Jump to content

Ultraviolet astronomy: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
References: Commonscatinline template.
Ultraviolet space telescopes: uppercase per direct link (PROBA-3)
 
(15 intermediate revisions by 9 users not shown)
Line 2: Line 2:
[[Image:M81 wide Galex.jpg|thumb|A [[GALEX]] image of the [[spiral galaxy]] [[Messier 81]] in [[ultraviolet]] light. Credit:GALEX/[[NASA]]/[[JPL]]-[[Caltech]].]]
[[Image:M81 wide Galex.jpg|thumb|A [[GALEX]] image of the [[spiral galaxy]] [[Messier 81]] in [[ultraviolet]] light. Credit:GALEX/[[NASA]]/[[JPL]]-[[Caltech]].]]


'''Ultraviolet astronomy''' is the observation of [[electromagnetic radiation]] at [[ultraviolet]] wavelengths between approximately 10 and 320 [[nanometre]]s; shorter wavelengths&mdash;higher energy photons&mdash;are studied by [[X-ray astronomy]] and [[gamma ray astronomy]].<ref name="cox2000">{{cite book
'''Ultraviolet astronomy''' is the observation of [[electromagnetic radiation]] at [[ultraviolet]] wavelengths between approximately 10 and 320 [[nanometre]]s; shorter wavelengths&mdash;higher energy photons&mdash;are studied by [[X-ray astronomy]] and [[gamma-ray astronomy]].<ref name="cox2000">{{cite book
| editor=A. N. Cox
| editor=A. N. Cox
| title=Allen's Astrophysical Quantities
| title=Allen's Astrophysical Quantities
Line 11: Line 11:


==Overview==
==Overview==
{{Globalize|2=US|date=September 2024}}
Ultraviolet [[Spectral line|line spectrum]] measurements ([[Astronomical spectroscopy|spectroscopy]]) are used to discern the chemical composition, densities, and temperatures of the [[interstellar medium]], and the temperature and composition of hot young stars. UV observations can also provide essential information about the [[Galaxy formation and evolution|evolution of galaxies]]. They can be used to discern the presence of a hot [[white dwarf]] or [[main sequence]] companion in orbit around a cooler star.<ref name=Reimers1984/><ref name=Ortiz2016/>
Ultraviolet [[Spectral line|line spectrum]] measurements ([[Astronomical spectroscopy|spectroscopy]]) are used to discern the chemical composition, densities, and temperatures of the [[interstellar medium]], and the temperature and composition of hot young stars. UV observations can also provide essential information about the [[Galaxy formation and evolution|evolution of galaxies]]. They can be used to discern the presence of a hot [[white dwarf]] or [[main sequence]] companion in orbit around a cooler star.<ref name=Reimers1984/><ref name=Ortiz2016/>


