Ring-opening polymerization: Difference between revisions
ref spamming |
ref |
||
(31 intermediate revisions by 17 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Chain polymerization involving cyclic monomers}} |
|||
{{Quote box |
{{Quote box |
||
|title = [[International Union of Pure and Applied Chemistry|IUPAC]] definition |
|title = [[International Union of Pure and Applied Chemistry|IUPAC]] definition |
||
|quote = A [[polymerization]] in which a [[Cyclic compound|cyclic]] [[monomer]] yields a monomeric unit which is [[Open-chain compound|acyclic]] or contains fewer cycles than the monomer. |
|quote = A [[polymerization]] in which a [[Cyclic compound|cyclic]] [[monomer]] yields a monomeric unit which is [[Open-chain compound|acyclic]] or contains fewer cycles than the monomer. |
||
Note: |
Note: |
||
If |
If monomer is [[Polycyclic compound|polycyclic]], the opening of a single ring is sufficient to classify the [[Chemical reaction|reaction]] as ring-opening polymerization. |
||
Modified from the earlier definition<ref name="Goldbook">{{GoldBookRef|title=Ring-opening polymerization|file=R05396|accessdate=Mar 10, 2014}}</ref> |
Modified from the earlier definition.<ref name="Goldbook">{{GoldBookRef|title=Ring-opening polymerization|file=R05396|accessdate=Mar 10, 2014}}</ref><ref name=PAC1996>{{cite journal |
||
.<ref name=PAC1996>{{cite journal |
|||
|url= http://iupac.org/publications/pac/68/12/2287/ |
|url= http://iupac.org/publications/pac/68/12/2287/ |
||
|doi = 10.1351/pac199668122287 |
|doi = 10.1351/pac199668122287 |
||
Line 13: | Line 12: | ||
|last1= Jenkins |first1= A. D. |last2= Kratochvíl |first2= P. |last3= Stepto |first3= R. F. T. |last4= Suter |first4= U. W. |
|last1= Jenkins |first1= A. D. |last2= Kratochvíl |first2= P. |last3= Stepto |first3= R. F. T. |last4= Suter |first4= U. W. |
||
|journal= Pure and Applied Chemistry |volume=68 |year=1996 |pages=2287–2311 |
|journal= Pure and Applied Chemistry |volume=68 |year=1996 |pages=2287–2311 |
||
|issue= 12|doi-access= free |
|issue= 12|doi-access= free}}</ref> |
||
|source = [http://www.iupac.org/publications/pac/80/10/2163/ Penczek S.; Moad, G. ''Pure Appl. Chem.'', '''2008''', 80(10), 2163-2193] |
|source = [http://www.iupac.org/publications/pac/80/10/2163/ Penczek S.; Moad, G. ''Pure Appl. Chem.'', '''2008''', 80(10), 2163-2193] |
||
|align = right |
|align = right |
||
Line 19: | Line 18: | ||
[[File:General scheme ionic prop.png|thumb|600px|General scheme ionic propagation. Propagating center can be radical, cationic or anionic.]] |
[[File:General scheme ionic prop.png|thumb|600px|General scheme ionic propagation. Propagating center can be radical, cationic or anionic.]] |
||
⚫ | In [[polymer chemistry]], '''ring-opening polymerization''' ('''ROP''') is a form of [[chain-growth polymerization]] |
||
⚫ | In [[polymer chemistry]], '''ring-opening polymerization''' ('''ROP''') is a form of [[chain-growth polymerization]] in which the [[End group|terminus]] of a [[polymer]] chain attacks [[cyclic compound|cyclic monomers]] to form a longer polymer (see figure). The reactive center can be [[Radical (chemistry)|radical]], [[anion]]ic or [[cation]]ic. |
||
⚫ | Ring-opening of cyclic monomers is often driven by the relief of [[ring strain|bond-angle strain]]. Thus, as is the case for other types of polymerization, the [[enthalpy]] change in ring-opening is negative.<ref name=Young>{{cite book|last=Young|first=Robert J.|title=Introduction to Polymers|year=2011|publisher=CRC Press|location=Boca Raton|isbn=978-0-8493-3929-5}}</ref> |
||
⚫ | Ring-opening of cyclic monomers is often driven by the relief of [[ring strain|bond-angle strain]]. Thus, as is the case for other types of polymerization, the [[enthalpy]] change in ring-opening is negative.<ref name=Young>{{cite book|last=Young|first=Robert J.|title=Introduction to Polymers|year=2011|publisher=CRC Press|location=Boca Raton|isbn=978-0-8493-3929-5}}</ref> Many rings undergo ROP.<ref>{{cite journal |doi=10.1007/s00726-006-0432-9}}</ref> |
||
==Monomers== |
==Monomers== |
||
[[cyclic compound| |
Many [[cyclic compound|cyclic monomers]] are amenable to ROP.<ref>{{cite journal |doi=10.3390/polym5020361|doi-access=free |title=Ring-Opening Polymerization—An Introductory Review |date=2013 |last1=Nuyken |first1=Oskar |last2=Pask |first2=Stephen |journal=Polymers |volume=5 |issue=2 |pages=361–403 }}</ref> These include [[epoxide]]s,<ref name=Sarazin>{{cite journal|title=Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides|author=Yann Sarazin |author2=Jean-François Carpentier |journal=Chemical Reviews|year=2015|volume=115|issue=9|pages=3564–3614|doi=10.1021/acs.chemrev.5b00033|pmid=25897976}}</ref><ref name=Longo>{{cite journal|title=Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships|first1=Julie M.|last1=Longo|first2=Maria J.|last2= Sanford|first3=Geoffrey W.|last3=Coates|journal=Chemical Reviews|year=2016|volume=116|issue=24|pages=15167–15197|doi=10.1021/acs.chemrev.6b00553|pmid=27936619}}</ref> cyclic trisiloxanes,{{cn|date=December 2023}} some lactones<ref name=Sarazin/><ref name=Jerome>{{Cite journal|last1=JEROME|first1=C|last2=LECOMTE|first2=P|date=2008-06-10|title=Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization☆|journal=Advanced Drug Delivery Reviews|volume=60|issue=9|pages=1056–1076|doi=10.1016/j.addr.2008.02.008|pmid=18403043|hdl=2268/3723|issn=0169-409X|url=http://orbi.ulg.ac.be/handle/2268/3723|hdl-access=free}}</ref> and [[lactide]]s,<ref name=Jerome/> cyclic [[anhydride]]s,<ref name=Longo/> [[cyclic carbonate]]s,<ref>{{cite journal|last=Matsumura|first=Shuichi|author2=Tsukada, Keisuke |author3=Toshima, Kazunobu |title=Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate)|journal=Macromolecules|date=May 1997|volume=30|issue=10|pages=3122–3124|doi=10.1021/ma961862g|bibcode=1997MaMol..30.3122M}} |
