Jump to content

Ziprasidone: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Tags: Mobile edit Mobile app edit iOS app edit App section source
 
(44 intermediate revisions by 21 users not shown)
Line 1: Line 1:
{{short description|Antipsychotic medication}}
{{Short description|Antipsychotic medication}}
{{Use mdy dates|date=October 2016}}
{{Use mdy dates|date=June 2024}}
{{cs1 config |name-list-style=vanc |display-authors=6}}
{{Drugbox
{{Drugbox
| Watchedfields = changed
| Watchedfields = changed
Line 6: Line 7:
| IUPAC_name = 5-{2-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]ethyl}-6-chloro-1,3-dihydro-2''H''-indol-2-one
| IUPAC_name = 5-{2-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]ethyl}-6-chloro-1,3-dihydro-2''H''-indol-2-one
| image = Ziprasidone.svg
| image = Ziprasidone.svg
| width = 275
| width = 250
| image2 = Ziprasidone ball-and-stick model.png
| image2 = Ziprasidone ball-and-stick model.png
| width2 = 250


<!--Clinical data-->
<!--Clinical data-->
Line 17: Line 19:
| pregnancy_AU = C
| pregnancy_AU = C
| legal_AU = S4
| legal_AU = S4
| legal_BR = C1
| legal_BR_comment = <ref>{{Cite web |author=Anvisa |author-link=Brazilian Health Regulatory Agency |date=March 31, 2023 |title=RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial |trans-title=Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control|url=https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-784-de-31-de-marco-de-2023-474904992 |url-status=live |archive-url=https://web.archive.org/web/20230803143925/https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-784-de-31-de-marco-de-2023-474904992 |archive-date=August 3, 2023 |access-date=August 16, 2023 |publisher=[[Diário Oficial da União]] |language=pt-BR |publication-date=April 4, 2023}}</ref>
| legal_US = Rx-only
| legal_US = Rx-only
| routes_of_administration = [[Oral administration|By mouth]], [[intramuscular injection]] (IM)
| routes_of_administration = [[Oral administration|By mouth]], [[intramuscular injection]] (IM)
Line 22: Line 26:


<!--Pharmacokinetic data-->
<!--Pharmacokinetic data-->
| bioavailability = 60% (oral)<ref name=2011rev>{{cite journal | vauthors = Mattei C, Rapagnani MP, Stahl SM | title = Ziprasidone hydrocloride: what role in the management of schizophrenia? | journal = Journal of Central Nervous System Disease | volume = 3 | pages = 1–16 | date = February 2011 | pmid = 23861634 | pmc = 3663608 | doi = 10.4137/JCNSD.S4138 }}</ref>
| bioavailability = 60% (oral)<ref name=2011rev>{{cite journal | vauthors = Mattei C, Rapagnani MP, Stahl SM | title = Ziprasidone hydrocloride: what role in the management of schizophrenia? | journal = Journal of Central Nervous System Disease | volume = 3 | pages = JCNSD.S4138 | date = February 2011 | pmid = 23861634 | pmc = 3663608 | doi = 10.4137/JCNSD.S4138 }}</ref>
<br />100% (IM)
<br />100% (IM)
| metabolism = Liver ([[aldehyde reductase]])
| metabolism = Liver ([[aldehyde reductase]])
| elimination_half-life = 7 to 10 hours<ref name=2007rev>{{cite journal | vauthors = Nicolson SE, Nemeroff CB | title = Ziprasidone in the treatment of mania in bipolar disorder | journal = Neuropsychiatric Disease and Treatment | volume = 3 | issue = 6 | pages = 823–834 | date = December 2007 | pmid = 19300617 | pmc = 2656324 | doi = 10.2147/NDT.S794 }}</ref>
| elimination_half-life = 7 to 10 hours<ref name=2007rev>{{cite journal | vauthors = Nicolson SE, Nemeroff CB | title = Ziprasidone in the treatment of mania in bipolar disorder | journal = Neuropsychiatric Disease and Treatment | volume = 3 | issue = 6 | pages = 823–834 | date = December 2007 | pmid = 19300617 | pmc = 2656324 | doi = 10.2147/NDT.S794 | doi-access = free }}</ref>
| excretion = Urine and feces
| excretion = Urine and feces


Line 56: Line 60:
| StdInChIKey = MVWVFYHBGMAFLY-UHFFFAOYSA-N
| StdInChIKey = MVWVFYHBGMAFLY-UHFFFAOYSA-N
}}
}}
[[Image:Ziprasidone3Dan.gif|thumb|250px|3D-animation of a ziprasidone molecule.]]
[[Image:GEODON60MG.png|thumb|250px|Ziprasidon Krka brand medicine.]]
{{commonscat}}


<!-- Medical uses -->
<!-- Medical uses -->
Line 61: Line 68:


<!-- Adverse effects and mechanism -->
<!-- Adverse effects and mechanism -->
Common side effects include [[dizziness]], [[drowsiness]], [[dry mouth]], and [[Fasciculation|twitches]].<ref name=TGA-Zeldox-IM/><ref name=TGA-Zeldox/> Although it can also cause [[weight gain]], the risk is much lower than for other atypical antipsychotics.<ref name=PsychDrugsComm/> How it works is not entirely clear but is believed to involve effects on [[serotonin]] and [[dopamine]] in the [[brain]].<ref name=AHFS2019>{{cite web |title=Ziprasidone Monograph for Professionals |url=https://www.drugs.com/monograph/ziprasidone.html |website=Drugs.com |publisher=American Society of Health-System Pharmacists |access-date=8 May 2019 |language=en}}</ref>
Common side effects include [[Tremor|tremors]], [[Fasciculation|tics]], [[dizziness]], [[dry mouth]], [[Akathisia|restlessness]], [[nausea]], and mild [[Somnolence|sedation]].<ref name=TGA-Zeldox-IM/><ref name=TGA-Zeldox/> Although it can also cause [[weight gain]], the risk is much lower than for other atypical antipsychotics.<ref name=PsychDrugsComm/> How it works is not entirely clear but is believed to involve effects on [[serotonin]] and [[dopamine]] in the [[brain]].<ref name=AHFS2019>{{cite web |title=Ziprasidone Monograph for Professionals |url=https://www.drugs.com/monograph/ziprasidone.html |website=Drugs.com |publisher=American Society of Health-System Pharmacists |access-date=May 8, 2019 |language=en}}</ref>


<!-- Society and culture -->
<!-- Society and culture -->
Ziprasidone was approved for medical use in the United States in 2001.<ref name=AHFS2019/> The pills are made up of the hydrochloride salt, ziprasidone hydrochloride. The intramuscular form is the [[mesylate]], ziprasidone mesylate trihydrate, and is provided as a [[lyophilized]] powder. In 2020, it was the 282nd most commonly prescribed medication in the United States, with more than 1{{nbsp}}million prescriptions.<ref>{{cite web | title = The Top 300 of 2020 | url = https://clincalc.com/DrugStats/Top300Drugs.aspx | website = ClinCalc | access-date = 7 October 2022}}</ref><ref>{{cite web | title = Ziprasidone - Drug Usage Statistics | website = ClinCalc | url = https://clincalc.com/DrugStats/Drugs/Ziprasidone | access-date = 7 October 2022}}</ref>
Ziprasidone was approved for medical use in the United States in 2001.<ref name=AHFS2019/> The pills are made up of the hydrochloride salt, ziprasidone hydrochloride. The intramuscular form is the [[mesylate]], ziprasidone mesylate trihydrate, and is provided as a [[lyophilized]] powder. In 2020, it was the 282nd most commonly prescribed medication in the United States, with more than 1{{nbsp}}million prescriptions.<ref>{{cite web | title = The Top 300 of 2020 | url = https://clincalc.com/DrugStats/Top300Drugs.aspx | website = ClinCalc | access-date = October 7, 2022}}</ref><ref>{{cite web | title = Ziprasidone - Drug Usage Statistics | website = ClinCalc | url = https://clincalc.com/DrugStats/Drugs/Ziprasidone | access-date = October 7, 2022}}</ref>
{{TOC limit}}
{{TOC limit}}


==Medical uses==
==Medical uses==
Ziprasidone is approved by the U.S. [[Food and Drug Administration]] (FDA) for the treatment of [[schizophrenia]] as well as acute [[mania]] and [[agitated depression|mixed states]] associated with [[bipolar disorder]]. Its intramuscular injection form is approved for acute agitation in schizophrenic patients for whom treatment with just ziprasidone is appropriate.<ref name = "Off-label">{{cite web | url = http://www.stopmedicarefraud.gov/pfizerfactsheet.html | title = Pfizer to pay $2.3&nbsp;billion to resolve criminal and civil health care liability relating to fraudulent marketing and the payment of kickbacks | publisher = Stop Medicare Fraud, US Dept of Health & Human Svc, and of US Dept of Justice | access-date = 2012-07-04 | archive-date = August 30, 2012 | archive-url = https://web.archive.org/web/20120830023954/http://www.stopmedicarefraud.gov/pfizerfactsheet.html | url-status = dead }}</ref>
Ziprasidone is approved by the U.S. [[Food and Drug Administration]] (FDA) for the treatment of [[schizophrenia]] as well as acute [[mania]] and [[agitated depression|mixed states]] associated with [[bipolar disorder]]. Its intramuscular injection form is approved for acute agitation in schizophrenic patients for whom treatment with just ziprasidone is appropriate.<ref name = "Off-label">{{cite web | url = http://www.stopmedicarefraud.gov/pfizerfactsheet.html | title = Pfizer to pay $2.3&nbsp;billion to resolve criminal and civil health care liability relating to fraudulent marketing and the payment of kickbacks | publisher = Stop Medicare Fraud, US Dept of Health & Human Svc, and of US Dept of Justice | access-date = July 4, 2012 | archive-date = August 30, 2012 | archive-url = https://web.archive.org/web/20120830023954/http://www.stopmedicarefraud.gov/pfizerfactsheet.html | url-status = dead }}</ref>


