Jump to content

Trichlorofluoromethane: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
AnomieBOT (talk | contribs)
m Dating maintenance tags: {{Verify source}}
Use in Planetary Astrophysics: clarification that industrial pollution has never been detected in the atmosphere of an earthlike exoplanet, therefore it hasn't been used to detect said industrial pollution. Maybe there is a better way to phrase the whole sentence than my revision, but this revision more accurately reflects what is in the linked article than the previous
 
(39 intermediate revisions by 30 users not shown)
Line 1: Line 1:
{{Short description|A type of chlorofluorocarbon}}
{{Short description|A type of chlorofluorocarbon}}
{{update|date=May 2019}}
{{update|date=October 2023}}
{{chembox
{{chembox
| Watchedfields = changed
| Watchedfields = changed
Line 11: Line 11:
| PIN = Trichloro(fluoro)methane <!-- Parentheses are used according to Subsection P-16.5.1.3 of Nomenclature of Organic Chemistry – IUPAC Recommendations and Preferred Names 2013 (Blue Book) -->
| PIN = Trichloro(fluoro)methane <!-- Parentheses are used according to Subsection P-16.5.1.3 of Nomenclature of Organic Chemistry – IUPAC Recommendations and Preferred Names 2013 (Blue Book) -->
| OtherNames = Trichlorofluoromethane<br />Fluorotrichloromethane<br />Fluorochloroform<br />Freon 11<br />CFC 11<br />R 11<br />Arcton 9<br />Freon 11A<br />Freon 11B<br />Freon HE<br />Freon MF
| OtherNames = Trichlorofluoromethane<br />Fluorotrichloromethane<br />Fluorochloroform<br />Freon 11<br />CFC 11<br />R 11<br />Arcton 9<br />Freon 11A<br />Freon 11B<br />Freon HE<br />Freon MF
| data page pagename = none
|Section1={{Chembox Identifiers
|Section1={{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
Line 44: Line 43:
| LogP = 2.53
| LogP = 2.53
| VaporPressure = 89 kPa at 20 °C<br/>131 kPa at 30 °C
| VaporPressure = 89 kPa at 20 °C<br/>131 kPa at 30 °C
| ThermalConductivity = {{nowrap|1=0.0079 W m<sup>−1</sup> K<sup>−1</sup>}} (gas&nbsp;at 300&nbsp;K, ignoring pressure&nbsp;dependence)<ref>Touloukian, Y.S., Liley, P.E., and Saxena, S.C. Thermophysical properties of matter - the TPRC data series. Volume 3. Thermal conductivity - nonmetallic liquids and gases. Data book. 1970.</ref>{{Verify source|date=January 2022}}[
| ThermalConductivity = {{nowrap|1=0.0079 W m<sup>−1</sup> K<sup>−1</sup>}} (gas&nbsp;at 300&nbsp;K, ignoring pressure&nbsp;dependence)<ref>Touloukian, Y.S., Liley, P.E., and Saxena, S.C. Thermophysical properties of matter - the TPRC data series. Volume 3. Thermal conductivity - nonmetallic liquids and gases. Data book. 1970.</ref>{{Verify source|date=January 2022}}
|-
}}
}}
|Section3={{Chembox Hazards
|Section3={{Chembox Hazards
Line 63: Line 61:
}}
}}


