP.]] Commercially relevant [[Saturated and unsaturated compounds|unsaturated]] polymers synthesized by ROMP include poly[[norbornene]], poly[[cyclooctene]], and poly[[cyclopentadiene]].<ref>{{Cite journal|last1=Walsh|first1=Dylan J.|last2=Lau|first2=Sii Hong|last3=Hyatt|first3=Michael G.|last4=Guironnet|first4=Damien|date=2017-09-25|title=Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts|journal=Journal of the American Chemical Society|language=EN|volume=139|issue=39|pages=13644–13647|doi=10.1021/jacs.7b08010|pmid=28944665|issn=0002-7863}}</ref> |
||
==Copolymerization== |
|||
{{main article|Copolymerization}} |
|||
[[File:Wiki333.tif|thumb|600px|Stoichiometric equation for ring-opening copolymerization]] |
|||
[[Copolymerization]] is the process of combining two polymers that are different. This is an industrial process that creates a substance that has long chains of molecules. In terms of ROP, the stoichiometric equation for copolymerization includes two or more of comonomers. |
|||
The following figure shows an example of such a copolymerization. By varying the ratio of monomers and the mode of initiation, many and varied polymers can be obtained, optimized for their use in agricultural, medicinal or pharmaceutical fields. |
|||
{{double image|center|Chakyoun_wikiproject_image1.png|350|Chakyoun_wikiproject_image2.png|400|Radical ring-opening copolymerization of a ketene acetal.|Copolymerization of nonhomopolymerizable monomers, γ-butyrolactone (BL) and ε-caprolactone (CL).}} |
|||
As an example of copolymerization of non-homopolymerizable monomers, [[γ-butyrolactone]] (BL) and [[ε-caprolactone]] (CL) show that the copolymerization provides high molar mass polymers: The BL/CL copolymer synthesis is viable despite the fact that BL monomer addition to its own –bl* active chain ends was highly reversible, as the –bl* unit could be blocked via a practically irreversible CL addition.<ref>{{cite journal|last=Duda|first=Andrzej|author2=Penczek, Stanislaw |author3=Dubois, Philippe |author4=Mecerreyes, David |author5= Jérôme, Robert |title=Oligomerization and copolymerization of γ-butyrolactone — a monomer known as unable to homopolymerize, 1. Copolymerization with ɛ-caprolactone|journal=Macromolecular Chemistry and Physics|date=April 1996|volume=197|issue=4|pages=1273–1283|doi=10.1002/macp.1996.021970408}}</ref><ref>{{cite journal|last=Ubaghs|first=Luc|author2=Waringo, Michel |author3=Keul, Helmut |author4= Höcker, Hartwig |title=Copolymers and Terpolymers of Tetramethylene Urea, γ-Butyrolactone, and Ethylene Carbonate or 1,2-Propylene Carbonate|journal=Macromolecules|date=September 2004|volume=37|issue=18|pages=6755–6762|doi=10.1021/ma049668e|bibcode=2004MaMol..37.6755U}}</ref><ref>{{cite journal|last=Agarwal|first=Seema|author2=Xie, Xiulan |title=SmI/Sm-Based γ-Buyrolactone−ε-Caprolactone Copolymers: Microstructural Characterization Using One- and Two-Dimensional NMR Spectroscopy|journal=Macromolecules|date=May 2003|volume=36|issue=10|pages=3545–3549|doi=10.1021/ma0258713|bibcode=2003MaMol..36.3545A}}</ref> |
|||
Similarly, the earlier studies of S<sub>8</sub> copolymerization with [[thiiranes]] (propylene sulfide; PS), at temperatures below T<sub>f</sub> for S<sub>8</sub> homopolymerization, revealed that the average [[sulfur]] rank in the copolymer increased from 1 to 7 when 8[S<sub>8</sub>]<sub>0</sub>/[PS]<sub>0</sub> ratio was increasing from 0 to 10.<ref>{{cite journal|last=PENCZEK|first=STANISŁAW|author2=ŚLAZAK, ROMUALD |author3=DUDA, ANDRZEJ |title=Anionic copolymerisation of elemental sulphur|journal=Nature|date=29 June 1978|volume=273|issue=5665|pages=738–739|doi=10.1038/273738a0|bibcode=1978Natur.273..738P}}</ref><ref>{{cite journal|last=Duda|first=Andrzej|author2=Penczek, Stanislaw |title=Anionic copolymerization of elemental sulfur with propylene sulfide|journal=Macromolecules|date=January 1982|volume=15|issue=1|pages=36–40|doi=10.1021/ma00229a007|bibcode=1982MaMol..15...36D}}</ref> |
