Contracted Bianchi identities: Difference between revisions
→See also: div col |
Citation bot (talk | contribs) Misc citation tidying. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Tensors | #UCB_Category 18/96 |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Identities}} |
|||
In [[general relativity]] and [[tensor calculus]], the '''contracted Bianchi identities''' are:<ref>{{Citation |
In [[general relativity]] and [[tensor calculus]], the '''contracted Bianchi identities''' are:<ref>{{Citation |
||
|author-first=Luigi |
|author-first=Luigi |
||
Line 66: | Line 67: | ||
| publisher = Dover |
| publisher = Dover |
||
| isbn = 978-0-486-65840-7 |
| isbn = 978-0-486-65840-7 |
||
| |
| orig-date = 1975 |
||
}} |
}} |
||
* {{cite book |author=Synge J.L., Schild A. |title=Tensor Calculus |publisher=first Dover Publications 1978 edition |year=1949 |isbn=978-0-486-63612-2 |url-access=registration |url=https://archive.org/details/tensorcalculus00syng }} |
* {{cite book |author=Synge J.L., Schild A. |title=Tensor Calculus |publisher=first Dover Publications 1978 edition |year=1949 |isbn=978-0-486-63612-2 |url-access=registration |url=https://archive.org/details/tensorcalculus00syng }} |
Latest revision as of 08:33, 28 November 2024
In general relativity and tensor calculus, the contracted Bianchi identities are:[1]
where is the Ricci tensor, the scalar curvature, and indicates covariant differentiation.
These identities are named after Luigi Bianchi, although they had been already derived by Aurel Voss in 1880.[2] In the Einstein field equations, the contracted Bianchi identity ensures consistency with the vanishing divergence of the matter stress–energy tensor.
Proof
[edit]Start with the Bianchi identity[3]
Contract both sides of the above equation with a pair of metric tensors:
The first term on the left contracts to yield a Ricci scalar, while the third term contracts to yield a mixed Ricci tensor,
The last two terms are the same (changing dummy index n to m) and can be combined into a single term which shall be moved to the right,
which is the same as
Swapping the index labels l and m on the left side yields
See also
[edit]Notes
[edit]- ^ Bianchi, Luigi (1902), "Sui simboli a quattro indici e sulla curvatura di Riemann", Rend. Acc. Naz. Lincei (in Italian), 11 (5): 3–7
- ^ Voss, A. (1880), "Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannigfaltigketien", Mathematische Annalen, 16 (2): 129–178, doi:10.1007/bf01446384, S2CID 122828265
- ^ Synge J.L., Schild A. (1949). Tensor Calculus. pp. 87–89–90.
References
[edit]- Lovelock, David; Hanno Rund (1989) [1975]. Tensors, Differential Forms, and Variational Principles. Dover. ISBN 978-0-486-65840-7.
- Synge J.L., Schild A. (1949). Tensor Calculus. first Dover Publications 1978 edition. ISBN 978-0-486-63612-2.
- J.R. Tyldesley (1975), An introduction to Tensor Analysis: For Engineers and Applied Scientists, Longman, ISBN 0-582-44355-5
- D.C. Kay (1988), Tensor Calculus, Schaum’s Outlines, McGraw Hill (USA), ISBN 0-07-033484-6
- T. Frankel (2012), The Geometry of Physics (3rd ed.), Cambridge University Press, ISBN 978-1107-602601