Jump to content

Metals of antiquity: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Melting point: hard to say when
 
(38 intermediate revisions by 20 users not shown)
Line 1: Line 1:
{{short description|Metals known in antiquity}}
{{Short description|none}}

{{More footnotes needed|date=January 2016}}
[[File:Amulet to protect against health problems, Germany, 1701-190 Wellcome L0058949.jpg|thumb|German [[amulet]] to protect against disease (18th century); it is made from an alloy of the seven alchemical metals: lead, tin, iron, gold, copper, mercury and silver.]]
[[File:Amulet to protect against health problems, Germany, 1701-190 Wellcome L0058949.jpg|thumb|German [[amulet]] to protect against disease (18th century); it is made from an alloy of the seven alchemical metals: lead, tin, iron, gold, copper, mercury and silver.]]
[[File:Metal production in Ancient Middle East.svg|thumb|Metal production in the ancient Middle East]]
[[File:Metal production in Ancient Middle East.svg|thumb|Metal production in the ancient Middle East]]
The '''metals of antiquity''' are the seven [[metal]]s which humans had identified and found use for in prehistoric times in Africa, Europe and throughout Asia:<ref name="History of Technology, 29" /> [[gold]], [[silver]], [[copper]], [[tin]], [[lead]], [[iron]], and [[mercury (element)|mercury]]. These seven are the metals from which the classical world was forged.
The '''metals of antiquity''' are the seven [[metal]]s which humans had identified and found use for in prehistoric times in Africa, Europe and throughout Asia:<ref name="History of Technology, 29" /> [[gold]], [[silver]], [[copper]], [[tin]], [[lead]], [[iron]], and [[mercury (element)|mercury]].

[[Zinc]], [[arsenic]], and [[antimony]] were also known during antiquity, but they were not recognised as distinct metals until later.<ref name="moorey">{{cite book|last=Moorey|first=P. R. S.|date=1994|title=Ancient Mesopotamian Materials and Industries: the Archaeological Evidence|place=New York|publisher=Clarendon Press|page=241|url=https://books.google.com/books?id=P_Ixuott4doC&pg=PA241|isbn=978-1-57506-042-2}}</ref><ref>{{cite book|last1=Healy|first1=John F.|title=Pliny the Elder on Science and Technology|date=1999|publisher=Oxford University Press|isbn=9780198146872|url=https://books.google.com/books?id=Hz6D4H-s5psC|access-date=26 January 2018}}</ref><ref>{{cite book|last1=Holmyard|first1=Eric John|title=Alchemy|date=1957|publisher=Courier Corporation|isbn=9780486262987|url=https://books.google.com/books?id=7Bt-kwKRUzUC|access-date=26 January 2018}}</ref><ref>{{cite journal |last1=Biswas |first1=Arun Kumar |date=1993 |title=The Primacy of India in Ancient Brass and Zinc Metallurgy |url=https://cahc.jainuniversity.ac.in/assets/ijhs/Vol28_4_3_AKBiswas.pdf |journal=Indian Journal of History of Science |volume=28 |issue=4 |pages=309–330 |doi= |access-date=4 January 2024}}</ref> A special case is [[platinum]]; it was known to native South Americans around the time Europe was going through classical antiquity, but was unknown to Europeans until the 18th century. Thus, at most eleven elemental metals and [[metalloid]]s were known by the end of antiquity; this contrasts greatly with the situation today, with over 90 elemental metals known. [[Bismuth]] only began to be recognised as distinct around 1500 by the European and [[Inca]]n civilisations. The first elemental metal with a clearly identifiable discoverer is [[cobalt]], discovered in 1735 by [[Georg Brandt]], by which time the [[Scientific Revolution]] was in full swing.<ref name=Miskowiec>{{cite journal |last1=Miśkowiec |first1=Paweł |date=2022 |title=Name game: the naming history of the chemical elements—part 1—from antiquity till the end of 18th century |journal=Foundations of Chemistry |volume= 25|issue= |pages= 29–51|doi=10.1007/s10698-022-09448-5 |doi-access=free }}</ref> (Even then, cobalt might have been prepared before the 13th century by alchemists roasting and reducing its ore, but,in any case, its distinct nature was not recognised.)<ref>{{cite book |last=Weeks |first=Mary Elvira |author-link= |date=1960 |edition=6th |title=Discovery of the Elements |url= |location= |publisher=Journal of Chemical Education |page=153 |isbn=}}</ref>