|||
==Thermodynamics== |
==Thermodynamics== |
||
The formal thermodynamic criterion of a given monomer polymerizability is related to a sign of the [[free enthalpy]] ([[Gibbs free energy]]) of polymerization: |
The formal thermodynamic criterion of a given monomer polymerizability is related to a sign of the [[free enthalpy]] ([[Gibbs free energy]]) of polymerization: |
||
<math display=block>\Delta G_p(xy) = \Delta H_p(xy)-T\Delta S_p(xy)</math> |
|||
where: |
|||
where x and y indicate monomer and polymer states, respectively (x and/or y = l (liquid), g ([[gaseous]]), c ([[amorphous solid]]), c’ ([[crystalline solid]]), s ([[solution]])), ΔH<sub>p</sub>(xy) and ΔSp(xy) are the corresponding [[enthalpy]] (SI unit: joule per kelvin) and [[entropy]] (SI unit: joule) of polymerization, and T is the absolute temperature (SI unit: kelvin). |
|||
:{{mvar|x}} and {{mvar|y}} indicate monomer and polymer states, respectively ({{mvar|x}} and/or {{mvar|y}} = l (liquid), g ([[gaseous]]), c ([[amorphous solid]]), c' ([[crystalline solid]]), s ([[Solution (chemistry)|solution]])); |
|||
The free [[enthalpy]] of polymerization (ΔG<sub>p</sub>) may be expressed as a sum of standard [[enthalpy]] of polymerization (ΔG<sub>p</sub>°) and a term related to instantaneous monomer molecules and growing [[macromolecules]] concentrations: |
|||
:{{math|Δ''H<sub>p</sub>''(''xy'')}} is the [[enthalpy]] of polymerization (SI unit: joule per kelvin); |
|||
:<math>\Delta G_p = \Delta G^\circ_p + RT\ln\frac{[...-(m)_{i+1} m^\ast]}{[M][...-(m)_i m^\ast]}</math> |
|||
:{{math|Δ''S{{sub|p}}''(''xy'')}} is the [[entropy]] of polymerization (SI unit: joule); |
|||
where R is the [[gas constant]], M is the monomer, (m)<sub>i</sub> is the monomer in an initial state, and m<sup>*</sup> is the active monomer. |
|||
:{{mvar|T}} is the [[absolute temperature]] (SI unit: kelvin). |
|||
Following [[Flory–Huggins solution theory]] that the reactivity of an active center, located at a [[macromolecule]] of a sufficiently long macromolecular chain, does not depend on its [[degree of polymerization]] (DPi), and taking in to account that ΔG<sub>p</sub>° = ΔH<sub>p</sub>° - TΔS<sub>p</sub>° (where ΔH<sub>p</sub>° and ΔS<sub>p</sub>° indicate a standard polymerization [[enthalpy]] and [[entropy]], respectively), we obtain: |
|||
The free enthalpy of polymerization ({{math|Δ''G<sub>p</sub>''}}) may be expressed as a sum of standard enthalpy of polymerization ({{math|Δ''G<sub>p</sub>''°}}) and a term related to instantaneous monomer molecules and growing [[macromolecules]] concentrations: |
|||
:<math>\Delta G_p = \Delta H^\circ_p - T(\Delta S^\circ_p + R\ln[M])</math> |
|||
<math chem display=block>\Delta G_p = \Delta G^\circ_p + RT\ln\frac{[\ldots - (\ce{m})_{i+1} \ce{m}^\ast]}{[\ce{M}][\ldots-(\ce{m})_i \ce{m}^\ast]}</math> |
|||
At [[Chemical equilibrium|equilibrium]] (ΔG<sub>p</sub> = 0), when polymerization is complete the monomer concentration ([M]<sub>eq</sub>) assumes a value determined by standard polymerization parameters (ΔH<sub>p</sub>° and ΔS<sub>p</sub>°) and polymerization temperature: |
|||
where: |
|||