Line 33: Line 34:
*{{flagicon|Soviet Union}} - [[Astron (spacecraft)|Astron-1]] (150-350&nbsp;nm, 1983–1989)
*{{flagicon|Soviet Union}} - [[Astron (spacecraft)|Astron-1]] (150-350&nbsp;nm, 1983–1989)
*{{flagicon|Soviet Union}} - Glazar 1 and 2 on [[Mir]] (in [[Kvant-1]], 1987–2001)
*{{flagicon|Soviet Union}} - Glazar 1 and 2 on [[Mir]] (in [[Kvant-1]], 1987–2001)
*{{flagicon|United States}} - [[FAUST (telescope)|FAUST]] (140-180 nm, in ATLAS-1 [[Spacelab]] aboard [[STS-45]] mission, March 1992)<ref>{{cite journal |author=Lampton, M., Sasseen, T. P., Wu, X., & Bowyer, S.|date=1993 |title=A study of the impact of the space shuttle environment on faint far-UV geophysical and astronomical phenomena |url= |journal=Geophysical Research Letters |volume= 20|issue=6 |pages=539–542|bibcode=1993GeoRL..20..539L |doi= 10.1029/93GL00093}}</ref>
*{{flagicon|United States}} - [[Extreme Ultraviolet Explorer|EUVE]] (7-76&nbsp;nm, 1992–2001)
*{{flagicon|United States}} - [[Extreme Ultraviolet Explorer|EUVE]] (7-76&nbsp;nm, 1992–2001)
*{{flagicon|United States}} - [[Far Ultraviolet Spectroscopic Explorer|FUSE]] (90.5-119.5&nbsp;nm, 1999–2007)
*{{flagicon|United States}} - [[Far Ultraviolet Spectroscopic Explorer|FUSE]] (90.5-119.5&nbsp;nm, 1999–2007)
*{{flagicon|United States}} + {{flagicon|European Union}} - [[Extreme ultraviolet Imaging Telescope]] (on [[Solar and Heliospheric Observatory|SOHO]] imaging Sun at 17.1, 19.5, 28.4, and 30.4&nbsp;nm)
*{{flagicon|United States}} + {{flagicon|European Union}} - [[Extreme ultraviolet Imaging Telescope]] (on [[Solar and Heliospheric Observatory|SOHO]] imaging Sun at 17.1, 19.5, 28.4, and 30.4&nbsp;nm)
*{{flagicon|United States}} + {{flagicon|European Union}} - [[Hubble Space Telescope]] (Hubble [[Space Telescope Imaging Spectrograph|STIS]] 115–1030&nbsp;nm, 1997–) (Hubble [[Wide Field Camera 3|WFC3]] 200-1700&nbsp;nm, 2009–)
*{{flagicon|United States}} + {{flagicon|European Union}} - [[Hubble Space Telescope]] (various 115-800&nbsp;nm,1990-1997-) ([[Space Telescope Imaging Spectrograph|STIS]] 115–1030&nbsp;nm, 1997–) ([[Wide Field Camera 3|WFC3]] 200-1700&nbsp;nm, 2009–)
*{{flagicon|United States}} - [[Swift Gamma-Ray Burst Mission]] (170–650&nbsp;nm, 2004- )
*{{flagicon|United States}} - [[Swift Gamma-Ray Burst Mission]] (170–650&nbsp;nm, 2004- )
*{{flagicon|United States}} - [[Hopkins Ultraviolet Telescope]] (flew in 1990 and 1995)
*{{flagicon|United States}} - [[Hopkins Ultraviolet Telescope]] (flew in 1990 and 1995)
*{{flagicon|Germany}} - [[ROSAT]] XUV<ref>[http://iraf.noao.edu/iraf/ftp/iraf/conf/web/adass_proc/adass_95/staubertr/staubertr.html R. Staubert, H. Brunner,1 H.-C. Kreysing - The German ROSAT XUV Data Center and a ROSAT XUV Pointed Phase Source Catalogue (1996)]</ref> (17-210eV) (30-6&nbsp;nm, 1990–1999)