==History==
Copper was probably the first metal mined and crafted by humans.<ref>{{cite web|url=http://www.rameria.com/inglese/history.html |title=Copper History |publisher=Rameria.com |access-date=2008-09-12 |url-status=dead |archive-url=https://web.archive.org/web/20080917214726/http://www.rameria.com/inglese/history.html |archive-date=2008-09-17 }}</ref> It was originally obtained as a [[native metal]] and later from the smelting of ores. Earliest estimates of the discovery of copper suggest around 9000&nbsp;BC in the Middle East. It was one of the most important materials to humans throughout the [[Chalcolithic]] and [[Bronze Age]]s. Copper beads dating from 6000&nbsp;BC have been found in [[Çatalhöyük]], [[Anatolia]],<ref>{{cite web| url = http://www.csa.com/discoveryguides/copper/overview.php| title = CSA – Discovery Guides, A Brief History of Copper| access-date = 2008-05-19| archive-date = 2015-02-03| archive-url = https://web.archive.org/web/20150203154021/http://www.csa.com/discoveryguides/copper/overview.php| url-status = dead}}</ref> and the [[archaeological]] site of Belovode on the [[Rudnik (mountain)|Rudnik mountain]] in [[Serbia]] contains the world's oldest securely dated evidence of copper smelting from 5000&nbsp;BC.<ref>{{cite web|url=http://www.ucl.ac.uk/archaeology/calendar/articles/20100924|title=Serbian site may have hosted first copper makers|publisher=UCL Institute of Archaeology|date=23 September 2010|website=UCL.ac.uk|access-date=22 April 2017|archive-date=28 March 2017|archive-url=https://web.archive.org/web/20170328065919/http://www.ucl.ac.uk/archaeology/calendar/articles/20100924|url-status=dead}}</ref><ref name="archaeology.ws">{{cite web|title=Serbian site may have hosted first copper makers|author=Bruce Bower|date=July 17, 2010|work=ScienceNews|url=http://www.sciencenews.org/view/generic/id/60563/description/Serbian_site_may_have_hosted_first_copper_makers|access-date=22 April 2017|archive-date=8 May 2013|archive-url=https://web.archive.org/web/20130508005006/http://www.sciencenews.org/view/generic/id/60563/description/Serbian_site_may_have_hosted_first_copper_makers|url-status=dead}}</ref> It was recognised as an element by [[Louis Guyton de Morveau]], [[Antoine Lavoisier]], [[Claude Berthollet]], and [[Antoine-François de Fourcroy]] in 1787.<ref name=Miskowiec/>

It is believed that [[lead smelting]] began at least 9,000 years ago, and the oldest known artifact of lead is a statuette found at the temple of [[Osiris]] on the site of Abydos dated around 3800&nbsp;BC.<ref>{{cite web |url=http://www.lead.org.au/lanv2n3/lanv2n3-22.html |title=The History of Lead – Part 3 |publisher=Lead.org.au |access-date=2008-09-12 |archive-url=https://web.archive.org/web/20041018173952/http://www.lead.org.au/lanv2n3/lanv2n3-22.html |archive-date=2004-10-18 |url-status=dead }}</ref> It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787.<ref name=Miskowiec/>

The earliest gold artifacts were discovered at the site of [[Wadi Qana]] in the [[Levant]].<ref name="Gopher, Tsuk, Shalev and Gophna">{{cite journal |last1=Gopher |first1=A. |first2=T. |last2=Tsuk |first3=S. |last3=Shalev |first4=R. |last4=Gophna |name-list-style=amp |title=Earliest Gold Artifacts in the Levant |date=August–October 1990 |journal=Current Anthropology |volume=31 |issue=4 |pages=436–443 |jstor=2743275 |doi=10.1086/203868|s2cid=143173212 }}</ref> Silver is estimated to have been discovered in [[Asia Minor]] shortly after copper and gold.<ref>{{cite web| url = https://elements.vanderkrogt.net/element.php?sym=ag| title = 47 Silver}}</ref>