||
</ref> and [[amino acid N-carboxyanhydride|amino acid ''N''-carboxyanhydride]]s.<ref>{{cite journal|author=Kricheldorf, H. R. |year=2006 |title=Polypeptides and 100 Years of Chemistry of α-Amino Acid ''N''-Carboxyanhydrides|journal=Angewandte Chemie International Edition |volume=45|issue=35|pages=5752–5784|doi= 10.1002/anie.200600693|pmid=16948174 }}</ref><ref>{{cite journal|title=Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides|author=Nikos Hadjichristidis |author2=Hermis Iatrou |author3=Marinos Pitsikalis |author4=Georgios Sakellariou |journal=Chemical Reviews|year=2009|volume=109|issue=11|pages= 5528–5578|doi=10.1021/cr900049t|pmid=19691359}}</ref> Many strained [[cycloalkene]]s, e.g [[norbornene]], are suitable monomers via [[ring-opening metathesis polymerization]]. Even highly strained [[cycloalkane]] rings, such as [[cyclopropane]]<ref>{{cite journal |title= The Polymerization of Cyclopropane |first1= R. J. |last1= Scott |first2= H. E. |last2= Gunning |journal= J. Phys. Chem. |year= 1952 |volume= 56 |issue= 1 |pages= 156–160 |doi= 10.1021/j150493a031 }}</ref> and [[cyclobutane]]<ref>{{cite journal |title= Ring-Opening Polymerization of the Cyclobutane Adduct of Methyl Tricyanoethylenecarboxylate and Ethyl Vinyl Ether |first1= Tsutomu |last1= Yokozawa |first2= Ei-ichi |last2= Tsuruta |journal= Macromolecules |year= 1996 |volume= 29 |issue= 25 |pages= 8053–8056 |doi= 10.1021/ma9608535 }}</ref> derivatives, can undergo ROP. |
|||
==History== |
==History== |
||
Ring-opening polymerization has been used since the beginning of the 1900s to produce [[polymer]]s. Synthesis of [[polypeptides]] which has the oldest history of ROP, dates back to the work in 1906 by Leuchs.<ref>{{cite journal|title=Glycine-carbonic acid|last=Leuchs|first=H.|journal=Berichte der |
Ring-opening polymerization has been used since the beginning of the 1900s to produce [[polymer]]s. Synthesis of [[polypeptides]] which has the oldest history of ROP, dates back to the work in 1906 by Leuchs.<ref>{{cite journal|title=Glycine-carbonic acid|last=Leuchs|first=H.|journal=Berichte der Deutschen Chemischen Gesellschaft|year=1906|volume=39|page=857|doi=10.1002/cber.190603901133|url=https://zenodo.org/record/1426172}}</ref> Subsequently, the ROP of anhydro [[sugars]] provided [[polysaccharides]], including synthetic [[dextran]], [[xanthan gum]], [[welan gum]], [[gellan gum]], diutan gum, and [[pullulan]]. Mechanisms and thermodynamics of ring-opening polymerization were established in the 1950s.<ref>{{cite journal|last=Dainton|first=F. S.|author2=Devlin, T. R. E. |author3=Small, P. A. |title=The thermodynamics of polymerization of cyclic compounds by ring opening|journal=Transactions of the Faraday Society|year=1955|volume=51|page=1710|doi=10.1039/TF9555101710}}</ref><ref>{{cite journal|last=Conix|first=André|author2=Smets, G. |title=Ring opening in lactam polymers|journal=Journal of Polymer Science|date=January 1955|volume=15|issue=79|pages=221–229|doi=10.1002/pol.1955.120157918|bibcode=1955JPoSc..15..221C}}</ref> The first high-molecular weight polymers (M<sub>n</sub> up to 10<sup>5</sup>) with a [[repeat unit|repeating unit]] were prepared by ROP as early as in 1976.<ref>{{cite journal|last1= Kałuz̀ynski|first1=Krzysztof|last2=Libiszowski|first2=Jan|last3=Penczek|first3=Stanisław|title=Poly(2-hydro-2-oxo-1,3,2-dioxaphosphorinane). Preparation and NMR spectra|journal=Die Makromolekulare Chemie|volume=178|issue=10|year=1977|pages=2943–2947|issn=0025-116X|doi=10.1002/macp.1977.021781017}}</ref><ref>{{cite journal|last=Libiszowski|first=Jan|author2=Kałużynski, Krzysztof |author3=Penczek, Stanisław |title=Polymerization of cyclic esters of phosphoric acid. VI. Poly(alkyl ethylene phosphates). Polymerization of 2-alkoxy-2-oxo-1,3,2-dioxaphospholans and structure of polymers|journal=Journal of Polymer Science: Polymer Chemistry Edition|date=June 1978|volume=16|issue=6|pages=1275–1283|doi=10.1002/pol.1978.170160610|bibcode=1978JPoSA..16.1275L}}</ref> |
||
An industrial application is the production of [[nylon-6]]. |
An industrial application is the production of [[nylon-6]] from [[caprolactam]]. |
||
==Mechanisms== |
==Mechanisms== |
||