In a 2013 study in a comparison of 15 antipsychotic drugs in effectiveness in treating schizophrenic symptoms, ziprasidone demonstrated mild-standard effectiveness. 15% more effective than [[lurasidone]] and [[iloperidone]], approximately as effective as [[chlorpromazine]] and [[asenapine]], and 9–13% less effective than [[haloperidol]], [[quetiapine]], and [[aripiprazole]].<ref>{{cite journal | vauthors = Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, Kissling W, Stapf MP, Lässig B, Salanti G, Davis JM | display-authors = 6 | title = Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis | journal = Lancet | volume = 382 | issue = 9896 | pages = 951–962 | date = September 2013 | pmid = 23810019 | doi = 10.1016/S0140-6736(13)60733-3 | s2cid = 32085212 }}</ref> Ziprasidone is effective in the treatment of schizophrenia, though evidence from the CATIE trials suggests it is less effective than [[olanzapine]], and equally as effective compared to [[quetiapine]]. There are higher discontinuation rates for lower doses of ziprasidone, which are also less effective than higher doses.<ref>{{cite journal | vauthors = Citrome L, Yang R, Glue P, Karayal ON | title = Effect of ziprasidone dose on all-cause discontinuation rates in acute schizophrenia and schizoaffective disorder: a post-hoc analysis of 4 fixed-dose randomized clinical trials | journal = Schizophrenia Research | volume = 111 | issue = 1–3 | pages = 39–45 | date = June 2009 | pmid = 19375893 | doi = 10.1016/j.schres.2009.03.009 | s2cid = 34910599 }}</ref>
In a 2013 study in a comparison of 15 antipsychotic drugs in effectiveness in treating schizophrenic symptoms, ziprasidone demonstrated mild-standard effectiveness. Ziprasidone was 15% more effective than [[lurasidone]] and [[iloperidone]], approximately as effective as [[chlorpromazine]] and [[asenapine]], and 9–13% less effective than [[haloperidol]], [[quetiapine]], and [[aripiprazole]].<ref>{{cite journal | vauthors = Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, Kissling W, Stapf MP, Lässig B, Salanti G, Davis JM | display-authors = 6 | title = Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis | journal = Lancet | volume = 382 | issue = 9896 | pages = 951–962 | date = September 2013 | pmid = 23810019 | doi = 10.1016/S0140-6736(13)60733-3 | s2cid = 32085212 }}</ref> Ziprasidone is effective in the treatment of schizophrenia, though evidence from the CATIE trials suggests it is less effective than [[olanzapine]], and equally as effective compared to [[quetiapine]]. There are higher discontinuation rates for lower doses of ziprasidone, which are also less effective than higher doses.<ref>{{cite journal | vauthors = Citrome L, Yang R, Glue P, Karayal ON | title = Effect of ziprasidone dose on all-cause discontinuation rates in acute schizophrenia and schizoaffective disorder: a post-hoc analysis of 4 fixed-dose randomized clinical trials | journal = Schizophrenia Research | volume = 111 | issue = 1–3 | pages = 39–45 | date = June 2009 | pmid = 19375893 | doi = 10.1016/j.schres.2009.03.009 | s2cid = 34910599 }}</ref>


==Adverse effects==
==Adverse effects==
Ziprasidone (and all other second generation antipsychotics (SGAs)) received a [[black box warning]] due to increased mortality in elderly patients with [[dementia]]-related [[psychosis]].<ref name="package_insert">{{cite web | url = http://www.pfizer.com/pfizer/download/uspi_geodon.pdf | title = Geodon Prescribing Information | publisher = Pfizer, Inc. | access-date = 2009-01-26 | archive-date = October 17, 2005 | archive-url = https://web.archive.org/web/20051017034327/http://www.pfizer.com/pfizer/download/uspi_geodon.pdf | url-status = dead }}</ref>
Ziprasidone (and all other second generation antipsychotics (SGAs)) received a [[black box warning]] due to increased mortality in elderly patients with [[dementia]]-related [[psychosis]].<ref name="package_insert">{{cite web | url = http://www.pfizer.com/pfizer/download/uspi_geodon.pdf | title = Geodon Prescribing Information | publisher = Pfizer, Inc. | access-date = January 26, 2009 | archive-date = October 17, 2005 | archive-url = https://web.archive.org/web/20051017034327/http://www.pfizer.com/pfizer/download/uspi_geodon.pdf | url-status = dead }}</ref>


Sleepiness and headache are very common adverse effects (>10%).<ref name=TGA-Zeldox-IM>{{cite web|title=Product Information: Zeldox IM (ziprasidone mesilate)|url=https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent&id=CP-2010-PI-06852-3|publisher=Australia Therapeutic Goods Administration|date=February 24, 2016}}</ref><ref name=TGA-Zeldox>{{cite web|title=Product Information: Zeldox (ziprasidone hydrochloride)|url=https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent&id=CP-2010-PI-05917-3&d=2016100716114622483|publisher=Australia Therapeutic Goods Administration|date=February 24, 2016}}</ref>
Sleepiness and headache are very common adverse effects (>10%).<ref name=TGA-Zeldox-IM>{{cite web|title=Product Information: Zeldox IM (ziprasidone mesilate)|url=https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent&id=CP-2010-PI-06852-3|publisher=Australia Therapeutic Goods Administration|date=February 24, 2016}}</ref><ref name=TGA-Zeldox>{{cite web|title=Product Information: Zeldox (ziprasidone hydrochloride)|url=https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent&id=CP-2010-PI-05917-3&d=2016100716114622483|publisher=Australia Therapeutic Goods Administration|date=February 24, 2016}}</ref>
Line 83: Line 90:
This medication can cause birth defects, according to animal studies, although this side effect has not been confirmed in humans.<ref name="package_insert"/>
This medication can cause birth defects, according to animal studies, although this side effect has not been confirmed in humans.<ref name="package_insert"/>


Recently, the FDA required the manufacturers of some atypical antipsychotics to include a warning about the risk of [[hyperglycemia]] and [[Type II diabetes]] with atypical antipsychotics. Some evidence suggests that ziprasidone does not cause [[insulin resistance]] to the degree of other atypical antipsychotics, such as [[olanzapine]]. Weight gain is also less of a concern with ziprasidone compared to other atypical antipsychotics.<ref name="pmid19153944">{{cite journal | vauthors = Tschoner A, Engl J, Rettenbacher M, Edlinger M, Kaser S, Tatarczyk T, Effenberger M, Patsch JR, Fleischhacker WW, Ebenbichler CF | display-authors = 6 | title = Effects of six second generation antipsychotics on body weight and metabolism - risk assessment and results from a prospective study | journal = Pharmacopsychiatry | volume = 42 | issue = 1 | pages = 29–34 | date = January 2009 | pmid = 19153944 | doi = 10.1055/s-0028-1100425 }}</ref><ref name="pmid17192159">{{cite journal | vauthors = Guo JJ, Keck PE, Corey-Lisle PK, Li H, Jiang D, Jang R, L'Italien GJ | title = Risk of diabetes mellitus associated with atypical antipsychotic use among Medicaid patients with bipolar disorder: a nested case-control study | journal = Pharmacotherapy | volume = 27 | issue = 1 | pages = 27–35 | date = January 2007 | pmid = 17192159 | doi = 10.1592/phco.27.1.27 | s2cid = 22445126 | citeseerx = 10.1.1.453.7866 }}</ref><ref name="pmid17712347">{{cite journal | vauthors = Sacher J, Mossaheb N, Spindelegger C, Klein N, Geiss-Granadia T, Sauermann R, Lackner E, Joukhadar C, Müller M, Kasper S | display-authors = 6 | title = Effects of olanzapine and ziprasidone on glucose tolerance in healthy volunteers | journal = Neuropsychopharmacology | volume = 33 | issue = 7 | pages = 1633–1641 | date = June 2008 | pmid = 17712347 | doi = 10.1038/sj.npp.1301541 | doi-access = free }}</ref><ref name="pmid15998156">{{cite journal | vauthors = Newcomer JW | title = Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review | journal = CNS Drugs | volume = 19 | issue = Suppl 1 | pages = 1–93 | year = 2005 | pmid = 15998156 | doi = 10.2165/00023210-200519001-00001 | s2cid = 36435377 }}</ref> In fact, in a trial of long term therapy with ziprasidone, overweight patients ([[Body mass index|BMI]] > 27) actually had a mean weight loss overall.<ref name="package_insert" /> According to the manufacturer insert, ziprasidone caused an average weight gain of 2.2&nbsp;kg (4.8&nbsp;lbs), which is significantly lower than other atypical antipsychotics, making this medication better for patients that are concerned about their weight.
Recently, the FDA required the manufacturers of some atypical antipsychotics to include a warning about the risk of [[hyperglycemia]] and [[Type II diabetes]] with atypical antipsychotics. Some evidence suggests that ziprasidone does not cause [[insulin resistance]] to the degree of other atypical antipsychotics, such as [[olanzapine]]. Weight gain is also less of a concern with ziprasidone compared to other atypical antipsychotics.<ref name="pmid19153944">{{cite journal | vauthors = Tschoner A, Engl J, Rettenbacher M, Edlinger M, Kaser S, Tatarczyk T, Effenberger M, Patsch JR, Fleischhacker WW, Ebenbichler CF | display-authors = 6 | title = Effects of six second generation antipsychotics on body weight and metabolism - risk assessment and results from a prospective study | journal = Pharmacopsychiatry | volume = 42 | issue = 1 | pages = 29–34 | date = January 2009 | pmid = 19153944 | doi = 10.1055/s-0028-1100425 | s2cid = 43803033 }}</ref><ref name="pmid17192159">{{cite journal | vauthors = Guo JJ, Keck PE, Corey-Lisle PK, Li H, Jiang D, Jang R, L'Italien GJ | title = Risk of diabetes mellitus associated with atypical antipsychotic use among Medicaid patients with bipolar disorder: a nested case-control study | journal = Pharmacotherapy | volume = 27 | issue = 1 | pages = 27–35 | date = January 2007 | pmid = 17192159 | doi = 10.1592/phco.27.1.27 | s2cid = 22445126 | citeseerx = 10.1.1.453.7866 }}</ref><ref name="pmid17712347">{{cite journal | vauthors = Sacher J, Mossaheb N, Spindelegger C, Klein N, Geiss-Granadia T, Sauermann R, Lackner E, Joukhadar C, Müller M, Kasper S | display-authors = 6 | title = Effects of olanzapine and ziprasidone on glucose tolerance in healthy volunteers | journal = Neuropsychopharmacology | volume = 33 | issue = 7 | pages = 1633–1641 | date = June 2008 | pmid = 17712347 | doi = 10.1038/sj.npp.1301541 | doi-access = free }}</ref><ref name="pmid15998156">{{cite journal | vauthors = Newcomer JW | title = Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review | journal = CNS Drugs | volume = 19 | issue = Suppl 1 | pages = 1–93 | year = 2005 | pmid = 15998156 | doi = 10.2165/00023210-200519001-00001 | s2cid = 36435377 }}</ref> In fact, in a trial of long term therapy with ziprasidone, overweight patients ([[Body mass index|BMI]] > 27) actually had a mean weight loss overall.<ref name="package_insert" /> According to the manufacturer insert, ziprasidone caused an average weight gain of 2.2&nbsp;kg (4.8&nbsp;lbs), which is significantly lower than other atypical antipsychotics, making this medication better for patients that are concerned about their weight.
In December 2014, the FDA warned that ziprasidone could cause a potentially fatal skin reaction, [[Drug Reaction with Eosinophilia and Systemic Symptoms]], although this was believed to occur only rarely.<ref>{{cite web | url=https://www.fda.gov/Drugs/DrugSafety/ucm426391.htm | title=FDA Drug Safety Communication: FDA reporting mental health drug ziprasidone (Geodon) associated with rare but potentially fatal skin reactions | website=FDA | date=December 11, 2014 | access-date=December 12, 2014}}</ref>
In December 2014, the FDA warned that ziprasidone could cause a potentially fatal skin reaction, [[Drug Reaction with Eosinophilia and Systemic Symptoms]] (DRESS), although this was believed to occur only rarely.<ref>{{cite web | url=https://www.fda.gov/Drugs/DrugSafety/ucm426391.htm | title=FDA Drug Safety Communication: FDA reporting mental health drug ziprasidone (Geodon) associated with rare but potentially fatal skin reactions | website=FDA | date=December 11, 2014 | access-date=December 12, 2014}}</ref>