There is evidence that iron was known from before 5000&nbsp;BC.<ref>{{cite web|url=http://elements.vanderkrogt.net/element.php?sym=fe |title=26 Iron |publisher=Elements.vanderkrogt.net |access-date=2008-09-12}}</ref> The oldest known iron objects used by humans are some beads of [[meteoric iron]], made in Egypt in about 4000 BC. The discovery of smelting around 3000&nbsp;BC led to the start of the [[Iron Age]] around 1200 BC<ref>{{Cite book|last = Weeks|first = Mary Elvira|author-link=Mary Elvira Weeks|author2=Leichester, Henry M. |year = 1968|title = Discovery of the Elements|publisher = Journal of Chemical Education|location = Easton, PA|chapter = Elements Known to the Ancients|pages = 29–40| lccn =68-15217|isbn = 0-7661-3872-0}}</ref> and the prominent use of iron for tools and weapons.<ref>{{cite web|url=http://courses.wcupa.edu/jones/his101%5Cmisc%5Cpersia.htm |title=Notes on the Significance of the First Persian Empire in World History |publisher=Courses.wcupa.edu |access-date=2008-09-12}}</ref> It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787.<ref name=Miskowiec/>
Three more metals were known before the end of classical antiquity, but they were not considered on a par with the other seven (indeed, one of them was not even known in the Old World during this time). [[Antimony]] was known to the ancient [[Sumer]]ian civilisation, but it was not recognised as distinct until much later: [[Pedanius Dioscorides|Dioscorides]] and [[Pliny the Elder|Pliny]] both describe its production from [[stibnite]], but wrongly identify it as tin.<ref name="moorey">{{cite book|last=Moorey|first=P. R. S.|date=1994|title=Ancient Mesopotamian Materials and Industries: the Archaeological Evidence|place=New York|publisher=Clarendon Press|page=241|url=https://books.google.com/books?id=P_Ixuott4doC&pg=PA241|isbn=978-1-57506-042-2}}</ref><ref>{{cite book|last1=Healy|first1=John F.|title=Pliny the Elder on Science and Technology|date=1999|publisher=Oxford University Press|isbn=9780198146872|url=https://books.google.com/books?id=Hz6D4H-s5psC|access-date=26 January 2018}}</ref> [[Platinum]] was known to native South Americans around the time Europe was going through classical antiquity, but it was not known to Europeans until the 18th century. [[Arsenic]] (somewhat questionable as a metal) was known by the 4th century in Egypt.<ref>{{cite book|last1=Holmyard|first1=Eric John|title=Alchemy|date=1957|publisher=Courier Corporation|isbn=9780486262987|url=https://books.google.com/books?id=7Bt-kwKRUzUC|access-date=26 January 2018}}</ref> Thus, at most ten elemental metals were known by the end of antiquity; this contrasts greatly with the situation today, with over 90 elemental metals known.


Tin was first smelted in combination with copper around 3500&nbsp;BC to produce [[bronze]] - and thus giving place to the [[Bronze Age]] (except in some places which did not experience a significant Bronze Age, passing directly from the [[Neolithic]] [[Stone Age]] to the [[Iron Age]]).<ref>{{cite web|url=http://elements.vanderkrogt.net/element.php?sym=sn |title=50 Tin |publisher=Elements.vanderkrogt.net |access-date=2008-09-12}}</ref> [[Kestel (archaeological site)|Kestel]], in southern [[Turkey]], is the site of an ancient [[Cassiterite]] mine that was used from 3250 to 1800&nbsp;BC.<ref>{{citation| last1=Hauptmann| first1=A.| last2=Maddin| first2=R.| last3=Prange|first3=M.|jstor=1357777| title=On the structure and composition of copper and tin ingots excavated from the shipwreck of Uluburun| year=2002|periodical=Bulletin of the American School of Oriental Research|volume=328| issue=328|at=pp. 1–30| publisher=American Schools of Oriental Research}}</ref> The oldest artifacts date from around 2000&nbsp;BC.<ref>{{cite web |url=http://neon.mems.cmu.edu/cramb/Processing/history.html |title=History of Metals |publisher=Neon.mems.cmu.edu |access-date=2008-09-12 |url-status=dead |archive-url=https://web.archive.org/web/20070108015008/http://neon.mems.cmu.edu/cramb/Processing/history.html |archive-date=2007-01-08 }}</ref> It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787.<ref name=Miskowiec/>
Brass (a copper-[[zinc]] alloy) was known in ancient times, but elemental zinc was not known until after 1000. [[Bismuth]] only began to be recognised as distinct around 1500 by the European and [[Inca]]n civilisations. The first elemental metal with a clearly identifiable discoverer is [[cobalt]], discovered in 1735 by [[Georg Brandt]], by which time the [[Scientific Revolution]] was in full swing.<ref name=Miskowiec>{{cite journal |last1=Miśkowiec |first1=Paweł |date=2022 |title=Name game: the naming history of the chemical elements—part 1—from antiquity till the end of 18th century |journal=Foundations of Chemistry |volume= 25|issue= |pages= 29–51|doi=10.1007/s10698-022-09448-5 |doi-access=free }}</ref>