:<math>[M]_{eq} = e^{\frac{\Delta H^\circ_p}{RT} - \frac{\Delta S^\circ_p}{R}}</math> |
|||
:{{mvar|R}} is the [[gas constant]]; |
|||
:<math>\ln\frac{DP_n}{DP_n - 1}[M]_{eq} = \frac{\Delta H^\circ_p}{RT} - \frac{\Delta S^\circ_p}{R}</math> |
|||
:{{math|M}} is the monomer; |
|||
:<math>[M]_{eq} = \frac{DP_n - 1}{DP_n} e^{\frac{\Delta H^\circ_p}{RT} - \frac{\Delta S^\circ_p}{R}}</math> |
|||
:{{math|(m)<sub>''i''</sub>}} is the monomer in an initial state; |
|||
Polymerzation is possible only when [M]<sub>0</sub> > [M]<sub>eq</sub>. Eventually, at or above the so-called [[ceiling temperature]] (T<sub>c</sub>), at which [M]<sub>eq</sub> = [M]<sub>0</sub>, formation of the high polymer does not occur. |
|||
:{{math|m<sup>*</sup>}} is the active monomer. |
|||
:<math>T_c = \frac{\Delta H^\circ_p}{\Delta S^\circ_p + R\ln[M]_0} ; (\Delta H^\circ_p<0, \Delta S^\circ_p<0)</math> |
|||
Following [[Flory–Huggins solution theory]] that the reactivity of an active center, located at a [[macromolecule]] of a sufficiently long macromolecular chain, does not depend on its [[degree of polymerization]] ({{math|''DP{{sub|i}}''}}), and taking in to account that {{math|1=Δ''G<sub>p</sub>''° = Δ''H<sub>p</sub>''° − ''T''Δ''S<sub>p</sub>''°}} (where {{math|Δ''H<sub>p</sub>''°}} and {{math|Δ''S<sub>p</sub>''°}} indicate a standard polymerization enthalpy and entropy, respectively), we obtain: |
|||
:<math>T_f = \frac{\Delta H^\circ_p}{\Delta S^\circ_p + R\ln[M]_0} ; (\Delta H^\circ_p>0, \Delta S^\circ_p>0)</math> |
|||
:<math>\Delta G_p = \Delta H^\circ_p - T(\Delta S^\circ_p + R\ln[M])</math> |
|||
For example, [[tetrahydrofuran]] (THF) cannot be polymerized above T<sub>c</sub> = 84 °C, nor cyclo-octasulfur (S<sub>8</sub>) below T<sub>f</sub> = 159 °C.<ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=July 1957|volume=25|issue=109|pages=220–221|doi=10.1002/pol.1957.1202510909|bibcode=1957JPoSc..25..220T}}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=August 1958|volume=31|issue=122|pages=126–126|doi=10.1002/pol.1958.1203112214|bibcode=1958JPoSc..31..126T}}</ref><ref>{{cite journal|last=Tobolsky|first=Arthur V.|author2=Eisenberg, Adi |title=Equilibrium Polymerization of Sulfur|journal=Journal of the American Chemical Society|date=May 1959|volume=81|issue=4|pages=780–782|doi=10.1021/ja01513a004}}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|author2=Eisenberg, A. |title=A General Treatment of Equilibrium Polymerization|journal=Journal of the American Chemical Society|date=January 1960|volume=82|issue=2|pages=289–293|doi=10.1021/ja01487a009}}</ref> However, for many monomers, T<sub>c</sub> and T<sub>f</sub>, for polymerization in the bulk, are well above or below the operable polymerization temperatures, respectively. |
|||
At [[Chemical equilibrium|equilibrium]] ({{math|1=Δ''G<sub>p</sub>'' = 0}}), when polymerization is complete the monomer concentration ({{math|[M]<sub>eq</sub>}}) assumes a value determined by standard polymerization parameters ({{math|Δ''H<sub>p</sub>''°}} and {{math|Δ''S<sub>p</sub>''°}}) and polymerization temperature: |
|||
The polymerization of a majority of monomers is accompanied by an [[entropy]] decrease, due mostly to the loss in the translational degrees of freedom. In this situation, polymerization is thermodynamically allowed only when the enthalpic contribution into ΔG<sub>p</sub> prevails (thus, when ΔH<sub>p</sub>° < 0 and ΔS<sub>p</sub>° < 0, the inequality |ΔH<sub>p</sub>| > -TΔS<sub>p</sub> is required). Therefore, the higher the ring strain, the lower the resulting monomer concentration at [[Chemical equilibrium|equilibrium]]. |