'''Trichlorofluoromethane,''' also called '''freon-11''', '''CFC-11''', or '''R-11''', is a [[chlorofluorocarbon]] (CFC). It is a colorless, faintly ethereal, and sweetish-smelling liquid that boils around room temperature.<ref name=Ull>{{Ullmann|first1=Günter |last1=Siegemund|first2=Werner|last2=Schwertfeger|first3=Andrew|last3= Feiring|first4=Bruce|last4=Smart|first5=Fred |last5=Behr|first6=Herward|last6=Vogel|first7=Blaine|last7=McKusick|title=Fluorine Compounds, Organic|year=2002|doi=10.1002/14356007.a11_349}}</ref> CFC-11 is a Class 1 ozone-depleting substance which damages Earth's protective [[ozone layer|stratospheric ozone layer]].<ref name=ods>{{cite web |url=https://www.epa.gov/ozone-layer-protection/international-treaties-and-cooperation-about-protection-stratospheric-ozone |title=International Treaties and Cooperation about the Protection of the Stratospheric Ozone Layer |date=15 July 2015 |publisher=U.S. Environmental Protection Agency |accessdate=2021-02-14}}</ref>
'''Trichlorofluoromethane,''' also called '''freon-11''', '''CFC-11''', or '''R-11''', is a [[chlorofluorocarbon]] (CFC). It is a colorless, faintly ethereal, and sweetish-smelling liquid that boils around room temperature.<ref name=Ull>{{Ullmann|first1=Günter |last1=Siegemund|first2=Werner|last2=Schwertfeger|first3=Andrew|last3= Feiring|first4=Bruce|last4=Smart|first5=Fred |last5=Behr|first6=Herward|last6=Vogel|first7=Blaine|last7=McKusick|title=Fluorine Compounds, Organic|year=2002|doi=10.1002/14356007.a11_349}}</ref> CFC-11 is a Class 1 [[ozone]]-depleting substance which damages Earth's protective [[ozone layer|stratospheric ozone layer]].<ref name=ods>{{cite web |url=https://www.epa.gov/ozone-layer-protection/international-treaties-and-cooperation-about-protection-stratospheric-ozone |title=International Treaties and Cooperation about the Protection of the Stratospheric Ozone Layer |date=15 July 2015 |publisher=U.S. Environmental Protection Agency |accessdate=2021-02-14}}</ref> R-11 is not flammable at ambient temperature and pressure but it can become very combustible if heated and ignited by a strong ignition source.


== Historical use ==
== Historical use ==
Trichlorofluoromethane was first widely used as a [[refrigerant]]. Because of its high boiling point (compared to most refrigerants), it can be used in systems with a low operating pressure, making the mechanical design of such systems less demanding than that of higher-pressure refrigerants [[Dichlorodifluoromethane|R-12]] or [[Chlorodifluoromethane|R-22]].
Trichlorofluoromethane was first widely used as a [[refrigerant]]. Because of its high boiling point compared to most refrigerants, it can be used in systems with a low operating pressure, making the mechanical design of such systems less demanding than that of higher-pressure refrigerants [[Dichlorodifluoromethane|R-12]] or [[Chlorodifluoromethane|R-22]].


Trichlorofluoromethane is used as a reference compound for [[fluorine-19 NMR]] studies.
Trichlorofluoromethane is used as a reference compound for [[fluorine-19 NMR]] studies.
Line 72: Line 70:
Trichlorofluoromethane was formerly used in the [[drinking bird]] novelty, largely because it has a boiling point of {{convert|23.77|C|F}}. The replacement, [[dichloromethane]], boiling point {{convert|39.6|C|F}}, requires a higher ambient temperature to work.
Trichlorofluoromethane was formerly used in the [[drinking bird]] novelty, largely because it has a boiling point of {{convert|23.77|C|F}}. The replacement, [[dichloromethane]], boiling point {{convert|39.6|C|F}}, requires a higher ambient temperature to work.


Prior to the knowledge of the ozone depletion potential of chlorine in refrigerants and other possible harmful effects on the environment, trichlorofluoromethane was sometimes used as a cleaning/rinsing agent for low-pressure systems.<ref>{{Cite news|url=https://hvacafe.com/r-10-r-11-r-12-gases/|title=R-10 ,R-11 ,R-12 GASES - ملتقى التبريد والتكييف HVACafe|date=2017-05-25|work=ملتقى التبريد والتكييف HVACafe|access-date=2018-05-18|language=ar-AR}}</ref>
Prior to the knowledge of the ozone depletion potential of chlorine in refrigerants and other possible harmful effects on the environment, trichlorofluoromethane was sometimes used as a cleaning/rinsing agent for low-pressure systems.<ref>{{Cite news|url=https://hvacafe.com/r-10-r-11-r-12-gases/|title=R-10 ,R-11 ,R-12 GASES - ملتقى التبريد والتكييف HVACafe|date=2017-05-25|work=ملتقى التبريد والتكييف HVACafe|access-date=2018-05-18|language=ar-AR|archive-date=2018-05-18|archive-url=https://web.archive.org/web/20180518130157/https://hvacafe.com/r-10-r-11-r-12-gases/|url-status=dead}}</ref>


