Swiss 1.2-metre Leonhard Euler Telescope: Difference between revisions
m →top: c/e disambig lnk |
Updated short description Tags: Mobile edit Mobile app edit Android app edit App description change |
||
(41 intermediate revisions by 25 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Telescope in the La Silla Observatory, Chile}} |
|||
{| class="infobox" style="width: 230px;" |
|||
{{Infobox telescope}} |
|||
|- |
|||
| |
|||
{| style="background: white; white-space: nowrap;" cellpadding=0 cellspacing=0 |
|||
|- |
|||
|[[File:Eso9855a.jpg|245px|The enclosure of the Leonhard Euler Telescope with the higher situated New Technology Telescope (NTT) in the background]] |
|||
|- |
|||
|style="padding-top: 3px;" | [[File:Lso-swiss.jpg|245px|The 1.2-m Leonhard Euler Telescope in its dome at La Silla Observatory]] |
|||
|} |
|||
|- |
|||
| |
|||
⚫ | |||
* Bottom: The 1.2-m Leonhard Euler Telescope in its dome at [[La Silla]] |
|||
|} |
|||
'''Leonhard Euler Telescope''', or the Swiss EULER Telescope, is a national, fully automatic {{convert|1.2|m| |
'''Leonhard Euler Telescope''', or the Swiss EULER Telescope, is a national, fully automatic {{convert|1.2|m|in|adj=on}} [[reflecting telescope]], built and operated by the [[Geneva Observatory]]. It is located at an altitude of {{convert|2375|m|ft|abbr=on}} at [[European Southern Observatory|ESO's]] [[La Silla Observatory]] site in the Chilean [[Norte Chico, Chile|Norte Chico]] region, about 460 kilometers north of [[Santiago de Chile]]. The telescope, which saw its first light on 12 April 1998, is named after Swiss mathematician [[Leonhard Paul Euler]].<ref name="eso-euler">{{cite web |url=https://www.eso.org/public/teles-instr/lasilla/swiss/ |title=Swiss 1.2-metre Leonhard Euler Telescope |work=ESO |access-date=10 September 2015}}</ref><ref name="exo-euler">{{cite web |url=http://exoplanets.ch/projects/euler/ |title=EULER |work=Exoplanets |publisher=Université de Genève |location=Switzerland |access-date=10 September 2015}}</ref> |
||
The Euler telescope uses the '''CORALIE''' instrument to search for [[exoplanets]]. In addition, the telescope uses the multi-purpose '''EulerCam''' (ecam), a high precision [[Photometry (astronomy)|photometry]] instrument, and a smaller, piggyback mounted telescope, called "Pisco".<ref name="exo-euler" /> Its first discovery was a planet in orbit around [[Gliese 86]], determined to be a [[hot Jupiter]] with an orbital period of only 15.8 earth days and about four times the mass of Jupiter.<ref name="arxiv9910223" /> Since then, many other exoplanets have been discovered or examined in follow-up observations. |
|||
Together with the [[Mercator Telescope]], |
Together with the [[Mercator Telescope]], Euler was part of the Southern Sky extrasolar Planet search Programme, which has discovered numerous extrasolar planets.<ref name="coralie" /> It has also been frequently employed for follow-up characterization to determine the mass of exoplanets discovered by the Wide Angle Search for Planets, [[SuperWASP]].<ref>{{cite journal | bibcode = 2010A&A...517L...1Q | title=WASP-8b: a retrograde transiting planet in a multiple system | journal=Astronomy and Astrophysics | volume=517 | year=2010 |display-authors=4 |author1=Queloz, D. |author2=Anderson, D. R. |author3=Collier Cameron, A. |author4=Gillon, M. |author5=Hebb, L. |author6=Hellier, C. |author7=Maxted, P. |author8=Pepe, F. |author9=Pollacco, D. |author10=Ségransan, D. |author11=Smalley, B. |author12=Triaud, A.H.M.J. |author13=Udry, S. |author14=West, R. | pages=L1 |arxiv = 1006.5089 |doi = 10.1051/0004-6361/201014768 | s2cid=35774603 }}</ref> |
||
== |
== CORALIE == |
||
The |
The CORALIE spectrograph is an [[Echelle grating|echelle]]- type [[spectrograph]] used for astronomy. It is a copy of the [[ELODIE spectrograph]] used by [[Michel Mayor]] and [[Didier Queloz]] to detect the planet orbiting a star . In April 1998 it was built and installed at the Euler Telescope. Later in 2007 it was upgraded by [[Didier Queloz]] and his team to increase its performances to support [[Wide Angle Search for Planets]] program and [[Next-Generation Transit Survey]]. The instrument is optimized to measure [[Doppler effect]] on a star's [[electromagnetic spectrum]] with great precision to detect the gravitational tug of an exoplanet orbiting around it.<ref name="CORALIE-I">{{cite journal |