===Discontinuation===
===Discontinuation===
The [[British National Formulary]] recommends a gradual withdrawal when [[discontinuing antipsychotics]] to avoid acute withdrawal syndrome or rapid relapse.<ref name="Group 2009 192">{{cite book |editor1-first=BMJ | editor = Joint Formulary Committee | title = British National Formulary | edition = 57 | date = March 2009 |publisher=Royal Pharmaceutical Society of Great Britain |location=United Kingdom |isbn=978-0-85369-845-6 |page=192 |chapter=4.2.1 |quote=Withdrawal of antipsychotic drugs after long-term therapy should always be gradual and closely monitored to avoid the risk of acute withdrawal syndromes or rapid relapse.}}</ref> Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite.<ref name=Had2004>{{cite book | vauthors = Haddad P, Dursun S, Deakin B |title=Adverse Syndromes and Psychiatric Drugs: A Clinical Guide |date=2004 |publisher=OUP Oxford |isbn=9780198527480 |pages=207–216 |url=https://books.google.com/books?id=CWR7DwAAQBAJ&pg=PA207 |language=en}}</ref> Other symptoms may include restlessness, increased sweating, and trouble sleeping.<ref name=Had2004/> Less commonly there may be a feeling of the world spinning, numbness, or muscle pains.<ref name=Had2004/> Symptoms generally resolve after a short period of time.<ref name=Had2004/>
The [[British National Formulary]] recommends a gradual withdrawal when [[discontinuing antipsychotics]] to avoid acute withdrawal syndrome or rapid relapse.<ref name="Group 2009 192">{{cite book |editor1-first=BMJ | editor = Joint Formulary Committee | title = British National Formulary | edition = 57 | date = March 2009 |publisher=Royal Pharmaceutical Society of Great Britain |location=United Kingdom |isbn=978-0-85369-845-6 |page=192 |chapter=4.2.1 |quote=Withdrawal of antipsychotic drugs after long-term therapy should always be gradual and closely monitored to avoid the risk of acute withdrawal syndromes or rapid relapse.}}</ref> Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite.<ref name=Had2004>{{cite book | vauthors = Haddad P, Dursun S, Deakin B |title=Adverse Syndromes and Psychiatric Drugs: A Clinical Guide |date=2004 |publisher=OUP Oxford |isbn=9780198527480 |pages=207–216 |url=https://books.google.com/books?id=CWR7DwAAQBAJ&pg=PA207 |language=en}}</ref> Other symptoms may include restlessness, increased sweating, and trouble sleeping.<ref name=Had2004/> Less commonly there may be a feeling of the world spinning, numbness, or muscle pains.<ref name=Had2004/> Symptoms generally resolve after a short period of time.<ref name=Had2004/>


There is tentative evidence that discontinuation of antipsychotics can result in psychosis.<ref>{{cite journal | vauthors = Moncrieff J | title = Does antipsychotic withdrawal provoke psychosis? Review of the literature on rapid onset psychosis (supersensitivity psychosis) and withdrawal-related relapse | journal = Acta Psychiatrica Scandinavica | volume = 114 | issue = 1 | pages = 3–13 | date = July 2006 | pmid = 16774655 | doi = 10.1111/j.1600-0447.2006.00787.x | s2cid = 6267180 }}</ref> It may also result in reoccurrence of the condition that is being treated.<ref>{{cite book | vauthors = Sacchetti E, Vita A, Siracusano A, Fleischhacker W |title=Adherence to Antipsychotics in Schizophrenia |date=2013 |publisher=Springer Science & Business Media |isbn=9788847026797 |page=85 |url=https://books.google.com/books?id=odE-AgAAQBAJ&pg=PA85 |language=en}}</ref> Rarely tardive dyskinesia can occur when the medication is stopped.<ref name=Had2004/>
There is tentative evidence that discontinuation of antipsychotics can result in psychosis.<ref>{{cite journal | vauthors = Moncrieff J | title = Does antipsychotic withdrawal provoke psychosis? Review of the literature on rapid onset psychosis (supersensitivity psychosis) and withdrawal-related relapse | journal = Acta Psychiatrica Scandinavica | volume = 114 | issue = 1 | pages = 3–13 | date = July 2006 | pmid = 16774655 | doi = 10.1111/j.1600-0447.2006.00787.x | s2cid = 6267180 }}</ref> It may also result in reoccurrence of the condition that is being treated.<ref>{{cite book | vauthors = Sacchetti E, Vita A, Siracusano A, Fleischhacker W |title=Adherence to Antipsychotics in Schizophrenia |date=2013 |publisher=Springer Science & Business Media |isbn=9788847026797 |page=85 |url=https://books.google.com/books?id=odE-AgAAQBAJ&pg=PA85 |language=en}}</ref> Rarely [[tardive dyskinesia]] can occur when the medication is stopped.<ref name=Had2004/>


==Pharmacology==
==Pharmacology==
Line 95: Line 102:
{{See also|Atypical antipsychotic#Pharmacodynamics|Antipsychotic#Comparison of medications}}
{{See also|Atypical antipsychotic#Pharmacodynamics|Antipsychotic#Comparison of medications}}
{| class="wikitable floatright" style="font-size:small;"
{| class="wikitable floatright" style="font-size:small;"
|+ Ziprasidone<ref name="PDSP">{{cite web | title = PDSP K<sub>i</sub> Database | website = Psychoactive Drug Screening Program (PDSP) | vauthors = Roth BL, Driscol J | publisher = University of North Carolina at Chapel Hill and the United States National Institute of Mental Health | access-date = 14 August 2017 | url = https://pdsp.unc.edu/databases/pdsp.php?knowID=0&kiKey=&receptorDD=&receptor=&speciesDD=&species=&sourcesDD=&source=&hotLigandDD=&hotLigand=&testLigandDD=&testFreeRadio=testFreeRadio&testLigand=ziprasidone&referenceDD=&reference=&KiGreater=&KiLess=&kiAllRadio=all&doQuery=Submit+Query}}</ref>
|+ Ziprasidone<ref name="PDSP">{{cite web | title = PDSP K<sub>i</sub> Database | website = Psychoactive Drug Screening Program (PDSP) | vauthors = Roth BL, Driscol J | publisher = University of North Carolina at Chapel Hill and the United States National Institute of Mental Health | access-date = August 14, 2017 | url = https://pdsp.unc.edu/databases/pdsp.php?knowID=0&kiKey=&receptorDD=&receptor=&speciesDD=&species=&sourcesDD=&source=&hotLigandDD=&hotLigand=&testLigandDD=&testFreeRadio=testFreeRadio&testLigand=ziprasidone&referenceDD=&reference=&KiGreater=&KiLess=&kiAllRadio=all&doQuery=Submit+Query}}</ref>
|-
|-
! Site !! K<sub>i</sub> (nM) !! Action !! Ref
! Site !! K<sub>i</sub> (nM) !! Action !! Ref
Line 117: Line 124:
| [[5-HT2B receptor|5-HT<sub>2B</sub>]] || 27.2 || Antagonist || <ref name="PDSP" />
| [[5-HT2B receptor|5-HT<sub>2B</sub>]] || 27.2 || Antagonist || <ref name="PDSP" />
|-
|-
| [[5-HT2C receptor|5-HT<sub>2C</sub>]] || 0.72–13 || Partial agonist || <ref name="pmid11513838" />
| [[5-HT2C receptor|5-HT<sub>2C</sub>]] || 0.72–13 || Antagonist || <ref name="pmid11513838" />
|-
|-
| [[5-HT3 receptor|5-HT<sub>3</sub>]] || >10,000 || {{abbr|ND|No data}} || <ref name="PDSP" />
| [[5-HT3 receptor|5-HT<sub>3</sub>]] || >10,000 || {{abbr|ND|No data}} || <ref name="PDSP" />
Line 143: Line 150:
| [[Dopamine D1 receptor|D<sub>1</sub>]] || 30–130 || {{abbr|ND|No data}} || <ref name="PDSP" /><ref name="pmid11513838" />
| [[Dopamine D1 receptor|D<sub>1</sub>]] || 30–130 || {{abbr|ND|No data}} || <ref name="PDSP" /><ref name="pmid11513838" />
|-
|-
| [[Dopamine D2 receptor|D<sub>2</sub>]] || 4.8 || Antagonist || <ref name="pmid9577836">{{cite journal | vauthors = Seeman P, Tallerico T | title = Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors | journal = Molecular Psychiatry | volume = 3 | issue = 2 | pages = 123–134 | date = March 1998 | pmid = 9577836 | doi = 10.1038/sj.mp.4000336 | doi-access = free }}</ref><ref name="pmid11513838" /><ref name="pmid12629531" />
| [[Dopamine D2 receptor|D<sub>2</sub>]] || 4.8 || Antagonist || <ref name="pmid9577836">{{cite journal | vauthors = Seeman P, Tallerico T | title = Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors | journal = Molecular Psychiatry | volume = 3 | issue = 2 | pages = 123–134 | date = March 1998 | pmid = 9577836 | doi = 10.1038/sj.mp.4000336 | doi-access = | s2cid = 16484752 }}</ref><ref name="pmid11513838" /><ref name="pmid12629531" />
|-
|-
| [[Dopamine D2 receptor|D<sub>2L</sub>]] || 4.6 || Antagonist || <ref name="pmid8935801" /><ref name="pmid9430133">{{cite journal | vauthors = Arnt J, Skarsfeldt T | title = Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence | journal = Neuropsychopharmacology | volume = 18 | issue = 2 | pages = 63–101 | date = February 1998 | pmid = 9430133 | doi = 10.1016/S0893-133X(97)00112-7 | doi-access = free }}</ref>
| [[Dopamine D2 receptor|D<sub>2L</sub>]] || 4.6 || Antagonist || <ref name="pmid8935801" /><ref name="pmid9430133">{{cite journal | vauthors = Arnt J, Skarsfeldt T | title = Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence | journal = Neuropsychopharmacology | volume = 18 | issue = 2 | pages = 63–101 | date = February 1998 | pmid = 9430133 | doi = 10.1016/S0893-133X(97)00112-7 | doi-access = free }}</ref>
Line 200: Line 207:
Ziprasidone mostly [[affinity (pharmacology)|affects]] the receptors of [[dopamine receptor|dopamine]] ([[Dopamine receptor D2|D<sub>2</sub>]]), [[serotonin receptor|serotonin]] ([[5-HT2A receptor|5-HT<sub>2A</sub>]], partially [[5-HT1A|5-HT<sub>1A</sub>]], [[5-HT2C|5-HT<sub>2C</sub>]], and [[5-HT1D|5-HT<sub>1D</sub>]])<ref name=2011rev/><ref name="pmid7562537">{{cite journal | vauthors = Seeger TF, Seymour PA, Schmidt AW, Zorn SH, Schulz DW, Lebel LA, McLean S, Guanowsky V, Howard HR, Lowe JA | display-authors = 6 | title = Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity | journal = The Journal of Pharmacology and Experimental Therapeutics | volume = 275 | issue = 1 | pages = 101–113 | date = October 1995 | pmid = 7562537 | url = http://jpet.aspetjournals.org/cgi/pmidlookup?view=long&pmid=7562537 }}</ref><ref name=Goodman>{{cite book| vauthors = Brunton L |title=Goodman & Gilman's The Pharmacological Basis of Therapeutics 12th Edition|year=2011|publisher=McGraw-Hill|location=China|isbn=978-0-07-162442-8|pages=406–410}}</ref> and [[alpha-1 adrenergic receptor|epinephrine/norepinephrine]] (α<sub>1</sub>) to a high degree, while of [[H1 receptor|histamine (H<sub>1</sub>)]] - moderately.<ref name="AkiskalTohen2011">{{cite book | vauthors = Akiskal HS, Tohen M | title = Bipolar Psychopharmacotherapy: Caring for the Patient | url = https://books.google.com/books?id=u0fO8RRIE1MC&pg=PT209 | access-date = May 13, 2012 | date = June 24, 2011 | publisher = John Wiley & Sons | isbn = 978-1-119-95664-8 | page = 209}}</ref><ref name="pmid16381088">{{cite journal | vauthors = Nemeroff CB, Lieberman JA, Weiden PJ, Harvey PD, Newcomer JW, Schatzberg AF, Kilts CD, Daniel DG | display-authors = 6 | title = From clinical research to clinical practice: a 4-year review of ziprasidone | journal = CNS Spectrums | volume = 10 | issue = 11 Suppl 17 | pages = 1–20 | date = November 2005 | pmid = 16381088 | doi = 10.1017/S1092852900019842 | s2cid = 26738197 }}</ref> It also somewhat [[Reuptake inhibitor|inhibits]] [[reuptake]] of [[selective serotonin reuptake inhibitor|serotonin]] and [[Serotonin–norepinephrine reuptake inhibitor|norepinephrine]], though not [[dopamine]].<ref name="AkiskalTohen2011" /><ref name="pmid10193665">{{cite journal | vauthors = Tatsumi M, Jansen K, Blakely RD, Richelson E | title = Pharmacological profile of neuroleptics at human monoamine transporters | journal = European Journal of Pharmacology | volume = 368 | issue = 2–3 | pages = 277–283 | date = March 1999 | pmid = 10193665 | doi = 10.1016/S0014-2999(99)00005-9 }}</ref>
Ziprasidone mostly [[affinity (pharmacology)|affects]] the receptors of [[dopamine receptor|dopamine]] ([[Dopamine receptor D2|D<sub>2</sub>]]), [[serotonin receptor|serotonin]] ([[5-HT2A receptor|5-HT<sub>2A</sub>]], partially [[5-HT1A|5-HT<sub>1A</sub>]], [[5-HT2C|5-HT<sub>2C</sub>]], and [[5-HT1D|5-HT<sub>1D</sub>]])<ref name=2011rev/><ref name="pmid7562537">{{cite journal | vauthors = Seeger TF, Seymour PA, Schmidt AW, Zorn SH, Schulz DW, Lebel LA, McLean S, Guanowsky V, Howard HR, Lowe JA | display-authors = 6 | title = Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity | journal = The Journal of Pharmacology and Experimental Therapeutics | volume = 275 | issue = 1 | pages = 101–113 | date = October 1995 | pmid = 7562537 | url = http://jpet.aspetjournals.org/cgi/pmidlookup?view=long&pmid=7562537 }}</ref><ref name=Goodman>{{cite book| vauthors = Brunton L |title=Goodman & Gilman's The Pharmacological Basis of Therapeutics 12th Edition|year=2011|publisher=McGraw-Hill|location=China|isbn=978-0-07-162442-8|pages=406–410}}</ref> and [[alpha-1 adrenergic receptor|epinephrine/norepinephrine]] (α<sub>1</sub>) to a high degree, while of [[H1 receptor|histamine (H<sub>1</sub>)]] - moderately.<ref name="AkiskalTohen2011">{{cite book | vauthors = Akiskal HS, Tohen M | title = Bipolar Psychopharmacotherapy: Caring for the Patient | url = https://books.google.com/books?id=u0fO8RRIE1MC&pg=PT209 | access-date = May 13, 2012 | date = June 24, 2011 | publisher = John Wiley & Sons | isbn = 978-1-119-95664-8 | page = 209}}</ref><ref name="pmid16381088">{{cite journal | vauthors = Nemeroff CB, Lieberman JA, Weiden PJ, Harvey PD, Newcomer JW, Schatzberg AF, Kilts CD, Daniel DG | display-authors = 6 | title = From clinical research to clinical practice: a 4-year review of ziprasidone | journal = CNS Spectrums | volume = 10 | issue = 11 Suppl 17 | pages = 1–20 | date = November 2005 | pmid = 16381088 | doi = 10.1017/S1092852900019842 | s2cid = 26738197 }}</ref> It also somewhat [[Reuptake inhibitor|inhibits]] [[reuptake]] of [[selective serotonin reuptake inhibitor|serotonin]] and [[Serotonin–norepinephrine reuptake inhibitor|norepinephrine]], though not [[dopamine]].<ref name="AkiskalTohen2011" /><ref name="pmid10193665">{{cite journal | vauthors = Tatsumi M, Jansen K, Blakely RD, Richelson E | title = Pharmacological profile of neuroleptics at human monoamine transporters | journal = European Journal of Pharmacology | volume = 368 | issue = 2–3 | pages = 277–283 | date = March 1999 | pmid = 10193665 | doi = 10.1016/S0014-2999(99)00005-9 }}</ref>