Ring-opening polymerization can proceed via [[Radical (chemistry)|radical]], anionic, or cationic polymerization as described below.<ref name=nuyken>{{cite journal|last=Nuyken|first=Oskar|author2=Stephen D. Pask |title=Ring-Opening Polymerization—An Introductory Review|journal=Polymers|date=25 April 2013|volume=5|issue=2|pages=361–403|doi=10.3390/polym5020361|doi-access=free}}</ref> Additionally, radical ROP is useful in producing polymers with [[functional group]]s incorporated in the backbone chain that cannot otherwise be synthesized via conventional [[chain-growth polymerization]] of [[Vinyl group|vinyl]] monomers. For instance, radical ROP can produce polymers with [[ethers]], [[esters]], [[amide]]s, and [[carbonates]] as functional groups along the main chain.<ref name=nuyken /><ref name=dubois>{{cite book|last=Dubois|first=Philippe|title=Handbook of ring-opening polymerization|year=2008|publisher=Wiley-VCH|location=Weinheim|isbn=978-3-527-31953-4|edition=1. Aufl.}}</ref> |
Ring-opening polymerization can proceed via [[Radical (chemistry)|radical]], anionic, or cationic polymerization as described below.<ref name=nuyken>{{cite journal|last=Nuyken|first=Oskar|author2=Stephen D. Pask |title=Ring-Opening Polymerization—An Introductory Review|journal=Polymers|date=25 April 2013|volume=5|issue=2|pages=361–403|doi=10.3390/polym5020361|doi-access=free}}</ref> Additionally, radical ROP is useful in producing polymers with [[functional group]]s incorporated in the backbone chain that cannot otherwise be synthesized via conventional [[chain-growth polymerization]] of [[Vinyl group|vinyl]] monomers. For instance, radical ROP can produce polymers with [[ethers]], [[esters]], [[amide]]s, and [[carbonates]] as functional groups along the main chain.<ref name=nuyken /><ref name=dubois>{{cite book|last=Dubois|first=Philippe|title=Handbook of ring-opening polymerization|year=2008|publisher=Wiley-VCH|location=Weinheim|isbn=978-3-527-31953-4|edition=1. Aufl.}}</ref> |
||
===Anionic ring-opening polymerization (AROP)=== |
===Anionic ring-opening polymerization (AROP)=== |
||
{{main article|Anionic polymerization}} |
{{main article|Anionic polymerization}} |
||
[[File:Wiki566665.tif|thumb|400px|center|The general mechanism for anionic ring-opening polymerization. Polarized functional group is represented by X-Y, where the atom X (usually a carbon atom) becomes electron deficient due to the highly electron-withdrawing nature of Y (usually an oxygen, nitrogen, sulfur, etc.). The nucleophile will attack atom X, thus releasing Y |
[[File:Wiki566665.tif|thumb|400px|center|The general mechanism for anionic ring-opening polymerization. Polarized functional group is represented by X-Y, where the atom X (usually a carbon atom) becomes electron deficient due to the highly electron-withdrawing nature of Y (usually an oxygen, nitrogen, sulfur, etc.). The nucleophile will attack atom X, thus releasing Y<sup>−</sup>. The newly formed nucleophile will then attack the atom X in another monomer molecule, and the sequence would repeat until the polymer is formed.<ref name=dubois />]] |
||
Anionic ring-opening polymerizations (AROP) |
Anionic ring-opening polymerizations (AROP) involve [[nucleophile|nucleophilic reagents]] as initiators. Monomers with a three-member ring structure - such as [[epoxides]], [[aziridines]], and [[episulfides]] - undergo anionic ROP.<ref name=dubois /> |
||
A typical example of anionic ROP is that of [[caprolactone|ε-caprolactone]], initiated by an [[alkoxide]].<ref name=dubois /> |
A typical example of anionic ROP is that of [[caprolactone|ε-caprolactone]], initiated by an [[alkoxide]].<ref name=dubois /> |
||
Line 44: | Line 46: | ||
Cationic initiators and intermediates characterize cationic ring-opening polymerization (CROP). Examples of [[cyclic compound|cyclic monomers]] that polymerize through this mechanism include [[lactone]]s, [[lactam]]s, [[amine]]s, and [[ether]]s.<ref name="cowie cation">{{cite book|last=Cowie|first=John McKenzie Grant|title=Polymers: Chemistry and Physics of Modern Materials|year=2008|publisher=CRC Press|location=Boca Raton, Florida|isbn=978-0-8493-9813-1|pages=105–107}}</ref> CROP proceeds through an [[SN1 reaction|S<sub>N</sub>1]] or [[SN2 reaction|S<sub>N</sub>2]] propagation, chain-growth process.<ref name=nuyken /> The mechanism is affected by the stability of the resulting [[ion|cationic]] species. For example, if the atom bearing the positive charge is stabilized by [[activating group|electron-donating groups]], polymerization will proceed by the S<sub>N</sub>1 mechanism.<ref name=dubois /> The cationic species is a [[heteroatom]] and the chain grows by the addition of cyclic monomers thereby opening the ring system. |
Cationic initiators and intermediates characterize cationic ring-opening polymerization (CROP). Examples of [[cyclic compound|cyclic monomers]] that polymerize through this mechanism include [[lactone]]s, [[lactam]]s, [[amine]]s, and [[ether]]s.<ref name="cowie cation">{{cite book|last=Cowie|first=John McKenzie Grant|title=Polymers: Chemistry and Physics of Modern Materials|year=2008|publisher=CRC Press|location=Boca Raton, Florida|isbn=978-0-8493-9813-1|pages=105–107}}</ref> CROP proceeds through an [[SN1 reaction|S<sub>N</sub>1]] or [[SN2 reaction|S<sub>N</sub>2]] propagation, chain-growth process.<ref name=nuyken /> The mechanism is affected by the stability of the resulting [[ion|cationic]] species. For example, if the atom bearing the positive charge is stabilized by [[activating group|electron-donating groups]], polymerization will proceed by the S<sub>N</sub>1 mechanism.<ref name=dubois /> The cationic species is a [[heteroatom]] and the chain grows by the addition of cyclic monomers thereby opening the ring system. |