||
| title=The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star Gliese 86 |
| title=The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star Gliese 86 |
||
| |
| last1=Queloz |first1=D. |
||
| journal=[[Astronomy and Astrophysics]] |
| journal=[[Astronomy and Astrophysics]] |
||
| volume=354 |
| volume=354 |
||
Line 48: | Line 36: | ||
| last10=Udry |
| last10=Udry |
||
| first10=S. |
| first10=S. |
||
| display-authors= |
| display-authors=4 |
||
}}</ref><ref>ESO publication, D. Queloz and M. Mayor, [https://www.eso.org/sci/publications/messenger/archive/no.105-sep01/messenger-no105-1-7.pdf From CORALIE to HARPS], September 2001</ref> |
}}</ref><ref>ESO publication, D. Queloz and M. Mayor, [https://www.eso.org/sci/publications/messenger/archive/no.105-sep01/messenger-no105-1-7.pdf From CORALIE to HARPS], September 2001</ref> It also known as "radial velocity" or "wobble" method, is an indirect [[Methods of detecting exoplanets|detection method]]. The mass of the planet can be estimated from these measurements. |
||
The spectrograph participates in the [http://obswww.unige.ch/~udry/planet/coralie.html Southern Sky extrasolar Planet search Programme] initiated by [[Michel Mayor]] |
|||
Doppler spectroscopy, also known as "radial velocity" or "wobble" method, is an indirect [[Methods of detecting exoplanets|detection method]] as it only observes the star's spectrum and not the planet itself. It differs from the [[transit method]] used by the space-based [[Kepler mission]] and ground-based SuperWASP and [[Next-Generation Transit Survey]] and can therefore be complementary to their observations. This is because the size of an exoplanet can be estimated using the transit method, while Doppler spectroscopy is used to estimate its mass. By combining the measured size and mass from both methods, it can be determined whether the observed exoplanet is gaseous or rocky. |
|||
In 2010 visible camera EulerCam was installed by [[Didier Queloz]]. Camera main objective was to measure planet by [[transit method]] by supporting ground base program such as [[Wide Angle Search for Planets]] . The size of an exoplanet can be estimated using the transit method. By combining the measured size and mass from both methods, it can be determined whether the observed exoplanet is gaseous or rocky. |
|||
=== Characteristics === |
=== Characteristics === |
||
The resolution of CORALIE is fixed at R = 50,000 with |
The resolution of CORALIE is fixed at R = 50,000 with three-pixel sampling. The detector [[charge-coupled device]] is 2k X 2k with a 15 micrometer pixel size. |
||
=== Discovered exoplanets === |
=== Discovered exoplanets === |
||
The first five planetary object discovered using CORALIE are |
|||
{| class="wikitable" style="text-align: center;" |
{| class="wikitable" style="text-align: center;" |
||
|- |
|- |
||
Line 70: | Line 60: | ||
|- |
|- |
||
| align=left | [[HD |
| align=left | [[HD 75289 b]] || 1999 || <ref name="CORALIE-II"> |
||
{{cite journal |
{{cite journal |
||
|title=The CORALIE survey for southern extra-solar planets II. The short-period planetary companions to HD 75289 and HD 130322 |
|title=The CORALIE survey for southern extra-solar planets II. The short-period planetary companions to HD 75289 and HD 130322 |
||
Line 95: | Line 85: | ||
|last9=Melo |
|last9=Melo |
||
|first9=C. |
|first9=C. |
||
|display-authors=4 |
|||
}}</ref> |
}}</ref> |
||
|- |
|- |
||
| align=left | [[ |
| align=left | [[Eiger (planet)|Eiger]] || 1999 || <ref name="CORALIE-II" /> |
||
|- |
|- |
||
| align=left | [[ |
| align=left | [[Beirut (planet)|Beirut]] || 1999 || <ref name="CORALIE-XI"> |
||
{{cite journal |
{{cite journal |
||