== Production moratorium ==
== Production ==
Trichlorofluoromethane can be obtained by reacting [[carbon tetrachloride]] with [[hydrogen fluoride]] at 435 °C and 70 atm, producing a mixture of trichlorofluoromethane, [[tetrafluoromethane]] and [[dichlorodifluoromethane]] in a ratio of 77:18:5. The reaction can also be carried out in the presence of [[antimony(III) chloride]] or [[antimony(V) chloride]]:<ref name="Katritzky_Gilchrist_Meth-Cohn_Rees">{{citation |author=Katritzky |first1=Alan R. |title=Comprehensive Organic Functional Group Transformations |date=1995 |pages=220 |url=https://books.google.com/books?id=YzBveZGm0GEC&pg=PA220 |publisher=[[Elsevier]] |isbn=978-0-08-042704-1 |last2=Gilchrist |first2=Thomas L. |last3=Meth-Cohn |first3=Otto |last4=Rees |first4=Charles Wayne |via=[[Google Books]]}}<!-- auto-translated by Module:CS1 translator --></ref>
Trichlorofluoromethane was included in the production moratorium agreed in the [[Montreal Protocol]] of 1987. It is assigned an [[ozone depletion potential]] of 1.0, and U.S. production was ended on January 1, 1996.<ref name=ods />
:<chem>CCl4 + HF -> CCl3F + CF4 + CCl2F2</chem>
Trichlorofluoromethane is also formed as one of the byproducts when [[graphite]] reacts with chlorine and hydrogen fluoride at 500 °C.<ref name="Katritzky_Gilchrist_Meth-Cohn_Rees"/>

[[Sodium hexafluorosilicate]] under pressure at 270 °C, [[titanium(IV) fluoride]], [[chlorine trifluoride]], [[cobalt(III) fluoride]], [[iodine pentafluoride]], and [[bromine trifluoride]] are also suitable fluorinating agents for carbon tetrachloride.<ref name="Katritzky_Gilchrist_Meth-Cohn_Rees"/><ref name="DOI10.1039/JR9480002188">{{Cite journal |last1=Banks |first1=A.A. |last2=Emeléus |first2=H.J. |last3=Haszeldine |first3=R. N. |last4=Kerrigan |first4=V. |date=December 1948 |title=443. The reaction of bromine trifluoride and iodine pentafluoride with carbon tetrachloride, tetrabromide, and tetraiodide and with tetraiodoethylene. |journal=[[Journal of the Chemical Society]] |pages=2188–2190 |doi=10.1039/JR9480002188}}</ref>
:<chem>CCl4 + Na2SiF6 -> CCl3F + CCl2F2 + CCl3F + NaCl + SiF4</chem>
:<chem>CCl4 + BrF3 -> BrF + CCl2F2 + CCl3F</chem>

Trichlorofluoromethane was included in the production moratorium in the [[Montreal Protocol]] of 1987. It is assigned an [[ozone depletion potential]] of 1.0, and U.S. production was ended on January 1, 1996.<ref name=ods />