|||
<math chem display=block>\begin{align} |
|||
{}[\ce{M}]_{\rm eq} &= \exp\left(\frac{\Delta H^\circ_p}{RT} - \frac{\Delta S^\circ_p}{R}\right) \\[4pt] |
|||
==See also== |
|||
\ln\frac{DP_n}{DP_n - 1}[\ce{M}]_{\rm eq} &= \frac{\Delta H^\circ_p}{RT} - \frac{\Delta S^\circ_p}{R} \\[4pt] |
|||
* [[Ring opening metathesis polymerization]] |
|||
[\ce{M}]_{\rm eq} &= \frac{DP_n - 1}{DP_n} \exp\left(\frac{\Delta H^\circ_p}{RT} - \frac{\Delta S^\circ_p}{R}\right) |
|||
* [http://www.pslc.ws/macrog/meta.htm Olefin Metathesis Polymerization] |
|||
\end{align}</math> |
|||
Polymerization is possible only when {{math|[M]<sub>0</sub> > [M]<sub>eq</sub>}}. Eventually, at or above the so-called [[ceiling temperature]] ({{mvar|T<sub>c</sub>}}), at which {{math|1=[M]<sub>eq</sub> = [M]<sub>0</sub>}}, formation of the high polymer does not occur. |
|||
<math chem display=block>\begin{align} |
|||
T_c &= \frac{\Delta H^\circ_p}{\Delta S^\circ_p + R\ln[\ce{M}]_0} ; \quad (\Delta H^\circ_p<0,\ \Delta S^\circ_p<0) \\[4pt] |
|||
T_f &= \frac{\Delta H^\circ_p}{\Delta S^\circ_p + R\ln[\ce{M}]_0} ; \quad (\Delta H^\circ_p>0,\ \Delta S^\circ_p>0) |
|||
\end{align}</math> |
|||
For example, [[tetrahydrofuran]] (THF) cannot be polymerized above {{mvar|T<sub>c</sub>}} = 84 °C, nor cyclo-octasulfur (S<sub>8</sub>) below {{mvar|T<sub>f</sub>}} = 159 °C.<ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=July 1957|volume=25|issue=109|pages=220–221|doi=10.1002/pol.1957.1202510909|bibcode=1957JPoSc..25..220T}}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=August 1958|volume=31|issue=122|page=126|doi=10.1002/pol.1958.1203112214|bibcode=1958JPoSc..31..126T|doi-access=free}}</ref><ref>{{cite journal|last=Tobolsky|first=Arthur V.|author2=Eisenberg, Adi |title=Equilibrium Polymerization of Sulfur|journal=Journal of the American Chemical Society|date=May 1959|volume=81|issue=4|pages=780–782|doi=10.1021/ja01513a004}}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|author2=Eisenberg, A. |title=A General Treatment of Equilibrium Polymerization|journal=Journal of the American Chemical Society|date=January 1960|volume=82|issue=2|pages=289–293|doi=10.1021/ja01487a009}}</ref> However, for many monomers, {{mvar|T<sub>c</sub>}} and {{mvar|T<sub>f</sub>}}, for polymerization in the bulk, are well above or below the operable polymerization temperatures, respectively. |
|||
The polymerization of a majority of monomers is accompanied by an [[entropy]] decrease, due mostly to the loss in the translational degrees of freedom. In this situation, polymerization is thermodynamically allowed only when the enthalpic contribution into {{math|Δ''G<sub>p</sub>''}} prevails (thus, when {{math|Δ''H<sub>p</sub>''° < 0}} and {{math|Δ''S<sub>p</sub>''° < 0}}, the inequality {{math|{{abs|Δ''H<sub>p</sub>''}} > −''T''Δ''S<sub>p</sub>''}} is required). Therefore, the higher the ring strain, the lower the resulting monomer concentration at [[Chemical equilibrium|equilibrium]]. |
|||
==Additional reading== |
==Additional reading== |
||
*{{ |
*{{Cite book |title=Expanding Monomers: Synthesis, Characterization, and Applications |title-link=Expanding Monomers |publisher=CRC Press |year=1992 |isbn=978-0-8493-5156-3 |editor-last=Luck |editor-first=Russel M. |editor-last2=Sadhir |editor-first2=Rajender K. |location=Boca Raton, Florida}} |
||
*{{cite journal| |