|title=The CORALIE survey for southern extra-solar planets XI. The return of the giant planet orbiting HD192263 |
|title=The CORALIE survey for southern extra-solar planets XI. The return of the giant planet orbiting HD192263 |
||
|display-authors=4 |
|||
|author=Santos |
|||
|last1=Santos | first1=N. |
|||
|date=2003 |
|date=2003 |
||
|journal=[[Astronomy and Astrophysics]] |
|journal=[[Astronomy and Astrophysics]] |
||
Line 128: | Line 120: | ||
|bibcode=2003A&A...406..373S |
|bibcode=2003A&A...406..373S |
||
|arxiv=astro-ph/0305434 |
|arxiv=astro-ph/0305434 |
||
|s2cid=16247618 |
|||
}}</ref><ref name="CORALIE-III"> |
}}</ref><ref name="CORALIE-III"> |
||
{{cite journal |
{{cite journal |
||
|title= The CORALIE survey for southern extra-solar planets III. A giant planet in orbit around HD 192263 |
|title= The CORALIE survey for southern extra-solar planets III. A giant planet in orbit around HD 192263 |
||
|display-authors=4 |
|||
|author= Santos |
|||
|last1=Santos | first1=N. |
|||
|journal=[[Astronomy and Astrophysics]] |
|journal=[[Astronomy and Astrophysics]] |
||
|date=2000 |
|date=2000 |
||
Line 154: | Line 148: | ||
|- |
|- |
||
| align=left | [[GJ |
| align=left | [[GJ 3021 b]] || 2000 || <ref name="CORALIE-V"> |
||
{{cite journal |
{{cite journal |
||
|title=The CORALIE survey for southern extrasolar planets V: 3 new extrasolar planets |
|title=The CORALIE survey for southern extrasolar planets V: 3 new extrasolar planets |
||
|display-authors=4 |
|||
|author=Naef |
|||
|last1=Naef |first1=D. |
|||
|date=2001 |
|date=2001 |
||
|journal=[[Astronomy and Astrophysics]] |
|journal=[[Astronomy and Astrophysics]] |
||
Line 177: | Line 172: | ||
|first7=M. |
|first7=M. |
||
|bibcode=2001A&A...375..205N|arxiv = astro-ph/0106255 |
|bibcode=2001A&A...375..205N|arxiv = astro-ph/0106255 |
||
|s2cid=16606841 |
|||
}}</ref> |
}}</ref> |
||
|} |
|} |
||
== Gallery == |
== Gallery == |
||
<gallery class="center" mode="packed" heights="150px"> |
<gallery class="center" mode="packed" heights="150px"> |
||
File:Lso-swiss.jpg|The 1.2-meter Leonhard Euler Telescope |
|||
Image:LaSillaByNight2.jpg|Euler Telescope with the [[ESO 3.6 m Telescope]] in the background |
|||
⚫ | |||
File:The Swiss 1.2-metre Leonhard Euler Telescope in its dome at La Silla.jpg|A fisheye view of the Euler Telescope |
File:The Swiss 1.2-metre Leonhard Euler Telescope in its dome at La Silla.jpg|A fisheye view of the Euler Telescope |
||
File:La Silla from 3,6m.jpg|[[La Silla]] with [[New Technology Telescope|NTT]] in the center and Euler on the |
File:La Silla from 3,6m.jpg|[[La Silla Observatory|La Silla]] with [[New Technology Telescope|NTT]] in the center and Euler on the right |
||
File:Exoplanet Hunters at La Silla.jpg|Euler and |
File:Exoplanet Hunters at La Silla.jpg|Euler and [[ESO 3.6 m Telescope|ESO 3.6-meter]] are both [[exoplanet]] hunters at La Silla |
||
File: |
File:Moonlight and Zodiacal Light Over La Silla Observatory.jpg|Moonlight and Zodiacal Light Over La Silla Observatory |
||
File: |
File:La Silla - Evening.jpg|Sunset at ESO's La Silla observatory in Chile |
||
File:Fantastic Mr Fox.jpg|Fantastic Mr Fox |
File:Fantastic Mr Fox.jpg|Fantastic Mr Fox |
||
File:Wallpaper of the star cluster NGC 3766.jpg|Star cluster NGC 3766 |
|||
</gallery> |
</gallery> |
||
=== Video === |
=== Video === |
||
⚫ | |||
⚫ | |||
{{clear}} |
{{clear}} |
||
== See also == |
== See also == |
||
* [[ELODIE spectrograph]] |
* [[ELODIE spectrograph]] |
||
{{cite web |
|||
|url=http://obswww.unige.ch/~udry/planet/elodie.html |
|||
|title=Extrasolar Planet Search Programme at Haute-Provence Observatory |
|||
|work=[[Observatory of Geneva]] |
|||
|accessdate=17 August 2015 |
|||
}}</ref> |
|||
* [[List of largest optical telescopes in the 20th century]] |
* [[List of largest optical telescopes in the 20th century]] |
||
* [[Stéphane Udry]] |
* [[Stéphane Udry]] |
||
Line 216: | Line 207: | ||
{{Cite arXiv |
{{Cite arXiv |
||
| eprint=astro-ph/9910223 |
| eprint=astro-ph/9910223 |
||
| display-authors=4 |
|||