*{{flagicon|Germany}} - [[ROSAT]] XUV<ref>[http://iraf.noao.edu/iraf/ftp/iraf/conf/web/adass_proc/adass_95/staubertr/staubertr.html R. Staubert, H. Brunner,1 H.-C. Kreysing - The German ROSAT XUV Data Center and a ROSAT XUV Pointed Phase Source Catalogue (1996)]</ref> (17-210eV) (30-6&nbsp;nm, 1990–1999)
*{{flagicon|United States}} - [[Far Ultraviolet Spectroscopic Explorer]] (90.5-119.5 nm, 1999–2007)
*{{flagicon|United States}} - [[Far Ultraviolet Spectroscopic Explorer]] (90.5-119.5 nm, 1999–2007)
*{{flagicon|United States}} - [[Galaxy Evolution Explorer]] (135–280&nbsp;nm, 2003–2012)
*{{flagicon|United States}} - [[GALEX|Galaxy Evolution Explorer]] (135–280&nbsp;nm, 2003–2012)
*{{flagicon|Japan}} - [[Hisaki (satellite)|Hisaki]] (130-530&nbsp;nm, 2013 -)
*{{flagicon|Japan}} - [[Hisaki (satellite)|Hisaki]] (130-530&nbsp;nm, 2013 - 2023)
*{{flagicon|China}} - [[Chang'e 3#Lunar-based ultraviolet telescope (LUT)|Lunar-based ultraviolet telescope (LUT)]] (on [[Chang'e 3]] lunar lander, 245-340 &nbsp;nm, 2013 -)
*{{flagicon|China}} - [[Chang'e 3#Lunar-based ultraviolet telescope (LUT)|Lunar-based ultraviolet telescope (LUT)]] (on [[Chang'e 3]] lunar lander, 245-340 &nbsp;nm, 2013 -)
*{{flagicon|India}} - [[Astrosat]] (130-530&nbsp;nm, 2015 -)
*{{flagicon|India}} - [[Astrosat]] (130-530&nbsp;nm, 2015 -)
*{{flagicon|United States}} - [[Colorado Ultraviolet Transit Experiment]] - (255-330 nm spectrograph, 2021- )
*{{flagicon|Germany}} - Public Telescope|Public Telescope (PST)<ref>[http://www.publictelescope.org Public Telescope Project]</ref><ref>[http://www.publictelescope.org/wp-content/uploads/2015/02/2015-02-Popular-Astronomy-UK.pdf The first public space telescope] Popular Astronomy UK</ref><ref>[http://www.spektrum.de/news/ein-privates-weltraumteleskope-fuer-amateure-und-profis/1352064 Ein privates Weltraumteleskope für Amateure und Profis] Spektrum DE</ref> (100-180&nbsp;nm, Launch planned 2019)
*{{flagicon|European Union}} - [[PROBA-3]] (CUTE) - (530-588 nm coronagraph, 2024- )
*{{flagicon|United States}} - Viewpoint-1 SpaceFab.US (200-950&nbsp;nm, Launch planned 2022)<ref>http://www.spacefab.us/space-telescopes.html</ref>
*{{flagicon|Germany}} - Public Telescope (PST)<ref>[http://www.spektrum.de/news/ein-privates-weltraumteleskope-fuer-amateure-und-profis/1352064 Ein privates Weltraumteleskope für Amateure und Profis] Spektrum DE. June 2015</ref> (100-180&nbsp;nm, Proposed 2015, EU funded study )
*{{flagicon|United States}} - Viewpoint-1 SpaceFab.US (200-950&nbsp;nm, Launch planned 2022)<ref>{{Cite web|url=http://www.spacefab.us/space-telescopes.html|title = Space Telescopes}}</ref>