Ziprasidone's efficacy in treating the positive symptoms of schizophrenia is believed to be mediated primarily via antagonism of the dopamine receptors, specifically D<sub>2</sub>. Blockade of the 5-HT<sub>2A</sub> receptor may also play a role in its effectiveness against positive symptoms, though the significance of this property in antipsychotic drugs is still debated among researchers.<ref name="LüllmannMohr2006">{{cite book | vauthors = Lüllmann H, Mohr K | title = Pharmakologie und Toxikologie: Arzneimittelwirkungen verstehen- Medikamente gezielt einsetzen; ein Lehrbuch für Studierende der Medizin, der Pharmazie und der Biowissenschaften, eine Informationsquelle für Ärzte, Apotheker und Gesundheitspolitiker | url = https://books.google.com/books?id=7ewS8QAClYEC&pg=PP1 | access-date = May 13, 2012 | year = 2006 | publisher = Georg Thieme Verlag | isbn = 978-3-13-368516-0 }}</ref> Blockade of 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> and activation of 5-HT<sub>1A</sub> as well as inhibition of the reuptake of serotonin and norepinephrine may all contribute to its ability to alleviate negative symptoms.<ref name="SchatzbergNemeroff2006">{{cite book | vauthors = Schatzberg AF, Nemeroff CB | title = Essentials of Clinical Psychopharmacology | url = https://books.google.com/books?id=i5zrVD1PAwEC&pg=PA297 | access-date = May 13, 2012 | date = February 10, 2006 | publisher = American Psychiatric Pub | isbn = 978-1-58562-243-6 | page = 297}}</ref>; however, it's effects on the 5-HT<sub>1A</sub> receptor may be limited as a study<ref>{{cite journal | vauthors = Bantick RA, Rabiner EA, Hirani E, de Vries MH, Hume SP, Grasby PM | title = Occupancy of agonist drugs at the 5-HT1A receptor | journal = Neuropsychopharmacology | volume = 29 | issue = 5 | pages = 847–859 | date = May 2004 | pmid = 14985704 | doi = 10.1038/sj.npp.1300390 | s2cid = 11509050 }}</ref> found ziprasidone would likely "produce detectable occupancy [of 5-HT<sub>1A</sub> receptors] only at higher doses that would produce unacceptable levels of side effects in man, although lower doses are sufficient to produce pharmacological effects." The relatively weak antagonistic actions of ziprasidone on the α<sub>1</sub>-adrenergic receptor likely in part explains some of its side effects, such as [[orthostatic hypotension]]. Unlike many other antipsychotics, ziprasidone has no significant affinity for the mACh receptors, and as such lacks any [[anticholinergic]] side effects. Like most other antipsychotics, ziprasidone is sedating due primarily to serotonin and dopamine blockade.<ref name="pmid20467592">{{cite journal | vauthors = Monti JM | title = Serotonin 5-HT(2A) receptor antagonists in the treatment of insomnia: present status and future prospects | journal = Drugs of Today | volume = 46 | issue = 3 | pages = 183–193 | date = March 2010 | pmid = 20467592 | doi = 10.1358/dot.2010.46.3.1437247 }}</ref><ref name="pmid10817605">{{cite journal | vauthors = Salmi P, Ahlenius S | title = Sedative effects of the dopamine D1 receptor agonist A 68930 on rat open-field behavior | journal = NeuroReport | volume = 11 | issue = 6 | pages = 1269–1272 | date = April 2000 | pmid = 10817605 | doi = 10.1097/00001756-200004270-00025 | s2cid = 35263421 }}</ref>
Ziprasidone's efficacy in treating the positive symptoms of schizophrenia is believed to be mediated primarily via antagonism of the dopamine receptors, specifically D<sub>2</sub>. Blockade of the 5-HT<sub>2A</sub> receptor may also play a role in its effectiveness against positive symptoms, though the significance of this property in antipsychotic drugs is still debated among researchers.<ref name="LüllmannMohr2006">{{cite book | vauthors = Lüllmann H, Mohr K | title = Pharmakologie und Toxikologie: Arzneimittelwirkungen verstehen- Medikamente gezielt einsetzen; ein Lehrbuch für Studierende der Medizin, der Pharmazie und der Biowissenschaften, eine Informationsquelle für Ärzte, Apotheker und Gesundheitspolitiker | url = https://books.google.com/books?id=7ewS8QAClYEC&pg=PP1 | access-date = May 13, 2012 | year = 2006 | publisher = Georg Thieme Verlag | isbn = 978-3-13-368516-0 }}</ref> Blockade of 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> and activation of 5-HT<sub>1A</sub> as well as inhibition of the reuptake of serotonin and norepinephrine may all contribute to its ability to alleviate negative symptoms.<ref name="SchatzbergNemeroff2006">{{cite book | vauthors = Schatzberg AF, Nemeroff CB | title = Essentials of Clinical Psychopharmacology | url = https://books.google.com/books?id=i5zrVD1PAwEC&pg=PA297 | access-date = May 13, 2012 | date = February 10, 2006 | publisher = American Psychiatric Pub | isbn = 978-1-58562-243-6 | page = 297}}</ref>; however, its effects on the 5-HT<sub>1A</sub> receptor may be limited as a study<ref>{{cite journal | vauthors = Bantick RA, Rabiner EA, Hirani E, de Vries MH, Hume SP, Grasby PM | title = Occupancy of agonist drugs at the 5-HT1A receptor | journal = Neuropsychopharmacology | volume = 29 | issue = 5 | pages = 847–859 | date = May 2004 | pmid = 14985704 | doi = 10.1038/sj.npp.1300390 | s2cid = 11509050 | doi-access = free }}</ref> found ziprasidone would likely "produce detectable occupancy [of 5-HT<sub>1A</sub> receptors] only at higher doses that would produce unacceptable levels of side effects in man, although lower doses are sufficient to produce pharmacological effects." The relatively weak antagonistic actions of ziprasidone on the α<sub>1</sub>-adrenergic receptor likely in part explains some of its side effects, such as [[orthostatic hypotension]]. Unlike many other antipsychotics, ziprasidone has no significant affinity for the mACh receptors, and as such lacks any [[anticholinergic]] side effects. Like most other antipsychotics, ziprasidone is sedating due primarily to serotonin and dopamine blockade.<ref name="pmid20467592">{{cite journal | vauthors = Monti JM | title = Serotonin 5-HT(2A) receptor antagonists in the treatment of insomnia: present status and future prospects | journal = Drugs of Today | volume = 46 | issue = 3 | pages = 183–193 | date = March 2010 | pmid = 20467592 | doi = 10.1358/dot.2010.46.3.1437247 }}</ref><ref name="pmid10817605">{{cite journal | vauthors = Salmi P, Ahlenius S | title = Sedative effects of the dopamine D1 receptor agonist A 68930 on rat open-field behavior | journal = NeuroReport | volume = 11 | issue = 6 | pages = 1269–1272 | date = April 2000 | pmid = 10817605 | doi = 10.1097/00001756-200004270-00025 | s2cid = 35263421 }}</ref>