||
[[ |
[[File:PTMEG synthesis.svg|450px|center|thumb|Synthesis of [[Spandex]].<ref name="kirk">{{cite encyclopedia |year=1996 |title =Polyethers, Tetrahydrofuran and Oxetane Polymers |first1= Gerfried|last1= Pruckmayr|first2= P.|last2= Dreyfuss|first3= M. P.|last3= Dreyfuss |encyclopedia=Kirk‑Othmer Encyclopedia of Chemical Technology |publisher=John Wiley & Sons }}</ref>]] |
||
The monomers can be activated by [[Brønsted–Lowry acid–base theory|Bronsted acids]], [[carbenium ion]]s, [[Onium compound|onium ions]], and metal cations.<ref name=nuyken /> |
The monomers can be activated by [[Brønsted–Lowry acid–base theory|Bronsted acids]], [[carbenium ion]]s, [[Onium compound|onium ions]], and metal cations.<ref name=nuyken /> |
||
Line 51: | Line 53: | ||
===Ring-opening metathesis polymerization=== |
===Ring-opening metathesis polymerization=== |
||
{{main article|Ring-opening metathesis polymerization}} |
{{main article|Ring-opening metathesis polymerization}} |
||
[[Ring-opening metathesis polymerisation |
[[Ring-opening metathesis polymerisation]] (ROMP) produces [[Saturated and unsaturated compounds|unsaturated]] polymers from [[cycloalkene]]s or bicycloalkenes. It requires [[Organometallic chemistry|organometallic catalysts]].<ref name=nuyken /> |
||
The mechanism for ROMP follows similar pathways as [[olefin metathesis]]. The initiation process involves the coordination of the cycloalkene monomer to the [[Transition metal carbene complex|metal alkylidene complex]], followed by a [2+2] type [[cycloaddition]] to form the metallacyclobutane intermediate that cycloreverts to form a new alkylidene species.<ref name=sutthasupa>{{cite journal|last=Sutthasupa|first=Sutthira|author2=Shiotsuki, Masashi |author3=Sanda, Fumio |title=Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials|journal=Polymer Journal|date=13 October 2010|volume=42|issue=12|pages=905–915|doi=10.1038/pj.2010.94|doi-access=free}}</ref><ref name=hartwig>{{cite book|last=Hartwig|first=John F.| |
The mechanism for ROMP follows similar pathways as [[olefin metathesis]]. The initiation process involves the coordination of the cycloalkene monomer to the [[Transition metal carbene complex|metal alkylidene complex]], followed by a [2+2] type [[cycloaddition]] to form the metallacyclobutane intermediate that cycloreverts to form a new alkylidene species.<ref name=sutthasupa>{{cite journal|last=Sutthasupa|first=Sutthira|author2=Shiotsuki, Masashi |author3=Sanda, Fumio |title=Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials|journal=Polymer Journal|date=13 October 2010|volume=42|issue=12|pages=905–915|doi=10.1038/pj.2010.94|doi-access=free}}</ref><ref name=hartwig>{{cite book|last=Hartwig|first=John F.| author-link = John F. Hartwig | title=Organotransition metal chemistry: from bonding to catalysis|year=2010|publisher=University Science Books|location=Sausalito, California|isbn=978-1-891389-53-5}}</ref> |
||
[[File:Romp mechanism.png|thumb|center|850px|General scheme of the mechanism for ROMP.]] Commercially relevant [[Saturated and unsaturated compounds|unsaturated]] polymers synthesized by ROMP include |
[[File:Romp mechanism.png|thumb|center|850px|General scheme of the mechanism for ROMP.]] Commercially relevant [[Saturated and unsaturated compounds|unsaturated]] polymers synthesized by ROMP include poly[[norbornene]], poly[[cyclooctene]], and poly[[cyclopentadiene]].<ref>{{Cite journal|last1=Walsh|first1=Dylan J.|last2=Lau|first2=Sii Hong|last3=Hyatt|first3=Michael G.|last4=Guironnet|first4=Damien|date=2017-09-25|title=Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts|journal=Journal of the American Chemical Society|language=EN|volume=139|issue=39|pages=13644–13647|doi=10.1021/jacs.7b08010|pmid=28944665|issn=0002-7863}}</ref> |
||
==Thermodynamics== |
==Thermodynamics== |
||
The formal thermodynamic criterion of a given monomer polymerizability is related to a sign of the [[free enthalpy]] ([[Gibbs free energy]]) of polymerization: |
The formal thermodynamic criterion of a given monomer polymerizability is related to a sign of the [[free enthalpy]] ([[Gibbs free energy]]) of polymerization: |
||
<math display=block>\Delta G_p(xy) = \Delta H_p(xy)-T\Delta S_p(xy)</math> |
|||
where: |
|||
where x and y indicate monomer and polymer states, respectively (x and/or y = l (liquid), g ([[gaseous]]), c ([[amorphous solid]]), c’ ([[crystalline solid]]), s ([[solution]])), ΔH<sub>p</sub>(xy) and ΔSp(xy) are the corresponding [[enthalpy]] (SI unit: joule per kelvin) and [[entropy]] (SI unit: joule) of polymerization, and T is the absolute temperature (SI unit: kelvin). |
|||