== Regulatory challenges ==
== Regulatory challenges ==
In 2018, the atmospheric concentration of CFC-11 was noted by researchers to be declining more slowly than expected,<ref>{{Cite journal |url=https://www.nature.com/articles/s41586-018-0106-2 |title=An unexpected and persistent increase in global emissions of ozone-depleting CFC-11 |author=Montzka, S.A.; Dutton, G.S.; Yu, P. |display-authors=etal |journal=Nature |publisher=Springer Nature |issue=7705 |pages=413–417 |year=2018 |volume=557 |doi=10.1038/s41586-018-0106-2|pmid=29769666 |bibcode=2018Natur.557..413M |s2cid=21705434 |hdl=1983/fd5eaf00-34b1-4689-9f23-410a54182b61 |hdl-access=free }}</ref><ref>{{cite web |url=https://arstechnica.com/science/2018/05/it-seems-someone-is-producing-a-banned-ozone-depleting-chemical-again/ |title=It seems someone is producing a banned ozone-depleting chemical again |last=Johnson |first=Scott |date=5 May 2018 |website=Ars Technica |access-date=18 October 2018 |quote=Decline of CFC-11 has slowed in recent years, pointing to a renewed source}}</ref> and it subsequently emerged that it remains in widespread use as a [[blowing agent]] for [[polyurethane#Production|polyurethane foam insulation]] in the construction industry of [[China]].<ref>{{cite web |last1=McGrath |first1=Matt |title=China 'home foam' gas key to ozone mystery |url=https://www.bbc.co.uk/news/science-environment-44738952 |website=BBC News |access-date=9 July 2018 |date=9 July 2018}}</ref> In 2021 researchers announced that emissions declined by 20,000 U.S. tons from 2018 to 2019, which mostly reversed the previous spike in emissions.<ref>{{cite web |url=https://news.mit.edu/2021/cfc-11-ozone-recovery-0210 |title=Reductions in CFC-11 emissions put ozone recovery back on track |author=Jennifer Chu |publisher=MIT News |date=2021-02-10}}</ref>
In 2018, the atmospheric concentration of CFC-11 was noted by researchers to be declining more slowly than expected,<ref>{{Cite journal |url=https://www.nature.com/articles/s41586-018-0106-2 |title=An unexpected and persistent increase in global emissions of ozone-depleting CFC-11 |vauthors=Montzka SA, Dutton GS, Yu P |display-authors=etal |journal=Nature |publisher=Springer Nature |issue=7705 |pages=413–417 |year=2018 |volume=557 |doi=10.1038/s41586-018-0106-2|pmid=29769666 |bibcode=2018Natur.557..413M |s2cid=21705434 |hdl=1983/fd5eaf00-34b1-4689-9f23-410a54182b61 |hdl-access=free }}</ref><ref>{{cite web |url=https://arstechnica.com/science/2018/05/it-seems-someone-is-producing-a-banned-ozone-depleting-chemical-again/ |title=It seems someone is producing a banned ozone-depleting chemical again |last=Johnson |first=Scott |date=5 May 2018 |website=Ars Technica |access-date=18 October 2018 |quote=Decline of CFC-11 has slowed in recent years, pointing to a renewed source}}</ref> and it subsequently emerged that it remains in widespread use as a [[blowing agent]] for [[polyurethane#Production|polyurethane foam insulation]] in the construction industry of [[China]].<ref>{{cite web |last1=McGrath |first1=Matt |date=9 July 2018 |title=China 'home foam' gas key to ozone mystery |url=https://www.bbc.co.uk/news/science-environment-44738952 |access-date=9 July 2018 |website=[[BBC News]]}}</ref> In 2021, researchers announced that emissions declined by 20,000 U.S. tons from 2018 to 2019, which mostly reversed the previous spike in emissions.<ref>{{cite web |author=Chu |first=Jennifer |date=2021-02-10 |title=Reductions in CFC-11 emissions put ozone recovery back on track |url=https://news.mit.edu/2021/cfc-11-ozone-recovery-0210 |website=[[MIT News]] |publisher=}}</ref> In 2022, the [[European Commission]] announced an updated regulation that mandates the recovery and prevention of emissions of CFC-11 blowing agents from foam insulation in demolition waste, which is still emitted at significant scale.<ref>{{Cite web |date=2022-05-04 |title=Proposal for a regulation of the european parliament and the council on substances that deplete the ozone layer |url=https://climate.ec.europa.eu/system/files/2022-04/ods_proposal_en.pdf |access-date=24 November 2022 |website=European Commission |agency=European Commission-DG Environment}}</ref>