===Pharmacokinetics===
===Pharmacokinetics===
The systemic [[bioavailability]] of ziprasidone is 100% when administered intramuscularly and 60% when administered orally without food.<ref name=2011rev/>
The systemic [[bioavailability]] of ziprasidone is 100% when administered intramuscularly and 60% when administered orally without food.<ref name=2011rev/>


After a single dose intramuscular administration, the peak serum concentration typically occurs at about 60 minutes after the dose is administered, or earlier.<ref>{{cite web|url=https://www.drugs.com/ppa/ziprasidone.html|title=Ziprasidone (Professional Patient Advice)|website=Drugs.com|access-date=2016-02-02}}</ref> Steady state plasma concentrations are achieved within one to three days. Exposure increases in a dose-related manner and following three days of intramuscular dosing, little accumulation is observed.
After a single dose intramuscular administration, the peak serum concentration typically occurs at about 60 minutes after the dose is administered, or earlier.<ref>{{cite web|url=https://www.drugs.com/ppa/ziprasidone.html|title=Ziprasidone (Professional Patient Advice)|website=Drugs.com|access-date=February 2, 2016}}</ref> Steady state plasma concentrations are achieved within one to three days. Exposure increases in a dose-related manner and following three days of intramuscular dosing, little accumulation is observed.


The bioavailability of the drug is reduced by approximately 50% if a meal is not eaten before Ziprasidone ingestion.<ref name="package_insert" /><ref name="pmid18007569">{{cite journal | vauthors = Miceli JJ, Glue P, Alderman J, Wilner K | title = The effect of food on the absorption of oral ziprasidone | journal = Psychopharmacology Bulletin | volume = 40 | issue = 3 | pages = 58–68 | year = 2007 | pmid = 18007569 }}</ref>
The bioavailability of the drug is reduced by approximately 50% if a meal is not eaten before Ziprasidone ingestion.<ref name="package_insert" /><ref name="pmid18007569">{{cite journal | vauthors = Miceli JJ, Glue P, Alderman J, Wilner K | title = The effect of food on the absorption of oral ziprasidone | journal = Psychopharmacology Bulletin | volume = 40 | issue = 3 | pages = 58–68 | year = 2007 | pmid = 18007569 }}</ref>


Ziprasidone is hepatically metabolized by [[aldehyde oxidase]]; minor metabolism occurs via [[CYP3A4|cytochrome P450 3A4]] (CYP3A4).<ref name=Sandson>{{cite journal | vauthors = Sandson NB, Armstrong SC, Cozza KL | title = An overview of psychotropic drug-drug interactions | journal = Psychosomatics | volume = 46 | issue = 5 | pages = 464–494 | year = 2005 | pmid = 16145193 | doi = 10.1176/appi.psy.46.5.464 | s2cid = 21838792 }}</ref> Medications that induce (e.g. [[carbamazepine]]) or inhibit (e.g. [[ketoconazole]]) CYP3A4 have been shown to decrease and increase, respectively, blood levels of ziprasidone.<ref name="pmid10771457">{{cite journal | vauthors = Miceli JJ, Anziano RJ, Robarge L, Hansen RA, Laurent A | title = The effect of carbamazepine on the steady-state pharmacokinetics of ziprasidone in healthy volunteers | journal = British Journal of Clinical Pharmacology | volume = 49 | issue = Suppl 1 | pages = 65S–70S | year = 2000 | pmid = 10771457 | pmc = 2015057 | doi = 10.1046/j.1365-2125.2000.00157.x }}</ref><ref name="pmid10771458">{{cite journal | vauthors = Miceli JJ, Smith M, Robarge L, Morse T, Laurent A | title = The effects of ketoconazole on ziprasidone pharmacokinetics--a placebo-controlled crossover study in healthy volunteers | journal = British Journal of Clinical Pharmacology | volume = 49 | issue = Suppl 1 | pages = 71S–76S | year = 2000 | pmid = 10771458 | pmc = 2015056 | doi = 10.1046/j.1365-2125.2000.00156.x }}</ref>
Ziprasidone is hepatically metabolized by [[aldehyde oxidase]]; minor metabolism occurs via [[CYP3A4|cytochrome P450 3A4]] (CYP3A4).<ref name=Sandson>{{cite journal | vauthors = Sandson NB, Armstrong SC, Cozza KL | title = An overview of psychotropic drug-drug interactions | journal = Psychosomatics | volume = 46 | issue = 5 | pages = 464–494 | year = 2005 | pmid = 16145193 | doi = 10.1176/appi.psy.46.5.464 | s2cid = 21838792 | doi-access = free }}</ref> Medications that induce (e.g. [[carbamazepine]]) or inhibit (e.g. [[ketoconazole]]) CYP3A4 have been shown to decrease and increase, respectively, blood levels of ziprasidone.<ref name="pmid10771457">{{cite journal | vauthors = Miceli JJ, Anziano RJ, Robarge L, Hansen RA, Laurent A | title = The effect of carbamazepine on the steady-state pharmacokinetics of ziprasidone in healthy volunteers | journal = British Journal of Clinical Pharmacology | volume = 49 | issue = Suppl 1 | pages = 65S–70S | year = 2000 | pmid = 10771457 | pmc = 2015057 | doi = 10.1046/j.1365-2125.2000.00157.x }}</ref><ref name="pmid10771458">{{cite journal | vauthors = Miceli JJ, Smith M, Robarge L, Morse T, Laurent A | title = The effects of ketoconazole on ziprasidone pharmacokinetics--a placebo-controlled crossover study in healthy volunteers | journal = British Journal of Clinical Pharmacology | volume = 49 | issue = Suppl 1 | pages = 71S–76S | year = 2000 | pmid = 10771458 | pmc = 2015056 | doi = 10.1046/j.1365-2125.2000.00156.x }}</ref>


Its biological half-life time is 10 hours at doses of 80–120 milligrams.<ref name=2007rev/>
Its biological half-life time is 10 hours at doses of 80–120 milligrams.<ref name=2007rev/>
Line 215: Line 222:
==History==
==History==


Ziprasidone is chemically similar to [[risperidone]],<ref>{{Cite book | url=https://books.google.com/books?id=Sd6ot9ul-bUC&pg=PA465 | title=Foye's Principles of Medicinal Chemistry| isbn=9781609133450| vauthors = Lemke TL, Williams DA | date=2012-01-24}}</ref> of which it is a [[structural analogue]].<ref>{{cite journal | vauthors = Farah A | title = Atypicality of atypical antipsychotics | journal = Primary Care Companion to the Journal of Clinical Psychiatry | volume = 7 | issue = 6 | pages = 268–274 | year = 2005 | pmid = 16498489 | pmc = 1324958 | doi = 10.4088/pcc.v07n0602 }}</ref>
Ziprasidone is chemically similar to [[risperidone]],<ref>{{Cite book | url=https://books.google.com/books?id=Sd6ot9ul-bUC&pg=PA465 | title=Foye's Principles of Medicinal Chemistry| isbn=9781609133450| vauthors = Lemke TL, Williams DA | date=January 24, 2012| publisher=Lippincott Williams & Wilkins}}</ref> of which it is a [[structural analogue]].<ref>{{cite journal | vauthors = Farah A | title = Atypicality of atypical antipsychotics | journal = Primary Care Companion to the Journal of Clinical Psychiatry | volume = 7 | issue = 6 | pages = 268–274 | year = 2005 | pmid = 16498489 | pmc = 1324958 | doi = 10.4088/pcc.v07n0602 }}</ref>
It was first synthesized in 1987 at the [[Pfizer]] central research campus in [[Groton, Connecticut]].<ref>{{cite book| vauthors = Newcomer JW, Fallucco EM | veditors = Schatzberg AF, Nemeroff CB |title=The American Psychiatric Publishing textbook of psychopharmacology|date=2009|publisher=American Psychiatric Pub.|location=Washington, D.C.|isbn=9781585623099|page=641|edition=4th|chapter-url=https://books.google.com/books?id=Xx7iNGdV25IC&pg=PA641|chapter=Ziprasidone}}</ref>
It was first synthesized in 1987 at the [[Pfizer]] central research campus in [[Groton, Connecticut]].<ref>{{cite book| vauthors = Newcomer JW, Fallucco EM | veditors = Schatzberg AF, Nemeroff CB |title=The American Psychiatric Publishing textbook of psychopharmacology|date=2009|publisher=American Psychiatric Pub.|location=Washington, D.C.|isbn=9781585623099|page=641|edition=4th|chapter-url=https://books.google.com/books?id=Xx7iNGdV25IC&pg=PA641|chapter=Ziprasidone}}</ref>


