Jump to content

Contracted Bianchi identities: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
leave two blank lines between the first stub template and whatever precedes it per WP:STUBSPACING
Citation bot (talk | contribs)
Misc citation tidying. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Tensors | #UCB_Category 18/96
 
(13 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{Short description|Identities}}
In [[general relativity]] and [[tensor calculus]], the '''contracted Bianchi identities''' are:<ref>{{Citation
In [[general relativity]] and [[tensor calculus]], the '''contracted Bianchi identities''' are:<ref>{{Citation
|author-first=Luigi
|author-first=Luigi
Line 16: Line 17:
}}</ref>
}}</ref>


:<math> \nabla_\rho {R^\rho}_\mu = {1 \over 2} \nabla_{\mu} R,</math>
:<math> \nabla_\rho {R^\rho}_\mu = {1 \over 2} \nabla_{\mu} R</math>


where <math>{R^\rho}_\mu</math> is the [[Ricci tensor]], <math>R</math> the [[scalar curvature]], and <math>\nabla_\rho</math> indicates [[covariant differentiation]].
where <math>{R^\rho}_\mu</math> is the [[Ricci tensor]], <math>R</math> the [[scalar curvature]], and <math>\nabla_\rho</math> indicates [[covariant differentiation]].


These identities are named after [[Luigi Bianchi]], although they had been already derived by [[Aurel Voss]] in 1880.<ref name="voss" >{{citation|title=Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannigfaltigketien |last=Voss|first=A.|author-link=Aurel Voss|journal=Mathematische Annalen|volume=16|pages=129–178|year=1880|issue=2 |url=https://zenodo.org/record/2440927|doi=10.1007/bf01446384|s2cid=122828265}}</ref> In the [[Einstein field equations]], the contracted [[Bianchi identity]] ensures consistency with the vanishing divergence of the matter [[stress–energy tensor]].
A proof can be found in the entry [[Proofs involving covariant derivatives]].


==Proof==
These identities are named after [[Luigi Bianchi]], although they had been already derived by [[Aurel Voss]] in 1880.<ref name="voss" >{{citation|title=Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannigfaltigketien |last=Voss|first=A.|author-link=Aurel Voss|journal=Mathematische Annalen|volume=16|pages=129–178|year=1880|url=https://zenodo.org/record/2440927|doi=10.1007/bf01446384|s2cid=122828265}}</ref> In the [[Einstein field equations]], the contracted Bianchi identity ensures consistency with the vanishing divergence of the matter [[stress–energy tensor]].
Start with the [[Curvature form#Bianchi identities|Bianchi identity]]<ref name="syngeandschild">{{cite book |author=Synge J.L., Schild A.|title=Tensor Calculus|year= 1949|pages=87–89–90}}</ref>
:<math> R_{abmn;\ell} + R_{ab\ell m;n} + R_{abn\ell;m} = 0.</math><!-- The symbols \,\! exist to force PNG rendering; do not remove them. -->

[[Tensor contraction|Contract]] both sides of the above equation with a pair of [[metric tensor]]s:
:<math> g^{bn} g^{am} (R_{abmn;\ell} + R_{ab\ell m;n} + R_{abn\ell;m}) = 0,</math>

:<math> g^{bn} (R^m {}_{bmn;\ell} - R^m {}_{bm\ell;n} + R^m {}_{bn\ell;m}) = 0,</math>

:<math> g^{bn} (R_{bn;\ell} - R_{b\ell;n} - R_b {}^m {}_{n\ell;m}) = 0,</math>

:<math> R^n {}_{n;\ell} - R^n {}_{\ell;n} - R^{nm} {}_{n\ell;m} = 0.</math>
The first term on the left contracts to yield a Ricci scalar, while the third term contracts to yield a [[mixed tensor|mixed]] Ricci tensor,
:<math> R_{;\ell} - R^n {}_{\ell;n} - R^m {}_{\ell;m} = 0.</math>
The last two terms are the same (changing dummy index ''n'' to ''m'') and can be combined into a single term which shall be moved to the right,
:<math> R_{;\ell} = 2 R^m {}_{\ell;m},</math>
which is the same as
:<math> \nabla_m R^m {}_\ell = {1 \over 2} \nabla_\ell R.</math>
Swapping the index labels ''l'' and ''m'' on the left side yields
:<math> \nabla_\ell R^\ell {}_m = {1 \over 2} \nabla_m R.</math>