==Characteristics==
==Characteristics==
Line 15: Line 24:
* Mercury melts at −38.829&nbsp;°C (−37.89&nbsp;°F)<ref name="auto">{{cite web|url=https://www.webelements.com/|title=The periodic table of the elements by WebElements|first=Mark|last=Winter|website=www.webelements.com}}</ref> (being liquid at room temperature).
* Mercury melts at −38.829&nbsp;°C (−37.89&nbsp;°F)<ref name="auto">{{cite web|url=https://www.webelements.com/|title=The periodic table of the elements by WebElements|first=Mark|last=Winter|website=www.webelements.com}}</ref> (being liquid at room temperature).
* Tin melts at 231&nbsp;°C (449&nbsp;°F)<ref name="auto"/>
* Tin melts at 231&nbsp;°C (449&nbsp;°F)<ref name="auto"/>
* Lead melts at 327&nbsp;°C (621&nbsp;°F)<ref name="auto"/>
* Lead melts at 327&nbsp;°C (621&nbsp;°F)<ref name="auto"/>
* Silver at 961&nbsp;°C (1763&nbsp;°F)<ref name="auto"/>
* Silver at 961&nbsp;°C (1763&nbsp;°F)<ref name="auto"/>
* Gold at 1064&nbsp;°C (1947&nbsp;°F)<ref name="auto"/>
* Gold at 1064&nbsp;°C (1947&nbsp;°F)<ref name="auto"/>
* Copper at 1084&nbsp;°C (1984&nbsp;°F)<ref name="auto"/>
* Copper at 1084&nbsp;°C (1984&nbsp;°F)<ref name="auto"/>
* Iron is the outlier at 1538&nbsp;°C (2800&nbsp;°F),<ref name="auto"/> making it far more difficult to melt in antiquity. Cultures developed ironworking proficiency at different rates; however, evidence from the Near East suggests that smelting was possible but impractical circa 1500 BC, and relatively commonplace across most of Eurasia by 500 BC.<ref>{{cite journal |last1=Erb-Satullo |first1=Nathaniel L. |title=The Innovation and Adoption of Iron in the Ancient Near East |journal=Journal of Archaeological Research |date=December 2019 |volume=27 |issue=4 |pages=557–607 |doi=10.1007/s10814-019-09129-6 |doi-access=free }}</ref> However, until this period, generally known as the [[Iron Age]], ironwork would have been impossible.
* Iron is the outlier at 1538&nbsp;°C (2800&nbsp;°F),<ref name="auto"/> making it far more difficult to melt in antiquity. Cultures developed ironworking proficiency at different rates; however, evidence from the Near East suggests that smelting was possible but impractical circa 1500 BC, and relatively commonplace across most of Eurasia by 500&nbsp;BC.<ref>{{cite journal |last1=Erb-Satullo |first1=Nathaniel L. |title=The Innovation and Adoption of Iron in the Ancient Near East |journal=Journal of Archaeological Research |date=December 2019 |volume=27 |issue=4 |pages=557–607 |doi=10.1007/s10814-019-09129-6 |doi-access=free }}</ref> However, until this period, generally known as the [[Iron Age]], ironwork would have been impossible.