*{{cite journal|title=Organocatalytic Ring-Opening Polymerization|author=Nahrain E. Kamber |author2=Wonhee Jeong |author3=Robert M. Waymouth |author4=Russell C. Pratt |author5=Bas G. G. Lohmeijer |author6=James L. Hedrick |journal=Chemical Reviews|year=2007|volume=107|issue=12|pages=5813–5840|doi=10.1021/cr068415b|pmid=17988157}} |
||
*{{cite book |title= Handbook of Ring‐Opening Polymerization |editor1-first= Philippe |editor1-last= Dubois |editor2-first= Olivier |editor2-last= Coulembier |editor3-first= Jean-Marie |editor3-last= Raquez |publisher= Wiley |year= 2009 |isbn= 9783527628407 |doi= 10.1002/9783527628407 }}<!-- see especially chapter 13 "Polymerization of Cycloalkanes" lead-ref for expanding our article --> |
|||
*{{cite journal|title=Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides|authors=Nikos Hadjichristidis, Hermis Iatrou, Marinos Pitsikalis, Georgios Sakellariou||journal=Chemical Reviews|year=2009|volume=109|pages= 5528-5578|doi=10.1021/cr900049t}} |
|||
*{{cite journal|title=Organocatalytic Ring-Opening Polymerization|authors=Nahrain E. Kamber, Wonhee Jeong, Robert M. Waymouth, Russell C. Pratt, Bas G. G. Lohmeijer, James L. Hedrick|journal=Chemical Reviews|year=2007|volume=107|pages=5813-5840|doi=10.1021/cr068415b}}</ref> |
|||
*{{cite journal|last=Matsumura|first=Shuichi|author2=Tsukada, Keisuke |author3=Toshima, Kazunobu |title=Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate)|journal=Macromolecules|date=May 1997|volume=30|issue=10|pages=3122–3124|doi=10.1021/ma961862g|bibcode=1997MaMol..30.3122M}} |
|||
== References == |
== References == |
||
<references /> |
<references /> |
||
{{DEFAULTSORT:Ring-Opening Polymerization}} |
|||
[[Category:Polymerization reactions]] |
[[Category:Polymerization reactions]] |
Latest revision as of 04:31, 21 November 2024
A polymerization in which a cyclic monomer yields a monomeric unit which is acyclic or contains fewer cycles than the monomer. Note: If monomer is polycyclic, the opening of a single ring is sufficient to classify the reaction as ring-opening polymerization.
In polymer chemistry, ring-opening polymerization (ROP) is a form of chain-growth polymerization in which the terminus of a polymer chain attacks cyclic monomers to form a longer polymer (see figure). The reactive center can be radical, anionic or cationic.
Ring-opening of cyclic monomers is often driven by the relief of bond-angle strain. Thus, as is the case for other types of polymerization, the enthalpy change in ring-opening is negative.[3] Many rings undergo ROP.[4]
Monomers
[edit]Many cyclic monomers are amenable to ROP.[5] These include epoxides,[6][7] cyclic trisiloxanes,[citation needed] some lactones[6][8] and lactides,[8] cyclic anhydrides,[7] cyclic carbonates,[9] and amino acid N-carboxyanhydrides.[10][11] Many strained cycloalkenes, e.g norbornene, are suitable monomers via ring-opening metathesis polymerization. Even highly strained cycloalkane rings, such as cyclopropane[12] and cyclobutane[13] derivatives, can undergo ROP.
History
[edit]Ring-opening polymerization has been used since the beginning of the 1900s to produce polymers. Synthesis of polypeptides which has the oldest history of ROP, dates back to the work in 1906 by Leuchs.[14] Subsequently, the ROP of anhydro sugars provided polysaccharides, including synthetic dextran, xanthan gum, welan gum, gellan gum, diutan gum, and pullulan. Mechanisms and thermodynamics of ring-opening polymerization were established in the 1950s.[15][16] The first high-molecular weight polymers (Mn up to 105) with a repeating unit were prepared by ROP as early as in 1976.[17][18]
An industrial application is the production of nylon-6 from caprolactam.