Phase I trials started in 1995.<ref name="fda.gov1">{{cite web|title=Approval Package For: Application Number 20-919|url=http://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/20-919_geodon_biopharmr.pdf|publisher=FDA Center For Drug Evaluation And Research|date=May 26, 1998}}</ref> In 1998 ziprasidone was approved in Sweden.<ref>{{cite web|url=http://www.thepharmaletter.com/article/first-approval-for-pfizer-s-zeldox|title=First Approval For Pfizer's Zeldoxs|website=The Pharma Letter|access-date=October 15, 2016}}</ref><ref>{{cite web|url=http://www.thepharmaletter.com/article/pfizer-s-zeldox-approvable-in-usa|title=Pfizer's Zeldox approvable in USA – Pharmaceutical industry news | date = 13 September 2000 |work = The Pharma Letter |access-date=October 15, 2016}}</ref> After the FDA raised concerns about [[long QT syndrome]], more clinical trials were conducted and submitted to the FDA, which approved the drug on February 5, 2001.<ref name="fda.gov1"/><ref>{{cite web|title=FDA Background On ZeldoxTM (ziprasidone hydrochloride capsules) Pfizer, Inc. | author = PsychoPharmacological Drugs Advisory Committee | work = Center for Drug Evaluation and Research (CDER) | publisher = U.S. Food and Drug Administration | date = 19 July 2000 |url=https://www.fda.gov/ohrms/dockets/ac/00/backgrd/3619b1b.pdf | archive-url = https://web.archive.org/web/20070714081841/https://www.fda.gov/ohrms/dockets/ac/00/backgrd/3619b1b.pdf | archive-date = 14 July 2014 }}</ref><ref>{{cite web|url=http://www.prnewswire.com/news-releases/pfizer-to-launch-zeldox-in-9-european-union-countries-beginning-next-month-76154202.html|title=Pfizer to Launch Zeldox in 9 European Union Countries Beginning Next Month|work = Pfizer Inc| via = prnewswire.com|access-date=October 16, 2016}}</ref>
Phase I trials started in 1995.<ref name="fda.gov1">{{cite web|title=Approval Package For: Application Number 20-919|url=http://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/20-919_geodon_biopharmr.pdf|publisher=FDA Center For Drug Evaluation And Research|date=May 26, 1998}}</ref> In 1998 ziprasidone was approved in Sweden.<ref>{{cite web|url=http://www.thepharmaletter.com/article/first-approval-for-pfizer-s-zeldox|title=First Approval For Pfizer's Zeldoxs|website=The Pharma Letter|access-date=October 15, 2016}}</ref><ref>{{cite web|url=http://www.thepharmaletter.com/article/pfizer-s-zeldox-approvable-in-usa|title=Pfizer's Zeldox approvable in USA – Pharmaceutical industry news | date = September 13, 2000 |work = The Pharma Letter |access-date=October 15, 2016}}</ref> After the FDA raised concerns about [[long QT syndrome]], more clinical trials were conducted and submitted to the FDA, which approved the drug on February 5, 2001.<ref name="fda.gov1"/><ref>{{cite web|title=FDA Background On ZeldoxTM (ziprasidone hydrochloride capsules) Pfizer, Inc. | author = PsychoPharmacological Drugs Advisory Committee | work = Center for Drug Evaluation and Research (CDER) | publisher = U.S. Food and Drug Administration | date = July 19, 2000 |url=https://www.fda.gov/ohrms/dockets/ac/00/backgrd/3619b1b.pdf | archive-url = https://web.archive.org/web/20070714081841/https://www.fda.gov/ohrms/dockets/ac/00/backgrd/3619b1b.pdf | archive-date = July 14, 2007 }}</ref><ref>{{cite web|url=http://www.prnewswire.com/news-releases/pfizer-to-launch-zeldox-in-9-european-union-countries-beginning-next-month-76154202.html|title=Pfizer to Launch Zeldox in 9 European Union Countries Beginning Next Month|work = Pfizer Inc| via = prnewswire.com|access-date=October 16, 2016}}</ref>


==Society and culture==
==Society and culture==


===Lawsuit===
===Lawsuit===
In September 2009, the [[United States Department of Justice|U.S. Justice Department]] announced that Pfizer had been ordered to pay a historic fine of $2.3&nbsp;billion as a penalty for fraudulent marketing of several drugs, including Geodon.<ref>{{cite web|url=https://www.justice.gov/opa/pr/justice-department-announces-largest-health-care-fraud-settlement-its-history|title=Justice Department Announces Largest Health Care Fraud Settlement in Its History|website=justice.gov|access-date=October 6, 2016|date=2009-09-02}}</ref> Pfizer had illegally promoted Geodon and submitted false claims to government health care programs for uses that were not medically accepted indications. The civil settlement also resolves allegations that Pfizer paid kickbacks to health care providers to induce them to prescribe Geodon, as well as other drugs. This was the largest civil fraud settlement in history against a pharmaceutical company.
In September 2009, the [[United States Department of Justice|U.S. Justice Department]] announced that Pfizer had been ordered to pay a historic fine of $2.3&nbsp;billion as a penalty for fraudulent marketing of several drugs, including Geodon.<ref>{{cite web|url=https://www.justice.gov/opa/pr/justice-department-announces-largest-health-care-fraud-settlement-its-history|title=Justice Department Announces Largest Health Care Fraud Settlement in Its History|website=justice.gov|access-date=October 6, 2016|date=September 2, 2009}}</ref> Pfizer had illegally promoted Geodon and submitted false claims to government health care programs for uses that were not medically accepted indications. The civil settlement also resolves allegations that Pfizer paid kickbacks to health care providers to induce them to prescribe Geodon, as well as other drugs. This was the largest civil fraud settlement in history against a pharmaceutical company.{{cn|date=March 2024}}

=== Brand names ===
In the US, Geodon is marketed by [[Viatris]] after [[Upjohn]] was spun off from [[Pfizer]].<ref>{{cite web | title=Pfizer Completes Transaction to Combine Its Upjohn Business with Mylan | publisher=Pfizer | via=Business Wire | date=November 16, 2020 | url=https://www.businesswire.com/news/home/20201116005378/en/ | access-date=June 17, 2024}}</ref><ref>{{cite web | title=Geodon | website=Pfizer | url=https://www.pfizer.com/products/product-detail/geodon | access-date=June 17, 2024}}</ref><ref>{{cite web | title=Brands | website=Viatris | date=November 16, 2020 | url=https://www.viatris.com/en/products/brands | access-date=June 17, 2024}}</ref>
{{-}}
{{-}}


Line 248: Line 258:
[[Category:Benzoisothiazoles]]
[[Category:Benzoisothiazoles]]
[[Category:Dopamine antagonists]]
[[Category:Dopamine antagonists]]
[[Category:Hallucinogen antidotes]]
[[Category:Mood stabilizers]]
[[Category:Mood stabilizers]]
[[Category:Pfizer brands]]
[[Category:Drugs developed by Pfizer]]
[[Category:Piperazines]]
[[Category:Piperazines]]
[[Category:Serotonin receptor antagonists]]
[[Category:Serotonin receptor antagonists]]

Latest revision as of 21:15, 21 November 2024

Ziprasidone
Clinical data
Trade namesGeodon, Zeldox, Zipwell, other
AHFS/Drugs.comMonograph
MedlinePlusa699062
License data
Pregnancy
category
  • AU: C
Routes of
administration
By mouth, intramuscular injection (IM)
Drug classAtypical antipsychotic
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability60% (oral)[3]
100% (IM)
MetabolismLiver (aldehyde reductase)
Elimination half-life7 to 10 hours[4]
ExcretionUrine and feces
Identifiers
  • 5-{2-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]ethyl}-6-chloro-1,3-dihydro-2H-indol-2-one
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.106.954 Edit this at Wikidata
Chemical and physical data
FormulaC21H21ClN4OS
Molar mass412.94 g·mol−1
3D model (JSmol)
  • O=C1Cc2c(N1)cc(Cl)c(c2)CCN3CCN(CC3)c4nsc5ccccc45
  • InChI=1S/C21H21ClN4OS/c22-17-13-18-15(12-20(27)23-18)11-14(17)5-6-25-7-9-26(10-8-25)21-16-3-1-2-4-19(16)28-24-21/h1-4,11,13H,5-10,12H2,(H,23,27) checkY
  • Key:MVWVFYHBGMAFLY-UHFFFAOYSA-N checkY
  (verify)
3D-animation of a ziprasidone molecule.
Ziprasidon Krka brand medicine.

Ziprasidone, sold under the brand name Geodon among others, is an atypical antipsychotic used to treat schizophrenia and bipolar disorder.[5] It may be used by mouth and by injection into a muscle (IM).[5] The IM form may be used for acute agitation in people with schizophrenia.[5]

Common side effects include tremors, tics, dizziness, dry mouth, restlessness, nausea, and mild sedation.[6][7] Although it can also cause weight gain, the risk is much lower than for other atypical antipsychotics.[8] How it works is not entirely clear but is believed to involve effects on serotonin and dopamine in the brain.[5]

Ziprasidone was approved for medical use in the United States in 2001.[5] The pills are made up of the hydrochloride salt, ziprasidone hydrochloride. The intramuscular form is the mesylate, ziprasidone mesylate trihydrate, and is provided as a lyophilized powder. In 2020, it was the 282nd most commonly prescribed medication in the United States, with more than 1 million prescriptions.[9][10]

Medical uses

[edit]

Ziprasidone is approved by the U.S. Food and Drug Administration (FDA) for the treatment of schizophrenia as well as acute mania and mixed states associated with bipolar disorder. Its intramuscular injection form is approved for acute agitation in schizophrenic patients for whom treatment with just ziprasidone is appropriate.[11]

In a 2013 study in a comparison of 15 antipsychotic drugs in effectiveness in treating schizophrenic symptoms, ziprasidone demonstrated mild-standard effectiveness. Ziprasidone was 15% more effective than lurasidone and iloperidone, approximately as effective as chlorpromazine and asenapine, and 9–13% less effective than haloperidol, quetiapine, and aripiprazole.[12] Ziprasidone is effective in the treatment of schizophrenia, though evidence from the CATIE trials suggests it is less effective than olanzapine, and equally as effective compared to quetiapine. There are higher discontinuation rates for lower doses of ziprasidone, which are also less effective than higher doses.[13]

Adverse effects

[edit]

Ziprasidone (and all other second generation antipsychotics (SGAs)) received a black box warning due to increased mortality in elderly patients with dementia-related psychosis.[14]

Sleepiness and headache are very common adverse effects (>10%).[6][7]

Common adverse effects (1–10%), include producing too much saliva or having dry mouth, runny nose, respiratory disorders or coughing, nausea and vomiting, stomach aches, constipation or diarrhea, loss of appetite, weight gain (but the smallest risk for weight gain compared to other antipsychotics[8]), rashes, fast heart beats, blood pressure falling when standing up quickly, muscle pain, weakness, twitches, dizziness, and anxiety.[6][7] Extrapyramidal symptoms are also common and include tremor, dystonia (sustained or repetitive muscle contractions), akathisia (the feeling of a need to be in motion), parkinsonism, and muscle rigidity; in a 2013 meta-analysis of 15 antipsychotic drugs, ziprasidone ranked 8th for such side effects.[15]

Ziprasidone is known to trigger mania in some bipolar patients.[16][17][18]

This medication can cause birth defects, according to animal studies, although this side effect has not been confirmed in humans.[14]

Recently, the FDA required the manufacturers of some atypical antipsychotics to include a warning about the risk of hyperglycemia and Type II diabetes with atypical antipsychotics. Some evidence suggests that ziprasidone does not cause insulin resistance to the degree of other atypical antipsychotics, such as olanzapine. Weight gain is also less of a concern with ziprasidone compared to other atypical antipsychotics.[19][20][21][22] In fact, in a trial of long term therapy with ziprasidone, overweight patients (BMI > 27) actually had a mean weight loss overall.[14] According to the manufacturer insert, ziprasidone caused an average weight gain of 2.2 kg (4.8 lbs), which is significantly lower than other atypical antipsychotics, making this medication better for patients that are concerned about their weight. In December 2014, the FDA warned that ziprasidone could cause a potentially fatal skin reaction, Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), although this was believed to occur only rarely.[23]

Discontinuation

[edit]

The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse.[24] Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite.[25] Other symptoms may include restlessness, increased sweating, and trouble sleeping.[25] Less commonly there may be a feeling of the world spinning, numbness, or muscle pains.[25] Symptoms generally resolve after a short period of time.[25]

There is tentative evidence that discontinuation of antipsychotics can result in psychosis.[26] It may also result in reoccurrence of the condition that is being treated.[27] Rarely tardive dyskinesia can occur when the medication is stopped.[25]

Pharmacology

[edit]