The other metals discovered before the Scientific Revolution largely fit the pattern, except for high-melting platinum:
The other metals discovered before the Scientific Revolution largely fit the pattern, except for high-melting platinum:
* Bismuth melts at 272&nbsp;°C (521&nbsp;°F)<ref name="auto"/>
* Bismuth melts at 272&nbsp;°C (521&nbsp;°F)<ref name="auto"/>
* Zinc melts at 420&nbsp;°C (787&nbsp;°F),<ref name="auto"/> but importantly ''boils'' at 907&nbsp;°C (1665&nbsp;°F), a temperature below the melting point of silver. Consequently, at the temperatures needed to reduce zinc oxide to the metal, the metal is already gaseous. Consequently, although its use in [[brass]] (a copper-zinc alloy) is attested in antiquity, the pure metal does not appear in the historical record until much later.<ref>{{cite journal |last1=Alam |first1=Ishrat |last2= |first2= |date=2020 |title=The history of zinc and its use in pre-modern India |url=https://journals.sagepub.com/doi/10.1177/2348448920908237 |journal=Studies in People's History |volume=7 |issue=1 |pages= |doi=10.1177/2348448920908237 |access-date=4 January 2024}}</ref><ref>{{cite journal |last1=Li |first1=Yuniu |last2=Xiao |first2=Birui |first3=Gill |last3=Juleff |first4=Wan |last4=Huang |first5=Dadi |last5=Li |first6=Jiujiang |last6=Bai |date=2020 |title=Ancient zinc smelting in the Upper and Middle Yangtze River region |url= |journal=Antiquity |volume=94 |issue=375 |pages= |doi=10.15184/aqy.2020.83 |access-date=}}</ref>
* Zinc melts at 420&nbsp;°C (787&nbsp;°F),<ref name="auto"/> but importantly ''boils'' at 907&nbsp;°C (1665&nbsp;°F), a temperature below the melting point of silver. Consequently, at the temperatures needed to reduce zinc oxide to the metal, the metal is already gaseous.<ref>{{cite journal |last1=Alam |first1=Ishrat |date=2020 |title=The history of zinc and its use in pre-modern India |url=https://journals.sagepub.com/doi/10.1177/2348448920908237 |journal=Studies in People's History |volume=7 |issue=1 |pages= 23–29|doi=10.1177/2348448920908237 |access-date=4 January 2024}}</ref><ref>{{cite journal |last1=Li |first1=Yuniu |last2=Xiao |first2=Birui |first3=Gill |last3=Juleff |first4=Wan |last4=Huang |first5=Dadi |last5=Li |first6=Jiujiang |last6=Bai |date=2020 |title=Ancient zinc smelting in the Upper and Middle Yangtze River region |url= |journal=Antiquity |volume=94 |issue=375 |pages= |doi=10.15184/aqy.2020.83 |access-date=}}</ref>
* Arsenic sublimes at 615&nbsp;°C (1137&nbsp;°F), passing directly from the solid state to the gaseous state.<ref name="auto"/>
* Arsenic sublimes at 615&nbsp;°C (1137&nbsp;°F), passing directly from the solid state to the gaseous state.<ref name="auto"/>
* Antimony melts at 631&nbsp;°C (1167&nbsp;°F)<ref name="auto"/>
* Antimony melts at 631&nbsp;°C (1167&nbsp;°F)<ref name="auto"/>
Line 29: Line 38:


===Extraction===
===Extraction===
While all the metals of antiquity but tin and lead occur natively, only gold and silver are commonly found as the [[native metal]].
While all the metals of antiquity but lead occur natively, only gold and silver are commonly found as the [[native metal]].
* Gold and silver occur frequently in their native form
* Gold and silver occur frequently in their native form
* Mercury compounds are reduced to elemental mercury simply by low-temperature heating (500&nbsp;°C).
* Mercury compounds are reduced to elemental mercury simply by low-temperature heating (500&nbsp;°C).
Line 35: Line 44:
* Copper and lead compounds can be roasted to produce the oxides, which are then reduced with carbon monoxide at 900&nbsp;°C.
* Copper and lead compounds can be roasted to produce the oxides, which are then reduced with carbon monoxide at 900&nbsp;°C.
* [[Meteoric iron]] is often found as the native metal and it was the earliest source for iron objects known to humanity
* [[Meteoric iron]] is often found as the native metal and it was the earliest source for iron objects known to humanity

===Rarity===
While widely known during antiquity, most of these metals are by no means common.
* Iron is the 4th-most abundant element in the Earth's crust (approximately 50,000ppm, or 4.1% by mass)
* Copper is next at 26th (50ppm)
* Lead is 37th (14ppm)
* Tin is 49th (2.2ppm)
* Silver is 65th (70ppb)
* Mercury is 66th (50ppb)
* Gold is the 72nd (1.1ppb)
Yet all were known and available in tangible quantities in ancient times.