Mechanisms
[edit]Ring-opening polymerization can proceed via radical, anionic, or cationic polymerization as described below.[19] Additionally, radical ROP is useful in producing polymers with functional groups incorporated in the backbone chain that cannot otherwise be synthesized via conventional chain-growth polymerization of vinyl monomers. For instance, radical ROP can produce polymers with ethers, esters, amides, and carbonates as functional groups along the main chain.[19][20]
Anionic ring-opening polymerization (AROP)
[edit]Anionic ring-opening polymerizations (AROP) involve nucleophilic reagents as initiators. Monomers with a three-member ring structure - such as epoxides, aziridines, and episulfides - undergo anionic ROP.[20]
A typical example of anionic ROP is that of ε-caprolactone, initiated by an alkoxide.[20]
Cationic ring-opening polymerization
[edit]Cationic initiators and intermediates characterize cationic ring-opening polymerization (CROP). Examples of cyclic monomers that polymerize through this mechanism include lactones, lactams, amines, and ethers.[21] CROP proceeds through an SN1 or SN2 propagation, chain-growth process.[19] The mechanism is affected by the stability of the resulting cationic species. For example, if the atom bearing the positive charge is stabilized by electron-donating groups, polymerization will proceed by the SN1 mechanism.[20] The cationic species is a heteroatom and the chain grows by the addition of cyclic monomers thereby opening the ring system.
The monomers can be activated by Bronsted acids, carbenium ions, onium ions, and metal cations.[19]
CROP can be a living polymerization and can be terminated by nucleophilic reagents such as phenoxy anions, phosphines, or polyanions.[19] When the amount of monomers becomes depleted, termination can occur intra or intermolecularly. The active end can "backbite" the chain, forming a macrocycle. Alkyl chain transfer is also possible, where the active end is quenched by transferring an alkyl chain to another polymer.
Ring-opening metathesis polymerization
[edit]Ring-opening metathesis polymerisation (ROMP) produces unsaturated polymers from cycloalkenes or bicycloalkenes. It requires organometallic catalysts.[19]
The mechanism for ROMP follows similar pathways as olefin metathesis. The initiation process involves the coordination of the cycloalkene monomer to the metal alkylidene complex, followed by a [2+2] type cycloaddition to form the metallacyclobutane intermediate that cycloreverts to form a new alkylidene species.[23][24]
Commercially relevant unsaturated polymers synthesized by ROMP include polynorbornene, polycyclooctene, and polycyclopentadiene.[25]
Thermodynamics
[edit]The formal thermodynamic criterion of a given monomer polymerizability is related to a sign of the free enthalpy (Gibbs free energy) of polymerization: where:
- x and y indicate monomer and polymer states, respectively (x and/or y = l (liquid), g (gaseous), c (amorphous solid), c' (crystalline solid), s (solution));
- ΔHp(xy) is the enthalpy of polymerization (SI unit: joule per kelvin);
- ΔSp(xy) is the entropy of polymerization (SI unit: joule);
- T is the absolute temperature (SI unit: kelvin).
The free enthalpy of polymerization (ΔGp) may be expressed as a sum of standard enthalpy of polymerization (ΔGp°) and a term related to instantaneous monomer molecules and growing macromolecules concentrations: where:
- R is the gas constant;
- M is the monomer;
- (m)i is the monomer in an initial state;
- m* is the active monomer.