Pharmacodynamics

[edit]
Ziprasidone[28]
Site Ki (nM) Action Ref
SERTTooltip Serotonin transporter 112 Blocker [28]
NETTooltip Norepinephrine transporter 44 Blocker [28]
DATTooltip Dopamine transporter >10,000 ND [28]
5-HT1A 2.5–76 Partial agonist [29][30][31]
5-HT1B 0.99–4.0 Partial agonist [30][28]
5-HT1D 5.1–9.0 Partial agonist [30][28]
5-HT1E 360–1,279 ND [30][28]
5-HT2A 0.08–1.4 Antagonist [32][29][30]
5-HT2B 27.2 Antagonist [28]
5-HT2C 0.72–13 Antagonist [29]
5-HT3 >10,000 ND [28]
5-HT5A 291 ND [28]
5-HT6 61–76 Antagonist [31][29]
5-HT7 6.0–9.3 Antagonist [28][31][29]
α1A 18 Antagonist [28][31]
α1B 9.0 Antagonist [28]
α2A 160 Antagonist [28][30][31]
α2B 48 Antagonist [28][30][31]
α2C 59–77 Antagonist [28][30][31]
β1 ≥2,570 ND [30][28]
β2 >10,000 ND [30][28]
D1 30–130 ND [28][29]
D2 4.8 Antagonist [33][29][31]
D2L 4.6 Antagonist [30][34]
D2S 4.2 Antagonist [30]
D3 7.2 Antagonist [33][29][30]
D4 0.8–105 Antagonist [33][29][28]
D4.2 28–39 Antagonist [34]
D4.4 14.9 Antagonist [35]
D5 152 ND [28]
H1 15–130 Antagonist [30][29][28]
H2 3,500 ND [28]
H3 >10,000 ND [28]
H4 >10,000 ND [28]
M1 ≥300 ND [36][28][29]
M2 ≥3,000 ND [36][28]
M3 ≥1,300 ND [36][31][28]
M4 ≥1,600 ND [36][28]
M5 ≥1,600 ND [36][28]
σ1 110 ND [30]
σ2 ND ND ND
Opioid >1,000 ND [30]
nAChTooltip Nicotinic acetylcholine receptor >10,000 ND [28]
NMDA
(PCP)
>10,000 ND [28]
VDCCTooltip Voltage-dependent calcium channel >10,000 ND [28][30]
VGSCTooltip Voltage-gated sodium channel 2,620 ND [30]
hERGTooltip Human Ether-à-go-go-Related Gene 169 Blocker [37]
Values are Ki (nM). The smaller the value, the more strongly the drug binds to the site. All data are for human cloned proteins, except H3 (guinea pig), σ1 (guinea pig), opioid (rodent), NMDA/PCP (rat), VDCC, and VGSC.[28]

Correspondence to clinical effects

[edit]

Ziprasidone mostly affects the receptors of dopamine (D2), serotonin (5-HT2A, partially 5-HT1A, 5-HT2C, and 5-HT1D)[3][38][39] and epinephrine/norepinephrine1) to a high degree, while of histamine (H1) - moderately.[40][41] It also somewhat inhibits reuptake of serotonin and norepinephrine, though not dopamine.[40][42]

Ziprasidone's efficacy in treating the positive symptoms of schizophrenia is believed to be mediated primarily via antagonism of the dopamine receptors, specifically D2. Blockade of the 5-HT2A receptor may also play a role in its effectiveness against positive symptoms, though the significance of this property in antipsychotic drugs is still debated among researchers.[43] Blockade of 5-HT2A and 5-HT2C and activation of 5-HT1A as well as inhibition of the reuptake of serotonin and norepinephrine may all contribute to its ability to alleviate negative symptoms.[44]; however, its effects on the 5-HT1A receptor may be limited as a study[45] found ziprasidone would likely "produce detectable occupancy [of 5-HT1A receptors] only at higher doses that would produce unacceptable levels of side effects in man, although lower doses are sufficient to produce pharmacological effects." The relatively weak antagonistic actions of ziprasidone on the α1-adrenergic receptor likely in part explains some of its side effects, such as orthostatic hypotension. Unlike many other antipsychotics, ziprasidone has no significant affinity for the mACh receptors, and as such lacks any anticholinergic side effects. Like most other antipsychotics, ziprasidone is sedating due primarily to serotonin and dopamine blockade.[46][47]

Pharmacokinetics

[edit]

The systemic bioavailability of ziprasidone is 100% when administered intramuscularly and 60% when administered orally without food.[3]

After a single dose intramuscular administration, the peak serum concentration typically occurs at about 60 minutes after the dose is administered, or earlier.[48] Steady state plasma concentrations are achieved within one to three days. Exposure increases in a dose-related manner and following three days of intramuscular dosing, little accumulation is observed.

The bioavailability of the drug is reduced by approximately 50% if a meal is not eaten before Ziprasidone ingestion.[14][49]

Ziprasidone is hepatically metabolized by aldehyde oxidase; minor metabolism occurs via cytochrome P450 3A4 (CYP3A4).[50] Medications that induce (e.g. carbamazepine) or inhibit (e.g. ketoconazole) CYP3A4 have been shown to decrease and increase, respectively, blood levels of ziprasidone.[51][52]

Its biological half-life time is 10 hours at doses of 80–120 milligrams.[4]

History

[edit]

Ziprasidone is chemically similar to risperidone,[53] of which it is a structural analogue.[54] It was first synthesized in 1987 at the Pfizer central research campus in Groton, Connecticut.[55]

Phase I trials started in 1995.[56] In 1998 ziprasidone was approved in Sweden.[57][58] After the FDA raised concerns about long QT syndrome, more clinical trials were conducted and submitted to the FDA, which approved the drug on February 5, 2001.[56][59][60]

Society and culture

[edit]

Lawsuit

[edit]

In September 2009, the U.S. Justice Department announced that Pfizer had been ordered to pay a historic fine of $2.3 billion as a penalty for fraudulent marketing of several drugs, including Geodon.[61] Pfizer had illegally promoted Geodon and submitted false claims to government health care programs for uses that were not medically accepted indications. The civil settlement also resolves allegations that Pfizer paid kickbacks to health care providers to induce them to prescribe Geodon, as well as other drugs. This was the largest civil fraud settlement in history against a pharmaceutical company.[citation needed]

Brand names

[edit]

In the US, Geodon is marketed by Viatris after Upjohn was spun off from Pfizer.[62][63][64]