Additionally, despite being approximately 1,000 times more abundant in the crust than the next most abundant ancient metal, iron was the last to become available due to its melting point (see above), including requiring tools made from alloys such as [[bronze]] to work in quantity. Other comparably abundant elements, such as [[titanium]] (approximately 4,400ppm) and [[aluminium]] (approximately 83,000ppm),<ref>{{cite web |last1=Darling |first1=David |title=terrestrial abundance of elements |url=http://www.daviddarling.info/encyclopedia/E/elterr.html |website=www.daviddarling.info |access-date=3 January 2021}}</ref> were not available until the modern era. This was due almost entirely to the huge quantities of energy required to purify ores of these elements. Energy requirements and tool availability were, therefore, the primary limiting factors affecting an ancient civilisation's ability to access metals, rather than those metals' relative abundances.


==Symbolism==
==Symbolism==
Line 105: Line 101:
*{{cite web |url=http://www.levity.com/alchemy/kollerstrom_sevenfold.html |title=The Metal-Planet Affinities - The Sevenfold Pattern |accessdate=2011-02-17 |author=Nick Kollerstrom }}
*{{cite web |url=http://www.levity.com/alchemy/kollerstrom_sevenfold.html |title=The Metal-Planet Affinities - The Sevenfold Pattern |accessdate=2011-02-17 |author=Nick Kollerstrom }}


===Further reading===
== Further reading ==

* http://www.webelements.com/ cited from these sources:
* http://www.webelements.com/ cited from these sources:
** A.M. James and M.P. Lord in Macmillan's Chemical and Physical Data, Macmillan, London, UK, 1992.
** A.M. James and M.P. Lord in Macmillan's Chemical and Physical Data, Macmillan, London, UK, 1992.

Latest revision as of 22:34, 24 November 2024

German amulet to protect against disease (18th century); it is made from an alloy of the seven alchemical metals: lead, tin, iron, gold, copper, mercury and silver.
Metal production in the ancient Middle East

The metals of antiquity are the seven metals which humans had identified and found use for in prehistoric times in Africa, Europe and throughout Asia:[1] gold, silver, copper, tin, lead, iron, and mercury.

Zinc, arsenic, and antimony were also known during antiquity, but they were not recognised as distinct metals until later.[2][3][4][5] A special case is platinum; it was known to native South Americans around the time Europe was going through classical antiquity, but was unknown to Europeans until the 18th century. Thus, at most eleven elemental metals and metalloids were known by the end of antiquity; this contrasts greatly with the situation today, with over 90 elemental metals known. Bismuth only began to be recognised as distinct around 1500 by the European and Incan civilisations. The first elemental metal with a clearly identifiable discoverer is cobalt, discovered in 1735 by Georg Brandt, by which time the Scientific Revolution was in full swing.[6] (Even then, cobalt might have been prepared before the 13th century by alchemists roasting and reducing its ore, but,in any case, its distinct nature was not recognised.)[7]

History

[edit]

Copper was probably the first metal mined and crafted by humans.[8] It was originally obtained as a native metal and later from the smelting of ores. Earliest estimates of the discovery of copper suggest around 9000 BC in the Middle East. It was one of the most important materials to humans throughout the Chalcolithic and Bronze Ages. Copper beads dating from 6000 BC have been found in Çatalhöyük, Anatolia,[9] and the archaeological site of Belovode on the Rudnik mountain in Serbia contains the world's oldest securely dated evidence of copper smelting from 5000 BC.[10][11] It was recognised as an element by Louis Guyton de Morveau, Antoine Lavoisier, Claude Berthollet, and Antoine-François de Fourcroy in 1787.[6]

It is believed that lead smelting began at least 9,000 years ago, and the oldest known artifact of lead is a statuette found at the temple of Osiris on the site of Abydos dated around 3800 BC.[12] It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787.[6]

The earliest gold artifacts were discovered at the site of Wadi Qana in the Levant.[13] Silver is estimated to have been discovered in Asia Minor shortly after copper and gold.[14]

There is evidence that iron was known from before 5000 BC.[15] The oldest known iron objects used by humans are some beads of meteoric iron, made in Egypt in about 4000 BC. The discovery of smelting around 3000 BC led to the start of the Iron Age around 1200 BC[16] and the prominent use of iron for tools and weapons.[17] It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787.[6]

Tin was first smelted in combination with copper around 3500 BC to produce bronze - and thus giving place to the Bronze Age (except in some places which did not experience a significant Bronze Age, passing directly from the Neolithic Stone Age to the Iron Age).[18] Kestel, in southern Turkey, is the site of an ancient Cassiterite mine that was used from 3250 to 1800 BC.[19] The oldest artifacts date from around 2000 BC.[20] It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787.[6]

Characteristics

[edit]

Melting point

[edit]

The metals of antiquity generally have low melting points, with iron being the exception.