Following Flory–Huggins solution theory that the reactivity of an active center, located at a macromolecule of a sufficiently long macromolecular chain, does not depend on its degree of polymerization (DPi), and taking in to account that ΔGp° = ΔHp° − TΔSp° (where ΔHp° and ΔSp° indicate a standard polymerization enthalpy and entropy, respectively), we obtain:
At equilibrium (ΔGp = 0), when polymerization is complete the monomer concentration ([M]eq) assumes a value determined by standard polymerization parameters (ΔHp° and ΔSp°) and polymerization temperature: Polymerization is possible only when [M]0 > [M]eq. Eventually, at or above the so-called ceiling temperature (Tc), at which [M]eq = [M]0, formation of the high polymer does not occur. For example, tetrahydrofuran (THF) cannot be polymerized above Tc = 84 °C, nor cyclo-octasulfur (S8) below Tf = 159 °C.[26][27][28][29] However, for many monomers, Tc and Tf, for polymerization in the bulk, are well above or below the operable polymerization temperatures, respectively. The polymerization of a majority of monomers is accompanied by an entropy decrease, due mostly to the loss in the translational degrees of freedom. In this situation, polymerization is thermodynamically allowed only when the enthalpic contribution into ΔGp prevails (thus, when ΔHp° < 0 and ΔSp° < 0, the inequality |ΔHp| > −TΔSp is required). Therefore, the higher the ring strain, the lower the resulting monomer concentration at equilibrium.
Additional reading
[edit]- Luck, Russel M.; Sadhir, Rajender K., eds. (1992). Expanding Monomers: Synthesis, Characterization, and Applications. Boca Raton, Florida: CRC Press. ISBN 978-0-8493-5156-3.
- Nahrain E. Kamber; Wonhee Jeong; Robert M. Waymouth; Russell C. Pratt; Bas G. G. Lohmeijer; James L. Hedrick (2007). "Organocatalytic Ring-Opening Polymerization". Chemical Reviews. 107 (12): 5813–5840. doi:10.1021/cr068415b. PMID 17988157.
- Dubois, Philippe; Coulembier, Olivier; Raquez, Jean-Marie, eds. (2009). Handbook of Ring‐Opening Polymerization. Wiley. doi:10.1002/9783527628407. ISBN 9783527628407.
References
[edit]- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Ring-opening polymerization". doi:10.1351/goldbook.R05396
- ^ Jenkins, A. D.; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. (1996). "Glossary of basic terms in polymer science (IUPAC Recommendations 1996)". Pure and Applied Chemistry. 68 (12): 2287–2311. doi:10.1351/pac199668122287.
- ^ Young, Robert J. (2011). Introduction to Polymers. Boca Raton: CRC Press. ISBN 978-0-8493-3929-5.
- ^ . doi:10.1007/s00726-006-0432-9.
{{cite journal}}
: Cite journal requires|journal=
(help); Missing or empty|title=
(help) - ^ Nuyken, Oskar; Pask, Stephen (2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361.
- ^ a b Yann Sarazin; Jean-François Carpentier (2015). "Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides". Chemical Reviews. 115 (9): 3564–3614. doi:10.1021/acs.chemrev.5b00033. PMID 25897976.
- ^ a b Longo, Julie M.; Sanford, Maria J.; Coates, Geoffrey W. (2016). "Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships". Chemical Reviews. 116 (24): 15167–15197. doi:10.1021/acs.chemrev.6b00553. PMID 27936619.
- ^ a b JEROME, C; LECOMTE, P (2008-06-10). "Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization☆". Advanced Drug Delivery Reviews. 60 (9): 1056–1076. doi:10.1016/j.addr.2008.02.008. hdl:2268/3723. ISSN 0169-409X. PMID 18403043.
- ^ Matsumura, Shuichi; Tsukada, Keisuke; Toshima, Kazunobu (May 1997). "Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate)". Macromolecules. 30 (10): 3122–3124. Bibcode:1997MaMol..30.3122M. doi:10.1021/ma961862g.
- ^ Kricheldorf, H. R. (2006). "Polypeptides and 100 Years of Chemistry of α-Amino Acid N-Carboxyanhydrides". Angewandte Chemie International Edition. 45 (35): 5752–5784. doi:10.1002/anie.200600693. PMID 16948174.
- ^ Nikos Hadjichristidis; Hermis Iatrou; Marinos Pitsikalis; Georgios Sakellariou (2009). "Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides". Chemical Reviews. 109 (11): 5528–5578. doi:10.1021/cr900049t. PMID 19691359.
- ^ Scott, R. J.; Gunning, H. E. (1952). "The Polymerization of Cyclopropane". J. Phys. Chem. 56 (1): 156–160. doi:10.1021/j150493a031.