See also [[List of space telescopes#Ultraviolet|List of ultraviolet space telescopes]]
See also [[List of space telescopes#Ultraviolet|List of ultraviolet space telescopes]]
Line 77: Line 81:
| volume=461 | issue=3 | pages=3036–3046 | date=September 2016
| volume=461 | issue=3 | pages=3036–3046 | date=September 2016
| arxiv=1606.09086 | bibcode=2016MNRAS.461.3036O
| arxiv=1606.09086 | bibcode=2016MNRAS.461.3036O
| doi=10.1093/mnras/stw1547 }}</ref>
| doi=10.1093/mnras/stw1547 | doi-access=free }}</ref>
}}
}}



Latest revision as of 00:54, 4 December 2024

A GALEX image of the spiral galaxy Messier 81 in ultraviolet light. Credit:GALEX/NASA/JPL-Caltech.

Ultraviolet astronomy is the observation of electromagnetic radiation at ultraviolet wavelengths between approximately 10 and 320 nanometres; shorter wavelengths—higher energy photons—are studied by X-ray astronomy and gamma-ray astronomy.[1] Ultraviolet light is not visible to the human eye.[2] Most of the light at these wavelengths is absorbed by the Earth's atmosphere, so observations at these wavelengths must be performed from the upper atmosphere or from space.[1]

Overview

[edit]

Ultraviolet line spectrum measurements (spectroscopy) are used to discern the chemical composition, densities, and temperatures of the interstellar medium, and the temperature and composition of hot young stars. UV observations can also provide essential information about the evolution of galaxies. They can be used to discern the presence of a hot white dwarf or main sequence companion in orbit around a cooler star.[3][4]

The ultraviolet universe looks quite different from the familiar stars and galaxies seen in visible light. Most stars are actually relatively cool objects emitting much of their electromagnetic radiation in the visible or near-infrared part of the spectrum. Ultraviolet radiation is the signature of hotter objects, typically in the early and late stages of their evolution. In the Earth's sky seen in ultraviolet light, most stars would fade in prominence. Some very young massive stars and some very old stars and galaxies, growing hotter and producing higher-energy radiation near their birth or death, would be visible. Clouds of gas and dust would block the vision in many directions along the Milky Way.

Space-based solar observatories such as SDO and SOHO use ultraviolet telescopes (called AIA and EIT, respectively) to view activity on the Sun and its corona. Weather satellites such as the GOES-R series also carry telescopes for observing the Sun in ultraviolet.

The Hubble Space Telescope and FUSE have been the most recent major space telescopes to view the near and far UV spectrum of the sky, though other UV instruments have flown on smaller observatories such as GALEX, as well as sounding rockets and the Space Shuttle.

Pioneers in ultraviolet astronomy include George Robert Carruthers, Robert Wilson, and Charles Stuart Bowyer.

Andromeda Galaxy - in high-energy X-ray and ultraviolet light (released 5 January 2016).

Ultraviolet space telescopes

[edit]
Astro 2 UIT captures M101 with ultraviolet shown in purple

See also List of ultraviolet space telescopes

Ultraviolet instruments on planetary spacecraft

[edit]
  • United States - UVIS (Cassini) - 1997 (at Saturn from 2004 to 2017)
  • United States - MASCS (MESSENGER) - 2004 (at Mercury from 2011 to 2015)
  • United States - Alice (New Horizons) - 2006 (Pluto flyby in 2015)
  • United States - UVS (Juno) - 2011 (at Jupiter since 2016)
  • United States - IUVS (MAVEN) - 2013 (at Mars since 2014)

See also

[edit]
  • Markarian galaxies – Galaxy with a nucleus emitting exceptionally large amounts of ultraviolet
  • Pea galaxy – Possible type of luminous blue compact galaxy

References

[edit]
  1. ^ a b A. N. Cox, ed. (2000). Allen's Astrophysical Quantities. New York: Springer-Verlag. ISBN 0-387-98746-0.
  2. ^ "Ultraviolet Light". Archived from the original on 2017-02-13. Retrieved 2017-02-12.
  3. ^ Reimers, D. (July 1984). "Discovery of a white dwarf companion of the "hybrid" K giant HD 81817". Astronomy and Astrophysics. 136: L5–L6. Bibcode:1984A&A...136L...5R.
  4. ^ Ortiz, Roberto; Guerrero, Martín A. (September 2016). "Ultraviolet emission from main-sequence companions of AGB stars". Monthly Notices of the Royal Astronomical Society. 461 (3): 3036–3046. arXiv:1606.09086. Bibcode:2016MNRAS.461.3036O. doi:10.1093/mnras/stw1547.
  5. ^ Lampton, M., Sasseen, T. P., Wu, X., & Bowyer, S. (1993). "A study of the impact of the space shuttle environment on faint far-UV geophysical and astronomical phenomena". Geophysical Research Letters. 20 (6): 539–542. Bibcode:1993GeoRL..20..539L. doi:10.1029/93GL00093.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ R. Staubert, H. Brunner,1 H.-C. Kreysing - The German ROSAT XUV Data Center and a ROSAT XUV Pointed Phase Source Catalogue (1996)
  7. ^ Ein privates Weltraumteleskope für Amateure und Profis Spektrum DE. June 2015
  8. ^ "Space Telescopes".
[edit]