  • Mercury melts at −38.829 °C (−37.89 °F)[21] (being liquid at room temperature).
  • Tin melts at 231 °C (449 °F)[21]
  • Lead melts at 327 °C (621 °F)[21]
  • Silver at 961 °C (1763 °F)[21]
  • Gold at 1064 °C (1947 °F)[21]
  • Copper at 1084 °C (1984 °F)[21]
  • Iron is the outlier at 1538 °C (2800 °F),[21] making it far more difficult to melt in antiquity. Cultures developed ironworking proficiency at different rates; however, evidence from the Near East suggests that smelting was possible but impractical circa 1500 BC, and relatively commonplace across most of Eurasia by 500 BC.[22] However, until this period, generally known as the Iron Age, ironwork would have been impossible.

The other metals discovered before the Scientific Revolution largely fit the pattern, except for high-melting platinum:

  • Bismuth melts at 272 °C (521 °F)[21]
  • Zinc melts at 420 °C (787 °F),[21] but importantly boils at 907 °C (1665 °F), a temperature below the melting point of silver. Consequently, at the temperatures needed to reduce zinc oxide to the metal, the metal is already gaseous.[23][24]
  • Arsenic sublimes at 615 °C (1137 °F), passing directly from the solid state to the gaseous state.[21]
  • Antimony melts at 631 °C (1167 °F)[21]
  • Platinum melts at 1768 °C (3215 °F), even higher than iron.[21] Native South Americans worked with it instead by sintering: they combined gold and platinum powders, until the alloy became soft enough to shape with tools.[25][26]

Extraction

[edit]

While all the metals of antiquity but lead occur natively, only gold and silver are commonly found as the native metal.

  • Gold and silver occur frequently in their native form
  • Mercury compounds are reduced to elemental mercury simply by low-temperature heating (500 °C).
  • Tin and iron occur as oxides and can be reduced with carbon monoxide (produced by, for example, burning charcoal) at 900 °C.
  • Copper and lead compounds can be roasted to produce the oxides, which are then reduced with carbon monoxide at 900 °C.
  • Meteoric iron is often found as the native metal and it was the earliest source for iron objects known to humanity

Symbolism

[edit]

The practice of alchemy in the Western world, based on a Hellenistic and Babylonian approach to planetary astronomy, often ascribed a symbolic association between the seven then-known celestial bodies and the metals known to the Greeks and Babylonians during antiquity. Additionally, some alchemists and astrologers believed there was an association, sometimes called a rulership, between days of the week, the alchemical metals, and the planets that were said to hold "dominion" over them.[27][28] There was some early variation, but the most common associations since antiquity are the following:

Metal Body Symbol Day of week
Gold Sun ☉︎ Sunday
Silver Moon Monday
Iron Mars Tuesday
Mercury Mercury Wednesday
Tin Jupiter Thursday
Copper Venus Friday
Lead Saturn Saturday

See also

[edit]