:{{mvar|x}} and {{mvar|y}} indicate monomer and polymer states, respectively ({{mvar|x}} and/or {{mvar|y}} = l (liquid), g ([[gaseous]]), c ([[amorphous solid]]), c' ([[crystalline solid]]), s ([[Solution (chemistry)|solution]])); |
|||
⚫ | |||
:{{math|Δ''H<sub>p</sub>''(''xy'')}} is the [[enthalpy]] of polymerization (SI unit: joule per kelvin); |
|||
⚫ | |||
:{{math|Δ''S{{sub|p}}''(''xy'')}} is the [[entropy]] of polymerization (SI unit: joule); |
|||
where R is the [[gas constant]], M is the monomer, (m)<sub>i</sub> is the monomer in an initial state, and m<sup>*</sup> is the active monomer. |
|||
:{{mvar|T}} is the [[absolute temperature]] (SI unit: kelvin). |
|||
⚫ | Following [[Flory–Huggins solution theory]] that the reactivity of an active center, located at a [[macromolecule]] of a sufficiently long macromolecular chain, does not depend on its [[degree of polymerization]] ( |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
where: |
|||
⚫ | |||
:{{mvar|R}} is the [[gas constant]]; |
|||
⚫ | |||
:{{math|M}} is the monomer; |
|||
⚫ | |||
:{{math|(m)<sub>''i''</sub>}} is the monomer in an initial state; |
|||
⚫ | |||
:{{math|m<sup>*</sup>}} is the active monomer. |
|||
⚫ | |||
⚫ | Following [[Flory–Huggins solution theory]] that the reactivity of an active center, located at a [[macromolecule]] of a sufficiently long macromolecular chain, does not depend on its [[degree of polymerization]] ({{math|''DP{{sub|i}}''}}), and taking in to account that {{math|1=Δ''G<sub>p</sub>''° = Δ''H<sub>p</sub>''° − ''T''Δ''S<sub>p</sub>''°}} (where {{math|Δ''H<sub>p</sub>''°}} and {{math|Δ''S<sub>p</sub>''°}} indicate a standard polymerization enthalpy and entropy, respectively), we obtain: |
||
⚫ | |||
⚫ | |||
⚫ | For example, [[tetrahydrofuran]] (THF) cannot be polymerized above T<sub>c</sub> |
||
⚫ | At [[Chemical equilibrium|equilibrium]] ({{math|1=Δ''G<sub>p</sub>'' = 0}}), when polymerization is complete the monomer concentration ({{math|[M]<sub>eq</sub>}}) assumes a value determined by standard polymerization parameters ({{math|Δ''H<sub>p</sub>''°}} and {{math|Δ''S<sub>p</sub>''°}}) and polymerization temperature: |
||
⚫ | The polymerization of a majority of monomers is accompanied by an [[entropy]] decrease, due mostly to the loss in the translational degrees of freedom. In this situation, polymerization is thermodynamically allowed only when the enthalpic contribution into |
||
<math chem display=block>\begin{align} |
|||
⚫ | |||
==See also== |
|||
⚫ | |||
* [[Ring opening metathesis polymerization]] |
|||
⚫ | |||
* [http://www.pslc.ws/macrog/meta.htm Olefin Metathesis Polymerization] |
|||
\end{align}</math> |
|||
⚫ | |||
<math chem display=block>\begin{align} |
|||
⚫ | |||
⚫ | |||
\end{align}</math> |
|||
⚫ | For example, [[tetrahydrofuran]] (THF) cannot be polymerized above {{mvar|T<sub>c</sub>}} = 84 °C, nor cyclo-octasulfur (S<sub>8</sub>) below {{mvar|T<sub>f</sub>}} = 159 °C.<ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=July 1957|volume=25|issue=109|pages=220–221|doi=10.1002/pol.1957.1202510909|bibcode=1957JPoSc..25..220T}}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=August 1958|volume=31|issue=122|page=126|doi=10.1002/pol.1958.1203112214|bibcode=1958JPoSc..31..126T|doi-access=free}}</ref><ref>{{cite journal|last=Tobolsky|first=Arthur V.|author2=Eisenberg, Adi |title=Equilibrium Polymerization of Sulfur|journal=Journal of the American Chemical Society|date=May 1959|volume=81|issue=4|pages=780–782|doi=10.1021/ja01513a004}}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|author2=Eisenberg, A. |title=A General Treatment of Equilibrium Polymerization|journal=Journal of the American Chemical Society|date=January 1960|volume=82|issue=2|pages=289–293|doi=10.1021/ja01487a009}}</ref> However, for many monomers, {{mvar|T<sub>c</sub>}} and {{mvar|T<sub>f</sub>}}, for polymerization in the bulk, are well above or below the operable polymerization temperatures, respectively. |
||
⚫ | The polymerization of a majority of monomers is accompanied by an [[entropy]] decrease, due mostly to the loss in the translational degrees of freedom. In this situation, polymerization is thermodynamically allowed only when the enthalpic contribution into {{math|Δ''G<sub>p</sub>''}} prevails (thus, when {{math|Δ''H<sub>p</sub>''° < 0}} and {{math|Δ''S<sub>p</sub>''° < 0}}, the inequality {{math|{{abs|Δ''H<sub>p</sub>''}} > −''T''Δ''S<sub>p</sub>''}} is required). Therefore, the higher the ring strain, the lower the resulting monomer concentration at [[Chemical equilibrium|equilibrium]]. |
||
==Additional reading== |
==Additional reading== |
||
*{{ |
*{{Cite book |title=Expanding Monomers: Synthesis, Characterization, and Applications |title-link=Expanding Monomers |publisher=CRC Press |year=1992 |isbn=978-0-8493-5156-3 |editor-last=Luck |editor-first=Russel M. |editor-last2=Sadhir |editor-first2=Rajender K. |location=Boca Raton, Florida}} |
||
*{{cite journal| |