| last1=Queloz | first1=D. | last2=Mayor | first2=M. | last3=Weber | first3=L. |
| last1=Queloz | first1=D. | last2=Mayor | first2=M. | last3=Weber | first3=L. |
||
| last4=Blecha | first4=A. | last5=Burnet | first5=M. | last6=Confino | first6=B. |
| last4=Blecha | first4=A. | last5=Burnet | first5=M. | last6=Confino | first6=B. |
||
| last7=Naef | first7=D. | last8=Pepe | first8=F. | last9=Santos | first9=N. |
| last7=Naef | first7=D. | last8=Pepe | first8=F. | last9=Santos | first9=N. |
||
| title=A planet orbiting the star Gliese 86 |
| title=A planet orbiting the star Gliese 86 |
||
| class=astro-ph |
|||
| date=1999 |
| date=1999 |
||
}}</ref> |
}}</ref> |
||
Line 242: | Line 233: | ||
* [http://www.daviddarling.info/encyclopedia/L/Leonard_Euler_Telescope.html daviddarling.info /Euler] |
* [http://www.daviddarling.info/encyclopedia/L/Leonard_Euler_Telescope.html daviddarling.info /Euler] |
||
* [http://astro.berkeley.edu/~gmarcy/hd83443/pressrelease.html ESO press release: 4 May 2000] |
* [http://astro.berkeley.edu/~gmarcy/hd83443/pressrelease.html ESO press release: 4 May 2000] |
||
{{coord|-29.25956|-70.73297|type:landmark_region:CL|display=title}} |
|||
{{European Southern Observatory}} |
{{European Southern Observatory}} |
||
{{Exoplanet search projects}} |
{{Exoplanet search projects}} |
||
[[Category: |
[[Category:Reflecting telescopes]] |
||
[[Category:European Southern Observatory]] |
[[Category:European Southern Observatory]] |
||
[[Category:Spectrographs]] |
[[Category:Spectrographs]] |
Latest revision as of 23:07, 29 November 2024
Alternative names | Swiss 1.2-m Leonhard Euler Telescope |
---|---|
Named after | Leonhard Euler |
Part of | La Silla Observatory |
Location(s) | Norte Chico |
Coordinates | 29°15′34″S 70°43′59″W / 29.2594°S 70.7331°W |
Organization | Geneva Observatory |
First light | 12 April 1998 |
Telescope style | reflecting telescope |
Diameter | 1.2 m (3 ft 11 in) |
Related media on Commons | |
Leonhard Euler Telescope, or the Swiss EULER Telescope, is a national, fully automatic 1.2-metre (47 in) reflecting telescope, built and operated by the Geneva Observatory. It is located at an altitude of 2,375 m (7,792 ft) at ESO's La Silla Observatory site in the Chilean Norte Chico region, about 460 kilometers north of Santiago de Chile. The telescope, which saw its first light on 12 April 1998, is named after Swiss mathematician Leonhard Paul Euler.[1][2]
The Euler telescope uses the CORALIE instrument to search for exoplanets. In addition, the telescope uses the multi-purpose EulerCam (ecam), a high precision photometry instrument, and a smaller, piggyback mounted telescope, called "Pisco".[2] Its first discovery was a planet in orbit around Gliese 86, determined to be a hot Jupiter with an orbital period of only 15.8 earth days and about four times the mass of Jupiter.[3] Since then, many other exoplanets have been discovered or examined in follow-up observations.
Together with the Mercator Telescope, Euler was part of the Southern Sky extrasolar Planet search Programme, which has discovered numerous extrasolar planets.[4] It has also been frequently employed for follow-up characterization to determine the mass of exoplanets discovered by the Wide Angle Search for Planets, SuperWASP.[5]
CORALIE
[edit]The CORALIE spectrograph is an echelle- type spectrograph used for astronomy. It is a copy of the ELODIE spectrograph used by Michel Mayor and Didier Queloz to detect the planet orbiting a star . In April 1998 it was built and installed at the Euler Telescope. Later in 2007 it was upgraded by Didier Queloz and his team to increase its performances to support Wide Angle Search for Planets program and Next-Generation Transit Survey. The instrument is optimized to measure Doppler effect on a star's electromagnetic spectrum with great precision to detect the gravitational tug of an exoplanet orbiting around it.[6][7] It also known as "radial velocity" or "wobble" method, is an indirect detection method. The mass of the planet can be estimated from these measurements.