References

[edit]
  1. ^ "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA. Retrieved October 22, 2023.
  2. ^ Anvisa (March 31, 2023). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published April 4, 2023). Archived from the original on August 3, 2023. Retrieved August 16, 2023.
  3. ^ a b c Mattei C, Rapagnani MP, Stahl SM (February 2011). "Ziprasidone hydrocloride: what role in the management of schizophrenia?". Journal of Central Nervous System Disease. 3: JCNSD.S4138. doi:10.4137/JCNSD.S4138. PMC 3663608. PMID 23861634.
  4. ^ a b Nicolson SE, Nemeroff CB (December 2007). "Ziprasidone in the treatment of mania in bipolar disorder". Neuropsychiatric Disease and Treatment. 3 (6): 823–834. doi:10.2147/NDT.S794. PMC 2656324. PMID 19300617.
  5. ^ a b c d e "Ziprasidone Monograph for Professionals". Drugs.com. American Society of Health-System Pharmacists. Retrieved May 8, 2019.
  6. ^ a b c "Product Information: Zeldox IM (ziprasidone mesilate)". Australia Therapeutic Goods Administration. February 24, 2016.
  7. ^ a b c "Product Information: Zeldox (ziprasidone hydrochloride)". Australia Therapeutic Goods Administration. February 24, 2016.
  8. ^ a b FDA Psychopharmacological Drugs Advisory Committee (July 19, 2000). "Briefing Document for Zeldoz Capsules" (PDF). FDA.
  9. ^ "The Top 300 of 2020". ClinCalc. Retrieved October 7, 2022.
  10. ^ "Ziprasidone - Drug Usage Statistics". ClinCalc. Retrieved October 7, 2022.
  11. ^ "Pfizer to pay $2.3 billion to resolve criminal and civil health care liability relating to fraudulent marketing and the payment of kickbacks". Stop Medicare Fraud, US Dept of Health & Human Svc, and of US Dept of Justice. Archived from the original on August 30, 2012. Retrieved July 4, 2012.
  12. ^ Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. (September 2013). "Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis". Lancet. 382 (9896): 951–962. doi:10.1016/S0140-6736(13)60733-3. PMID 23810019. S2CID 32085212.{{cite journal}}: CS1 maint: overridden setting (link)
  13. ^ Citrome L, Yang R, Glue P, Karayal ON (June 2009). "Effect of ziprasidone dose on all-cause discontinuation rates in acute schizophrenia and schizoaffective disorder: a post-hoc analysis of 4 fixed-dose randomized clinical trials". Schizophrenia Research. 111 (1–3): 39–45. doi:10.1016/j.schres.2009.03.009. PMID 19375893. S2CID 34910599.
  14. ^ a b c d "Geodon Prescribing Information" (PDF). Pfizer, Inc. Archived from the original (PDF) on October 17, 2005. Retrieved January 26, 2009.
  15. ^ Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. (September 2013). "Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis". Lancet. 382 (9896): 951–962. doi:10.1016/s0140-6736(13)60733-3. PMID 23810019. S2CID 32085212.{{cite journal}}: CS1 maint: overridden setting (link)
  16. ^ Baldassano CF, Ballas C, Datto SM, Kim D, Littman L, O'Reardon J, et al. (February 2003). "Ziprasidone-associated mania: a case series and review of the mechanism". Bipolar Disorders. 5 (1): 72–75. doi:10.1034/j.1399-5618.2003.02258.x. PMID 12656943.
  17. ^ Keating AM, Aoun SL, Dean CE (2005). "Ziprasidone-associated mania: a review and report of 2 additional cases". Clinical Neuropharmacology. 28 (2): 83–86. doi:10.1097/01.wnf.0000159952.64640.28. PMID 15795551.
  18. ^ Davis R, Risch SC (April 2002). "Ziprasidone induction of hypomania in depression?". The American Journal of Psychiatry. 159 (4): 673–674. doi:10.1176/appi.ajp.159.4.673. PMID 11925314.
  19. ^ Tschoner A, Engl J, Rettenbacher M, Edlinger M, Kaser S, Tatarczyk T, et al. (January 2009). "Effects of six second generation antipsychotics on body weight and metabolism - risk assessment and results from a prospective study". Pharmacopsychiatry. 42 (1): 29–34. doi:10.1055/s-0028-1100425. PMID 19153944. S2CID 43803033.{{cite journal}}: CS1 maint: overridden setting (link)
  20. ^ Guo JJ, Keck PE, Corey-Lisle PK, Li H, Jiang D, Jang R, et al. (January 2007). "Risk of diabetes mellitus associated with atypical antipsychotic use among Medicaid patients with bipolar disorder: a nested case-control study". Pharmacotherapy. 27 (1): 27–35. CiteSeerX 10.1.1.453.7866. doi:10.1592/phco.27.1.27. PMID 17192159. S2CID 22445126.
  21. ^ Sacher J, Mossaheb N, Spindelegger C, Klein N, Geiss-Granadia T, Sauermann R, et al. (June 2008). "Effects of olanzapine and ziprasidone on glucose tolerance in healthy volunteers". Neuropsychopharmacology. 33 (7): 1633–1641. doi:10.1038/sj.npp.1301541. PMID 17712347.{{cite journal}}: CS1 maint: overridden setting (link)
  22. ^ Newcomer JW (2005). "Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review". CNS Drugs. 19 (Suppl 1): 1–93. doi:10.2165/00023210-200519001-00001. PMID 15998156. S2CID 36435377.
  23. ^ "FDA Drug Safety Communication: FDA reporting mental health drug ziprasidone (Geodon) associated with rare but potentially fatal skin reactions". FDA. December 11, 2014. Retrieved December 12, 2014.
  24. ^ Joint Formulary Committee B, ed. (March 2009). "4.2.1". British National Formulary (57 ed.). United Kingdom: Royal Pharmaceutical Society of Great Britain. p. 192. ISBN 978-0-85369-845-6. Withdrawal of antipsychotic drugs after long-term therapy should always be gradual and closely monitored to avoid the risk of acute withdrawal syndromes or rapid relapse.
  25. ^ a b c d e Haddad P, Dursun S, Deakin B (2004). Adverse Syndromes and Psychiatric Drugs: A Clinical Guide. OUP Oxford. pp. 207–216. ISBN 9780198527480.
  26. ^ Moncrieff J (July 2006). "Does antipsychotic withdrawal provoke psychosis? Review of the literature on rapid onset psychosis (supersensitivity psychosis) and withdrawal-related relapse". Acta Psychiatrica Scandinavica. 114 (1): 3–13. doi:10.1111/j.1600-0447.2006.00787.x. PMID 16774655. S2CID 6267180.
  27. ^ Sacchetti E, Vita A, Siracusano A, Fleischhacker W (2013). Adherence to Antipsychotics in Schizophrenia. Springer Science & Business Media. p. 85. ISBN 9788847026797.
  28. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Roth BL, Driscol J. "PDSP Ki Database". Psychoactive Drug Screening Program (PDSP). University of North Carolina at Chapel Hill and the United States National Institute of Mental Health. Retrieved August 14, 2017.
  29. ^ a b c d e f g h i j k Schmidt AW, Lebel LA, Howard HR, Zorn SH (August 2001). "Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile". European Journal of Pharmacology. 425 (3): 197–201. doi:10.1016/s0014-2999(01)01188-8. PMID 11513838.
  30. ^ a b c d e f g h i j k l m n o p q r Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, et al. (March 1996). "Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding". Psychopharmacology. 124 (1–2): 57–73. doi:10.1007/bf02245606. PMID 8935801. S2CID 12028979.{{cite journal}}: CS1 maint: overridden setting (link)
  31. ^ a b c d e f g h i Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, et al. (March 2003). "H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs". Neuropsychopharmacology. 28 (3): 519–526. doi:10.1038/sj.npp.1300027. PMID 12629531.{{cite journal}}: CS1 maint: overridden setting (link)
  32. ^ Graham JM, Coughenour LL, Barr BM, Rock DL, Nikam SS (January 2008). "1-Aminoindanes as novel motif with potential atypical antipsychotic properties". Bioorganic & Medicinal Chemistry Letters. 18 (2): 489–493. doi:10.1016/j.bmcl.2007.11.106. PMID 18160289.
  33. ^ a b c Seeman P, Tallerico T (March 1998). "Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors". Molecular Psychiatry. 3 (2): 123–134. doi:10.1038/sj.mp.4000336. PMID 9577836. S2CID 16484752.
  34. ^ a b Arnt J, Skarsfeldt T (February 1998). "Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence". Neuropsychopharmacology. 18 (2): 63–101. doi:10.1016/S0893-133X(97)00112-7. PMID 9430133.
  35. ^ Newman-Tancredi A, Audinot V, Chaput C, Verrièle L, Millan MJ (July 1997). "[35S]Guanosine-5'-O-(3-thio)triphosphate binding as a measure of efficacy at human recombinant dopamine D4.4 receptors: actions of antiparkinsonian and antipsychotic agents". The Journal of Pharmacology and Experimental Therapeutics. 282 (1): 181–191. PMID 9223553.
  36. ^ a b c d e Bymaster FP, Felder CC, Tzavara E, Nomikos GG, Calligaro DO, Mckinzie DL (October 2003). "Muscarinic mechanisms of antipsychotic atypicality". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 27 (7): 1125–1143. doi:10.1016/j.pnpbp.2003.09.008. PMID 14642972. S2CID 28536368.
  37. ^ Kongsamut S, Kang J, Chen XL, Roehr J, Rampe D (August 2002). "A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs". European Journal of Pharmacology. 450 (1): 37–41. doi:10.1016/s0014-2999(02)02074-5. PMID 12176106.
  38. ^ Seeger TF, Seymour PA, Schmidt AW, Zorn SH, Schulz DW, Lebel LA, et al. (October 1995). "Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity". The Journal of Pharmacology and Experimental Therapeutics. 275 (1): 101–113. PMID 7562537.{{cite journal}}: CS1 maint: overridden setting (link)
  39. ^ Brunton L (2011). Goodman & Gilman's The Pharmacological Basis of Therapeutics 12th Edition. China: McGraw-Hill. pp. 406–410. ISBN 978-0-07-162442-8.
  40. ^ a b Akiskal HS, Tohen M (June 24, 2011). Bipolar Psychopharmacotherapy: Caring for the Patient. John Wiley & Sons. p. 209. ISBN 978-1-119-95664-8. Retrieved May 13, 2012.
  41. ^ Nemeroff CB, Lieberman JA, Weiden PJ, Harvey PD, Newcomer JW, Schatzberg AF, et al. (November 2005). "From clinical research to clinical practice: a 4-year review of ziprasidone". CNS Spectrums. 10 (11 Suppl 17): 1–20. doi:10.1017/S1092852900019842. PMID 16381088. S2CID 26738197.{{cite journal}}: CS1 maint: overridden setting (link)
  42. ^ Tatsumi M, Jansen K, Blakely RD, Richelson E (March 1999). "Pharmacological profile of neuroleptics at human monoamine transporters". European Journal of Pharmacology. 368 (2–3): 277–283. doi:10.1016/S0014-2999(99)00005-9. PMID 10193665.
  43. ^ Lüllmann H, Mohr K (2006). Pharmakologie und Toxikologie: Arzneimittelwirkungen verstehen- Medikamente gezielt einsetzen; ein Lehrbuch für Studierende der Medizin, der Pharmazie und der Biowissenschaften, eine Informationsquelle für Ärzte, Apotheker und Gesundheitspolitiker. Georg Thieme Verlag. ISBN 978-3-13-368516-0. Retrieved May 13, 2012.
  44. ^ Schatzberg AF, Nemeroff CB (February 10, 2006). Essentials of Clinical Psychopharmacology. American Psychiatric Pub. p. 297. ISBN 978-1-58562-243-6. Retrieved May 13, 2012.
  45. ^ Bantick RA, Rabiner EA, Hirani E, de Vries MH, Hume SP, Grasby PM (May 2004). "Occupancy of agonist drugs at the 5-HT1A receptor". Neuropsychopharmacology. 29 (5): 847–859. doi:10.1038/sj.npp.1300390. PMID 14985704. S2CID 11509050.
  46. ^ Monti JM (March 2010). "Serotonin 5-HT(2A) receptor antagonists in the treatment of insomnia: present status and future prospects". Drugs of Today. 46 (3): 183–193. doi:10.1358/dot.2010.46.3.1437247. PMID 20467592.
  47. ^ Salmi P, Ahlenius S (April 2000). "Sedative effects of the dopamine D1 receptor agonist A 68930 on rat open-field behavior". NeuroReport. 11 (6): 1269–1272. doi:10.1097/00001756-200004270-00025. PMID 10817605. S2CID 35263421.
  48. ^ "Ziprasidone (Professional Patient Advice)". Drugs.com. Retrieved February 2, 2016.
  49. ^ Miceli JJ, Glue P, Alderman J, Wilner K (2007). "The effect of food on the absorption of oral ziprasidone". Psychopharmacology Bulletin. 40 (3): 58–68. PMID 18007569.
  50. ^ Sandson NB, Armstrong SC, Cozza KL (2005). "An overview of psychotropic drug-drug interactions". Psychosomatics. 46 (5): 464–494. doi:10.1176/appi.psy.46.5.464. PMID 16145193. S2CID 21838792.
  51. ^ Miceli JJ, Anziano RJ, Robarge L, Hansen RA, Laurent A (2000). "The effect of carbamazepine on the steady-state pharmacokinetics of ziprasidone in healthy volunteers". British Journal of Clinical Pharmacology. 49 (Suppl 1): 65S–70S. doi:10.1046/j.1365-2125.2000.00157.x. PMC 2015057. PMID 10771457.
  52. ^ Miceli JJ, Smith M, Robarge L, Morse T, Laurent A (2000). "The effects of ketoconazole on ziprasidone pharmacokinetics--a placebo-controlled crossover study in healthy volunteers". British Journal of Clinical Pharmacology. 49 (Suppl 1): 71S–76S. doi:10.1046/j.1365-2125.2000.00156.x. PMC 2015056. PMID 10771458.
  53. ^ Lemke TL, Williams DA (January 24, 2012). Foye's Principles of Medicinal Chemistry. Lippincott Williams & Wilkins. ISBN 9781609133450.
  54. ^ Farah A (2005). "Atypicality of atypical antipsychotics". Primary Care Companion to the Journal of Clinical Psychiatry. 7 (6): 268–274. doi:10.4088/pcc.v07n0602. PMC 1324958. PMID 16498489.
  55. ^ Newcomer JW, Fallucco EM (2009). "Ziprasidone". In Schatzberg AF, Nemeroff CB (eds.). The American Psychiatric Publishing textbook of psychopharmacology (4th ed.). Washington, D.C.: American Psychiatric Pub. p. 641. ISBN 9781585623099.
  56. ^ a b "Approval Package For: Application Number 20-919" (PDF). FDA Center For Drug Evaluation And Research. May 26, 1998.
  57. ^ "First Approval For Pfizer's Zeldoxs". The Pharma Letter. Retrieved October 15, 2016.
  58. ^ "Pfizer's Zeldox approvable in USA – Pharmaceutical industry news". The Pharma Letter. September 13, 2000. Retrieved October 15, 2016.
  59. ^ PsychoPharmacological Drugs Advisory Committee (July 19, 2000). "FDA Background On ZeldoxTM (ziprasidone hydrochloride capsules) Pfizer, Inc" (PDF). Center for Drug Evaluation and Research (CDER). U.S. Food and Drug Administration. Archived from the original (PDF) on July 14, 2007.
  60. ^ "Pfizer to Launch Zeldox in 9 European Union Countries Beginning Next Month". Pfizer Inc. Retrieved October 16, 2016 – via prnewswire.com.
  61. ^ "Justice Department Announces Largest Health Care Fraud Settlement in Its History". justice.gov. September 2, 2009. Retrieved October 6, 2016.
  62. ^ "Pfizer Completes Transaction to Combine Its Upjohn Business with Mylan". Pfizer. November 16, 2020. Retrieved June 17, 2024 – via Business Wire.
  63. ^ "Geodon". Pfizer. Retrieved June 17, 2024.
  64. ^ "Brands". Viatris. November 16, 2020. Retrieved June 17, 2024.

Further reading

[edit]