*{{cite journal|title=Organocatalytic Ring-Opening Polymerization|author=Nahrain E. Kamber |author2=Wonhee Jeong |author3=Robert M. Waymouth |author4=Russell C. Pratt |author5=Bas G. G. Lohmeijer |author6=James L. Hedrick |journal=Chemical Reviews|year=2007|volume=107|issue=12|pages=5813–5840|doi=10.1021/cr068415b|pmid=17988157}} |
||
*{{cite book |title= Handbook of Ring‐Opening Polymerization |editor1-first= Philippe |editor1-last= Dubois |editor2-first= Olivier |editor2-last= Coulembier |editor3-first= Jean-Marie |editor3-last= Raquez |publisher= Wiley |year= 2009 |isbn= 9783527628407 |doi= 10.1002/9783527628407 }}<!-- see especially chapter 13 "Polymerization of Cycloalkanes" lead-ref for expanding our article --> |
|||
*{{cite journal|title=Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides|authors=Nikos Hadjichristidis, Hermis Iatrou, Marinos Pitsikalis, Georgios Sakellariou|journal=Chemical Reviews|year=2009|volume=109|issue=11|pages= 5528–5578|doi=10.1021/cr900049t|pmid=19691359}} |
|||
*{{cite journal|title=Organocatalytic Ring-Opening Polymerization|authors=Nahrain E. Kamber, Wonhee Jeong, Robert M. Waymouth, Russell C. Pratt, Bas G. G. Lohmeijer, James L. Hedrick|journal=Chemical Reviews|year=2007|volume=107|issue=12|pages=5813–5840|doi=10.1021/cr068415b|pmid=17988157}}</ref> |
|||
*{{cite journal|last=Matsumura|first=Shuichi|author2=Tsukada, Keisuke |author3=Toshima, Kazunobu |title=Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate)|journal=Macromolecules|date=May 1997|volume=30|issue=10|pages=3122–3124|doi=10.1021/ma961862g|bibcode=1997MaMol..30.3122M}} |
|||
== References == |
== References == |
||
<references /> |
<references /> |
||
{{DEFAULTSORT:Ring-Opening Polymerization}} |
|||
[[Category:Polymerization reactions]] |
[[Category:Polymerization reactions]] |
Latest revision as of 04:31, 21 November 2024
A polymerization in which a cyclic monomer yields a monomeric unit which is acyclic or contains fewer cycles than the monomer. Note: If monomer is polycyclic, the opening of a single ring is sufficient to classify the reaction as ring-opening polymerization.
In polymer chemistry, ring-opening polymerization (ROP) is a form of chain-growth polymerization in which the terminus of a polymer chain attacks cyclic monomers to form a longer polymer (see figure). The reactive center can be radical, anionic or cationic.
Ring-opening of cyclic monomers is often driven by the relief of bond-angle strain. Thus, as is the case for other types of polymerization, the enthalpy change in ring-opening is negative.[3] Many rings undergo ROP.[4]
Monomers
[edit]Many cyclic monomers are amenable to ROP.[5] These include epoxides,[6][7] cyclic trisiloxanes,[citation needed] some lactones[6][8] and lactides,[8] cyclic anhydrides,[7] cyclic carbonates,[9] and amino acid N-carboxyanhydrides.[10][11] Many strained cycloalkenes, e.g norbornene, are suitable monomers via ring-opening metathesis polymerization. Even highly strained cycloalkane rings, such as cyclopropane[12] and cyclobutane[13] derivatives, can undergo ROP.
History
[edit]Ring-opening polymerization has been used since the beginning of the 1900s to produce polymers. Synthesis of polypeptides which has the oldest history of ROP, dates back to the work in 1906 by Leuchs.[14] Subsequently, the ROP of anhydro sugars provided polysaccharides, including synthetic dextran, xanthan gum, welan gum, gellan gum, diutan gum, and pullulan. Mechanisms and thermodynamics of ring-opening polymerization were established in the 1950s.[15][16] The first high-molecular weight polymers (Mn up to 105) with a repeating unit were prepared by ROP as early as in 1976.[17][18]
An industrial application is the production of nylon-6 from caprolactam.
Mechanisms
[edit]Ring-opening polymerization can proceed via radical, anionic, or cationic polymerization as described below.[19] Additionally, radical ROP is useful in producing polymers with functional groups incorporated in the backbone chain that cannot otherwise be synthesized via conventional chain-growth polymerization of vinyl monomers. For instance, radical ROP can produce polymers with ethers, esters, amides, and carbonates as functional groups along the main chain.[19][20]
Anionic ring-opening polymerization (AROP)
[edit]Anionic ring-opening polymerizations (AROP) involve nucleophilic reagents as initiators. Monomers with a three-member ring structure - such as epoxides, aziridines, and episulfides - undergo anionic ROP.[20]
A typical example of anionic ROP is that of ε-caprolactone, initiated by an alkoxide.[20]
Cationic ring-opening polymerization
[edit]Cationic initiators and intermediates characterize cationic ring-opening polymerization (CROP). Examples of cyclic monomers that polymerize through this mechanism include lactones, lactams, amines, and ethers.[21] CROP proceeds through an SN1 or SN2 propagation, chain-growth process.[19] The mechanism is affected by the stability of the resulting cationic species. For example, if the atom bearing the positive charge is stabilized by electron-donating groups, polymerization will proceed by the SN1 mechanism.[20] The cationic species is a heteroatom and the chain grows by the addition of cyclic monomers thereby opening the ring system.