The spectrograph participates in the Southern Sky extrasolar Planet search Programme initiated by Michel Mayor
In 2010 visible camera EulerCam was installed by Didier Queloz. Camera main objective was to measure planet by transit method by supporting ground base program such as Wide Angle Search for Planets . The size of an exoplanet can be estimated using the transit method. By combining the measured size and mass from both methods, it can be determined whether the observed exoplanet is gaseous or rocky.
Characteristics
[edit]The resolution of CORALIE is fixed at R = 50,000 with three-pixel sampling. The detector charge-coupled device is 2k X 2k with a 15 micrometer pixel size.
Discovered exoplanets
[edit]The first five planetary object discovered using CORALIE are
Planet | Announced in | Refs |
---|---|---|
Gliese 86 b | 1998 | [6] |
HD 75289 b | 1999 | [8] |
Eiger | 1999 | [8] |
Beirut | 1999 | [9][10] |
GJ 3021 b | 2000 | [11] |
Gallery
[edit]-
The 1.2-meter Leonhard Euler Telescope
-
Euler Telescope with the ESO 3.6-meter in the background
-
A fisheye view of the Euler Telescope
-
Euler and ESO 3.6-meter are both exoplanet hunters at La Silla
-
Moonlight and Zodiacal Light Over La Silla Observatory
-
Sunset at ESO's La Silla observatory in Chile
-
Fantastic Mr Fox
Video
[edit]
See also
[edit]References
[edit]- ^ "Swiss 1.2-metre Leonhard Euler Telescope". ESO. Retrieved 10 September 2015.
- ^ a b "EULER". Exoplanets. Switzerland: Université de Genève. Retrieved 10 September 2015.
- ^ Queloz, D.; Mayor, M.; Weber, L.; Blecha, A.; et al. (1999). "A planet orbiting the star Gliese 86". arXiv:astro-ph/9910223.
- ^ "Southern Sky extrasolar Planet search Programme". unige.ch.
- ^ Queloz, D.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; et al. (2010). "WASP-8b: a retrograde transiting planet in a multiple system". Astronomy and Astrophysics. 517: L1. arXiv:1006.5089. Bibcode:2010A&A...517L...1Q. doi:10.1051/0004-6361/201014768. S2CID 35774603.
- ^ a b Queloz, D.; Mayor, M.; Weber, L.; Blécha, A.; et al. (2000). "The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star Gliese 86". Astronomy and Astrophysics. 354: 99–102. Bibcode:2000A&A...354...99Q.
- ^ ESO publication, D. Queloz and M. Mayor, From CORALIE to HARPS, September 2001
- ^ a b Udry; Mayor, M.; Naef, D.; Pepe, F.; et al. (2000). "The CORALIE survey for southern extra-solar planets II. The short-period planetary companions to HD 75289 and HD 130322". Astronomy and Astrophysics. 356: 590–598. Bibcode:2000A&A...356..590U.
- ^ Santos, N.; Udry, S.; Mayor, M.; Naef, D.; et al. (2003). "The CORALIE survey for southern extra-solar planets XI. The return of the giant planet orbiting HD192263". Astronomy and Astrophysics. 406 (1): 373–381. arXiv:astro-ph/0305434. Bibcode:2003A&A...406..373S. doi:10.1051/0004-6361:20030776. S2CID 16247618.
- ^ Santos, N.; Mayor, M.; Naef, D.; Pepe, F.; et al. (2000). "The CORALIE survey for southern extra-solar planets III. A giant planet in orbit around HD 192263". Astronomy and Astrophysics. 356: 599–602. Bibcode:2000A&A...356..599S.
- ^ Naef, D.; Mayor, M.; Pepe, F.; Queloz, D.; et al. (2001). "The CORALIE survey for southern extrasolar planets V: 3 new extrasolar planets". Astronomy and Astrophysics. 375 (1): 205–218. arXiv:astro-ph/0106255. Bibcode:2001A&A...375..205N. doi:10.1051/0004-6361:20010841. S2CID 16606841.