References

[edit]
  1. ^ Smith, Cyril Stanley; Forbes, R.J. (1957). "2: Metallurgy and Assaying". In Singer; Holmyard; Hall; Williams (eds.). A History Of Technology. Oxford University Press. p. 29.
  2. ^ Moorey, P. R. S. (1994). Ancient Mesopotamian Materials and Industries: the Archaeological Evidence. New York: Clarendon Press. p. 241. ISBN 978-1-57506-042-2.
  3. ^ Healy, John F. (1999). Pliny the Elder on Science and Technology. Oxford University Press. ISBN 9780198146872. Retrieved 26 January 2018.
  4. ^ Holmyard, Eric John (1957). Alchemy. Courier Corporation. ISBN 9780486262987. Retrieved 26 January 2018.
  5. ^ Biswas, Arun Kumar (1993). "The Primacy of India in Ancient Brass and Zinc Metallurgy" (PDF). Indian Journal of History of Science. 28 (4): 309–330. Retrieved 4 January 2024.
  6. ^ a b c d e Miśkowiec, Paweł (2022). "Name game: the naming history of the chemical elements—part 1—from antiquity till the end of 18th century". Foundations of Chemistry. 25: 29–51. doi:10.1007/s10698-022-09448-5.
  7. ^ Weeks, Mary Elvira (1960). Discovery of the Elements (6th ed.). Journal of Chemical Education. p. 153.
  8. ^ "Copper History". Rameria.com. Archived from the original on 2008-09-17. Retrieved 2008-09-12.
  9. ^ "CSA – Discovery Guides, A Brief History of Copper". Archived from the original on 2015-02-03. Retrieved 2008-05-19.
  10. ^ "Serbian site may have hosted first copper makers". UCL.ac.uk. UCL Institute of Archaeology. 23 September 2010. Archived from the original on 28 March 2017. Retrieved 22 April 2017.
  11. ^ Bruce Bower (July 17, 2010). "Serbian site may have hosted first copper makers". ScienceNews. Archived from the original on 8 May 2013. Retrieved 22 April 2017.
  12. ^ "The History of Lead – Part 3". Lead.org.au. Archived from the original on 2004-10-18. Retrieved 2008-09-12.
  13. ^ Gopher, A.; Tsuk, T.; Shalev, S. & Gophna, R. (August–October 1990). "Earliest Gold Artifacts in the Levant". Current Anthropology. 31 (4): 436–443. doi:10.1086/203868. JSTOR 2743275. S2CID 143173212.
  14. ^ "47 Silver".
  15. ^ "26 Iron". Elements.vanderkrogt.net. Retrieved 2008-09-12.
  16. ^ Weeks, Mary Elvira; Leichester, Henry M. (1968). "Elements Known to the Ancients". Discovery of the Elements. Easton, PA: Journal of Chemical Education. pp. 29–40. ISBN 0-7661-3872-0. LCCN 68-15217.
  17. ^ "Notes on the Significance of the First Persian Empire in World History". Courses.wcupa.edu. Retrieved 2008-09-12.
  18. ^ "50 Tin". Elements.vanderkrogt.net. Retrieved 2008-09-12.
  19. ^ Hauptmann, A.; Maddin, R.; Prange, M. (2002), "On the structure and composition of copper and tin ingots excavated from the shipwreck of Uluburun", Bulletin of the American School of Oriental Research, vol. 328, no. 328, American Schools of Oriental Research, pp. 1–30, JSTOR 1357777
  20. ^ "History of Metals". Neon.mems.cmu.edu. Archived from the original on 2007-01-08. Retrieved 2008-09-12.
  21. ^ a b c d e f g h i j k l Winter, Mark. "The periodic table of the elements by WebElements". www.webelements.com.
  22. ^ Erb-Satullo, Nathaniel L. (December 2019). "The Innovation and Adoption of Iron in the Ancient Near East". Journal of Archaeological Research. 27 (4): 557–607. doi:10.1007/s10814-019-09129-6.
  23. ^ Alam, Ishrat (2020). "The history of zinc and its use in pre-modern India". Studies in People's History. 7 (1): 23–29. doi:10.1177/2348448920908237. Retrieved 4 January 2024.
  24. ^ Li, Yuniu; Xiao, Birui; Juleff, Gill; Huang, Wan; Li, Dadi; Bai, Jiujiang (2020). "Ancient zinc smelting in the Upper and Middle Yangtze River region". Antiquity. 94 (375). doi:10.15184/aqy.2020.83.
  25. ^ Bergsøe, Paul (1936). "Metallurgy of Gold and Platinum among the Pre-Columbian Indians". Nature. 137 (3453). Springer Science and Business Media LLC: 29. Bibcode:1936Natur.137...29B. doi:10.1038/137029a0. ISSN 0028-0836. S2CID 4100269.
  26. ^ Meeks, N.; La Niece, S.; Estevez, P. (2002). "The technology of early platinum plating: a gold mask of the La Tolita culture, Ecuador". Archaeometry. 44 (2). Wiley: 273–284. doi:10.1111/1475-4754.t01-1-00059. ISSN 0003-813X.
  27. ^ Ball, Philip (2007). The Devil's Doctor: Paracelsus and the World of Renaissance Magic and Science. London: Arrow. ISBN 978-0-09-945787-9.
  28. ^ Kollerstrom, Nick. "The Metal-Planet Relationship: A Study of Celestial Influence". homepages.ihug.com.au. Retrieved 3 January 2021.

Further reading

[edit]
  • http://www.webelements.com/ cited from these sources:
    • A.M. James and M.P. Lord in Macmillan's Chemical and Physical Data, Macmillan, London, UK, 1992.
    • G.W.C. Kaye and T.H. Laby in Tables of physical and chemical constants, Longman, London, UK, 15th edition, 1993.