==See also==
==See also==
{{div col}}
* [[Bianchi identities]]
* [[Bianchi identities]]
* [[Einstein tensor]]
* [[Einstein tensor]]
* [[Einstein field equations]]
* [[General theory of relativity]]
* [[Ricci calculus]]
* [[Ricci calculus]]
* [[Tensor calculus]]
* [[Tensor calculus]]
* [[Riemann curvature tensor]]
* [[Riemann curvature tensor]]
{{div col end}}


==Notes==
==Notes==
Line 43: Line 67:
| publisher = Dover
| publisher = Dover
| isbn = 978-0-486-65840-7
| isbn = 978-0-486-65840-7
| origyear = 1975
| orig-date = 1975
}}
}}
* {{cite book |author=Synge J.L., Schild A. |title=Tensor Calculus |publisher=first Dover Publications 1978 edition |year=1949 |isbn=978-0-486-63612-2 |url-access=registration |url=https://archive.org/details/tensorcalculus00syng }}
* {{cite book |author=Synge J.L., Schild A. |title=Tensor Calculus |publisher=first Dover Publications 1978 edition |year=1949 |isbn=978-0-486-63612-2 |url-access=registration |url=https://archive.org/details/tensorcalculus00syng }}
Line 56: Line 80:


{{mathematics-stub}}
{{mathematics-stub}}
{{physics-stub}}
{{relativity-stub}}

Latest revision as of 08:33, 28 November 2024

In general relativity and tensor calculus, the contracted Bianchi identities are:[1]

where is the Ricci tensor, the scalar curvature, and indicates covariant differentiation.

These identities are named after Luigi Bianchi, although they had been already derived by Aurel Voss in 1880.[2] In the Einstein field equations, the contracted Bianchi identity ensures consistency with the vanishing divergence of the matter stress–energy tensor.

Proof

[edit]

Start with the Bianchi identity[3]

Contract both sides of the above equation with a pair of metric tensors:

The first term on the left contracts to yield a Ricci scalar, while the third term contracts to yield a mixed Ricci tensor,

The last two terms are the same (changing dummy index n to m) and can be combined into a single term which shall be moved to the right,

which is the same as

Swapping the index labels l and m on the left side yields

See also

[edit]

Notes

[edit]
  1. ^ Bianchi, Luigi (1902), "Sui simboli a quattro indici e sulla curvatura di Riemann", Rend. Acc. Naz. Lincei (in Italian), 11 (5): 3–7
  2. ^ Voss, A. (1880), "Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannigfaltigketien", Mathematische Annalen, 16 (2): 129–178, doi:10.1007/bf01446384, S2CID 122828265
  3. ^ Synge J.L., Schild A. (1949). Tensor Calculus. pp. 87–89–90.

References

[edit]
  • Lovelock, David; Hanno Rund (1989) [1975]. Tensors, Differential Forms, and Variational Principles. Dover. ISBN 978-0-486-65840-7.
  • Synge J.L., Schild A. (1949). Tensor Calculus. first Dover Publications 1978 edition. ISBN 978-0-486-63612-2.
  • J.R. Tyldesley (1975), An introduction to Tensor Analysis: For Engineers and Applied Scientists, Longman, ISBN 0-582-44355-5
  • D.C. Kay (1988), Tensor Calculus, Schaum’s Outlines, McGraw Hill (USA), ISBN 0-07-033484-6
  • T. Frankel (2012), The Geometry of Physics (3rd ed.), Cambridge University Press, ISBN 978-1107-602601