The monomers can be activated by Bronsted acids, carbenium ions, onium ions, and metal cations.[19]
CROP can be a living polymerization and can be terminated by nucleophilic reagents such as phenoxy anions, phosphines, or polyanions.[19] When the amount of monomers becomes depleted, termination can occur intra or intermolecularly. The active end can "backbite" the chain, forming a macrocycle. Alkyl chain transfer is also possible, where the active end is quenched by transferring an alkyl chain to another polymer.
Ring-opening metathesis polymerization
[edit]Ring-opening metathesis polymerisation (ROMP) produces unsaturated polymers from cycloalkenes or bicycloalkenes. It requires organometallic catalysts.[19]
The mechanism for ROMP follows similar pathways as olefin metathesis. The initiation process involves the coordination of the cycloalkene monomer to the metal alkylidene complex, followed by a [2+2] type cycloaddition to form the metallacyclobutane intermediate that cycloreverts to form a new alkylidene species.[23][24]
Commercially relevant unsaturated polymers synthesized by ROMP include polynorbornene, polycyclooctene, and polycyclopentadiene.[25]
Thermodynamics
[edit]The formal thermodynamic criterion of a given monomer polymerizability is related to a sign of the free enthalpy (Gibbs free energy) of polymerization: where:
- x and y indicate monomer and polymer states, respectively (x and/or y = l (liquid), g (gaseous), c (amorphous solid), c' (crystalline solid), s (solution));
- ΔHp(xy) is the enthalpy of polymerization (SI unit: joule per kelvin);
- ΔSp(xy) is the entropy of polymerization (SI unit: joule);
- T is the absolute temperature (SI unit: kelvin).
The free enthalpy of polymerization (ΔGp) may be expressed as a sum of standard enthalpy of polymerization (ΔGp°) and a term related to instantaneous monomer molecules and growing macromolecules concentrations: where:
- R is the gas constant;
- M is the monomer;
- (m)i is the monomer in an initial state;
- m* is the active monomer.
Following Flory–Huggins solution theory that the reactivity of an active center, located at a macromolecule of a sufficiently long macromolecular chain, does not depend on its degree of polymerization (DPi), and taking in to account that ΔGp° = ΔHp° − TΔSp° (where ΔHp° and ΔSp° indicate a standard polymerization enthalpy and entropy, respectively), we obtain:
At equilibrium (ΔGp = 0), when polymerization is complete the monomer concentration ([M]eq) assumes a value determined by standard polymerization parameters (ΔHp° and ΔSp°) and polymerization temperature: Polymerization is possible only when [M]0 > [M]eq. Eventually, at or above the so-called ceiling temperature (Tc), at which [M]eq = [M]0, formation of the high polymer does not occur. For example, tetrahydrofuran (THF) cannot be polymerized above Tc = 84 °C, nor cyclo-octasulfur (S8) below Tf = 159 °C.[26][27][28][29] However, for many monomers, Tc and Tf, for polymerization in the bulk, are well above or below the operable polymerization temperatures, respectively. The polymerization of a majority of monomers is accompanied by an entropy decrease, due mostly to the loss in the translational degrees of freedom. In this situation, polymerization is thermodynamically allowed only when the enthalpic contribution into ΔGp prevails (thus, when ΔHp° < 0 and ΔSp° < 0, the inequality |ΔHp| > −TΔSp is required). Therefore, the higher the ring strain, the lower the resulting monomer concentration at equilibrium.
Additional reading
[edit]- Luck, Russel M.; Sadhir, Rajender K., eds. (1992). Expanding Monomers: Synthesis, Characterization, and Applications. Boca Raton, Florida: CRC Press. ISBN 978-0-8493-5156-3.
- Nahrain E. Kamber; Wonhee Jeong; Robert M. Waymouth; Russell C. Pratt; Bas G. G. Lohmeijer; James L. Hedrick (2007). "Organocatalytic Ring-Opening Polymerization". Chemical Reviews. 107 (12): 5813–5840. doi:10.1021/cr068415b. PMID 17988157.
- Dubois, Philippe; Coulembier, Olivier; Raquez, Jean-Marie, eds. (2009). Handbook of Ring‐Opening Polymerization. Wiley. doi:10.1002/9783527628407. ISBN 9783527628407.
References
[edit]- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Ring-opening polymerization". doi:10.1351/goldbook.R05396
- ^ Jenkins, A. D.; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. (1996). "Glossary of basic terms in polymer science (IUPAC Recommendations 1996)". Pure and Applied Chemistry. 68 (12): 2287–2311. doi:10.1351/pac199668122287.
- ^ Young, Robert J. (2011). Introduction to Polymers. Boca Raton: CRC Press. ISBN 978-0-8493-3929-5.
- ^ . doi:10.1007/s00726-006-0432-9.
{{cite journal}}
: Cite journal requires|journal=
(help); Missing or empty|title=
(help) - ^ Nuyken, Oskar; Pask, Stephen (2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361.
- ^ a b Yann Sarazin; Jean-François Carpentier (2015). "Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides". Chemical Reviews. 115 (9): 3564–3614. doi:10.1021/acs.chemrev.5b00033. PMID 25897976.
- ^ a b Longo, Julie M.; Sanford, Maria J.; Coates, Geoffrey W. (2016). "Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships". Chemical Reviews. 116 (24): 15167–15197. doi:10.1021/acs.chemrev.6b00553. PMID 27936619.