- ^ Yokozawa, Tsutomu; Tsuruta, Ei-ichi (1996). "Ring-Opening Polymerization of the Cyclobutane Adduct of Methyl Tricyanoethylenecarboxylate and Ethyl Vinyl Ether". Macromolecules. 29 (25): 8053–8056. doi:10.1021/ma9608535.
- ^ Leuchs, H. (1906). "Glycine-carbonic acid". Berichte der Deutschen Chemischen Gesellschaft. 39: 857. doi:10.1002/cber.190603901133.
- ^ Dainton, F. S.; Devlin, T. R. E.; Small, P. A. (1955). "The thermodynamics of polymerization of cyclic compounds by ring opening". Transactions of the Faraday Society. 51: 1710. doi:10.1039/TF9555101710.
- ^ Conix, André; Smets, G. (January 1955). "Ring opening in lactam polymers". Journal of Polymer Science. 15 (79): 221–229. Bibcode:1955JPoSc..15..221C. doi:10.1002/pol.1955.120157918.
- ^ Kałuz̀ynski, Krzysztof; Libiszowski, Jan; Penczek, Stanisław (1977). "Poly(2-hydro-2-oxo-1,3,2-dioxaphosphorinane). Preparation and NMR spectra". Die Makromolekulare Chemie. 178 (10): 2943–2947. doi:10.1002/macp.1977.021781017. ISSN 0025-116X.
- ^ Libiszowski, Jan; Kałużynski, Krzysztof; Penczek, Stanisław (June 1978). "Polymerization of cyclic esters of phosphoric acid. VI. Poly(alkyl ethylene phosphates). Polymerization of 2-alkoxy-2-oxo-1,3,2-dioxaphospholans and structure of polymers". Journal of Polymer Science: Polymer Chemistry Edition. 16 (6): 1275–1283. Bibcode:1978JPoSA..16.1275L. doi:10.1002/pol.1978.170160610.
- ^ a b c d e f Nuyken, Oskar; Stephen D. Pask (25 April 2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361.
- ^ a b c d e Dubois, Philippe (2008). Handbook of ring-opening polymerization (1. Aufl. ed.). Weinheim: Wiley-VCH. ISBN 978-3-527-31953-4.
- ^ Cowie, John McKenzie Grant (2008). Polymers: Chemistry and Physics of Modern Materials. Boca Raton, Florida: CRC Press. pp. 105–107. ISBN 978-0-8493-9813-1.
- ^ Pruckmayr, Gerfried; Dreyfuss, P.; Dreyfuss, M. P. (1996). "Polyethers, Tetrahydrofuran and Oxetane Polymers". Kirk‑Othmer Encyclopedia of Chemical Technology. John Wiley & Sons.
- ^ Sutthasupa, Sutthira; Shiotsuki, Masashi; Sanda, Fumio (13 October 2010). "Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials". Polymer Journal. 42 (12): 905–915. doi:10.1038/pj.2010.94.
- ^ Hartwig, John F. (2010). Organotransition metal chemistry: from bonding to catalysis. Sausalito, California: University Science Books. ISBN 978-1-891389-53-5.
- ^ Walsh, Dylan J.; Lau, Sii Hong; Hyatt, Michael G.; Guironnet, Damien (2017-09-25). "Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts". Journal of the American Chemical Society. 139 (39): 13644–13647. doi:10.1021/jacs.7b08010. ISSN 0002-7863. PMID 28944665.
- ^ Tobolsky, A. V. (July 1957). "Equilibrium polymerization in the presence of an ionic initiator". Journal of Polymer Science. 25 (109): 220–221. Bibcode:1957JPoSc..25..220T. doi:10.1002/pol.1957.1202510909.
- ^ Tobolsky, A. V. (August 1958). "Equilibrium polymerization in the presence of an ionic initiator". Journal of Polymer Science. 31 (122): 126. Bibcode:1958JPoSc..31..126T. doi:10.1002/pol.1958.1203112214.
- ^ Tobolsky, Arthur V.; Eisenberg, Adi (May 1959). "Equilibrium Polymerization of Sulfur". Journal of the American Chemical Society. 81 (4): 780–782. doi:10.1021/ja01513a004.
- ^ Tobolsky, A. V.; Eisenberg, A. (January 1960). "A General Treatment of Equilibrium Polymerization". Journal of the American Chemical Society. 82 (2): 289–293. doi:10.1021/ja01487a009.