- ^ a b JEROME, C; LECOMTE, P (2008-06-10). "Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization☆". Advanced Drug Delivery Reviews. 60 (9): 1056–1076. doi:10.1016/j.addr.2008.02.008. hdl:2268/3723. ISSN 0169-409X. PMID 18403043.
- ^ Matsumura, Shuichi; Tsukada, Keisuke; Toshima, Kazunobu (May 1997). "Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate)". Macromolecules. 30 (10): 3122–3124. Bibcode:1997MaMol..30.3122M. doi:10.1021/ma961862g.
- ^ Kricheldorf, H. R. (2006). "Polypeptides and 100 Years of Chemistry of α-Amino Acid N-Carboxyanhydrides". Angewandte Chemie International Edition. 45 (35): 5752–5784. doi:10.1002/anie.200600693. PMID 16948174.
- ^ Nikos Hadjichristidis; Hermis Iatrou; Marinos Pitsikalis; Georgios Sakellariou (2009). "Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides". Chemical Reviews. 109 (11): 5528–5578. doi:10.1021/cr900049t. PMID 19691359.
- ^ Scott, R. J.; Gunning, H. E. (1952). "The Polymerization of Cyclopropane". J. Phys. Chem. 56 (1): 156–160. doi:10.1021/j150493a031.
- ^ Yokozawa, Tsutomu; Tsuruta, Ei-ichi (1996). "Ring-Opening Polymerization of the Cyclobutane Adduct of Methyl Tricyanoethylenecarboxylate and Ethyl Vinyl Ether". Macromolecules. 29 (25): 8053–8056. doi:10.1021/ma9608535.
- ^ Leuchs, H. (1906). "Glycine-carbonic acid". Berichte der Deutschen Chemischen Gesellschaft. 39: 857. doi:10.1002/cber.190603901133.
- ^ Dainton, F. S.; Devlin, T. R. E.; Small, P. A. (1955). "The thermodynamics of polymerization of cyclic compounds by ring opening". Transactions of the Faraday Society. 51: 1710. doi:10.1039/TF9555101710.
- ^ Conix, André; Smets, G. (January 1955). "Ring opening in lactam polymers". Journal of Polymer Science. 15 (79): 221–229. Bibcode:1955JPoSc..15..221C. doi:10.1002/pol.1955.120157918.
- ^ Kałuz̀ynski, Krzysztof; Libiszowski, Jan; Penczek, Stanisław (1977). "Poly(2-hydro-2-oxo-1,3,2-dioxaphosphorinane). Preparation and NMR spectra". Die Makromolekulare Chemie. 178 (10): 2943–2947. doi:10.1002/macp.1977.021781017. ISSN 0025-116X.
- ^ Libiszowski, Jan; Kałużynski, Krzysztof; Penczek, Stanisław (June 1978). "Polymerization of cyclic esters of phosphoric acid. VI. Poly(alkyl ethylene phosphates). Polymerization of 2-alkoxy-2-oxo-1,3,2-dioxaphospholans and structure of polymers". Journal of Polymer Science: Polymer Chemistry Edition. 16 (6): 1275–1283. Bibcode:1978JPoSA..16.1275L. doi:10.1002/pol.1978.170160610.
- ^ a b c d e f Nuyken, Oskar; Stephen D. Pask (25 April 2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361.
- ^ a b c d e Dubois, Philippe (2008). Handbook of ring-opening polymerization (1. Aufl. ed.). Weinheim: Wiley-VCH. ISBN 978-3-527-31953-4.
- ^ Cowie, John McKenzie Grant (2008). Polymers: Chemistry and Physics of Modern Materials. Boca Raton, Florida: CRC Press. pp. 105–107. ISBN 978-0-8493-9813-1.
- ^ Pruckmayr, Gerfried; Dreyfuss, P.; Dreyfuss, M. P. (1996). "Polyethers, Tetrahydrofuran and Oxetane Polymers". Kirk‑Othmer Encyclopedia of Chemical Technology. John Wiley & Sons.
- ^ Sutthasupa, Sutthira; Shiotsuki, Masashi; Sanda, Fumio (13 October 2010). "Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials". Polymer Journal. 42 (12): 905–915. doi:10.1038/pj.2010.94.
- ^ Hartwig, John F. (2010). Organotransition metal chemistry: from bonding to catalysis. Sausalito, California: University Science Books. ISBN 978-1-891389-53-5.
- ^ Walsh, Dylan J.; Lau, Sii Hong; Hyatt, Michael G.; Guironnet, Damien (2017-09-25). "Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts". Journal of the American Chemical Society. 139 (39): 13644–13647. doi:10.1021/jacs.7b08010. ISSN 0002-7863. PMID 28944665.
- ^ Tobolsky, A. V. (July 1957). "Equilibrium polymerization in the presence of an ionic initiator". Journal of Polymer Science. 25 (109): 220–221. Bibcode:1957JPoSc..25..220T. doi:10.1002/pol.1957.1202510909.
- ^ Tobolsky, A. V. (August 1958). "Equilibrium polymerization in the presence of an ionic initiator". Journal of Polymer Science. 31 (122): 126. Bibcode:1958JPoSc..31..126T. doi:10.1002/pol.1958.1203112214.
- ^ Tobolsky, Arthur V.; Eisenberg, Adi (May 1959). "Equilibrium Polymerization of Sulfur". Journal of the American Chemical Society. 81 (4): 780–782. doi:10.1021/ja01513a004.
- ^ Tobolsky, A. V.; Eisenberg, A. (January 1960). "A General Treatment of Equilibrium Polymerization". Journal of the American Chemical Society. 82 (2): 289–293. doi:10.1021/ja01487a009.