==Dangers==
R11, like most [[Chlorofluorocarbon|chlorofluorocarbons]], forms [[Phosgene|phosgene gas]] when exposed to a naked flame.<ref>{{cite web |last=Orr |first=Bryan |date=4 January 2021 |title=False Alarms: The Legacy of Phosgene Gas |url=https://hvacrschool.com/phosgene-gas/ |access-date=9 May 2022 |website=HVAC School}}</ref>

== Use in Planetary Astrophysics ==
Because trichlorofluoromethane is one of the easiest to detect [[Chlorofluorocarbon|chlorofluorocarbons]] produced by anthropogenic activity, it is has been used in attempting to detect industrial pollution in the atmospheres of earth-like exoplanets.<ref>{{Cite journal |last=Lin |first=Henry W. |last2=Abad |first2=Gonzalo Gonzalez |last3=Loeb |first3=Abraham |date=2014-08-12 |title=Detecting industrial pollution in the atmospheres of earth-like exoplanets |url=https://arxiv.org/abs/1406.3025 |journal=The Astrophysical Journal |volume=792 |issue=1 |pages=L7 |doi=10.1088/2041-8205/792/1/L7 |issn=2041-8213|arxiv=1406.3025 }}</ref>


==Gallery==
==Gallery==
<gallery class="center">
<gallery mode="center">
File:CFC-11 mm.png|thumb|CFC-11 measured by the Advanced Global Atmospheric Gases Experiment ([http://agage.mit.edu/ AGAGE]) in the lower atmosphere ([[troposphere]]) at stations around the world. Abundances are given as pollution free monthly mean mole fractions in [[Parts-per notation|parts-per-trillion]].
File:CFC-11 mm.png|CFC-11 measured by the Advanced Global Atmospheric Gases Experiment ([http://agage.mit.edu/ AGAGE]) in the lower atmosphere ([[troposphere]]) at stations around the world. Abundances are given as pollution free monthly mean mole fractions in [[Parts-per notation|parts-per-trillion]].
File:Hats_f11_global.png | Hemispheric and Global mean concentrations of CFC-11 (NOAA/ESRL)
File:Hats_f11_global.png | Hemispheric and Global mean concentrations of CFC-11 (NOAA/ESRL)
Image:AYool CFC-11 history.png | Time-series of atmospheric concentrations of CFC-11 (Walker ''et al.'', 2000)
Image:AYool CFC-11 history.png | Time-series of atmospheric concentrations of CFC-11 (Walker ''et al.'', 2000)
<!-- Deleted image removed: File:CFC11 inventory 0.png|CFC inventory of 2004 -->
File:GLODAP sea-surf CFC11 AYool.png | "Present day" (1990s) sea surface CFC-11 concentration
File:GLODAP sea-surf CFC11 AYool.png | "Present day" (1990s) sea surface CFC-11 concentration
File:GLODAP invt CFC11 AYool.png | "Present day" (1990s) CFC-11 oceanic vertical inventory
File:GLODAP invt CFC11 AYool.png | "Present day" (1990s) CFC-11 oceanic vertical inventory
Line 100: Line 114:
* [https://web.archive.org/web/20070624181441/http://www.oehha.ca.gov/water/phg/pdf/fc_11_c.pdf Public health goal for trichlorofluoromethane in drinking water]
* [https://web.archive.org/web/20070624181441/http://www.oehha.ca.gov/water/phg/pdf/fc_11_c.pdf Public health goal for trichlorofluoromethane in drinking water]
* [http://webbook.nist.gov/cgi/cbook.cgi?ID=75-69-4&Units=SI Names at webbook.nist.gov]
* [http://webbook.nist.gov/cgi/cbook.cgi?ID=75-69-4&Units=SI Names at webbook.nist.gov]
* [http://www.speclab.com/compound/c75694.htm Data sheet at speclab.com]
* [http://www.speclab.com/compound/c75694.htm Data sheet at speclab.com] {{Webarchive|url=https://web.archive.org/web/20070609215145/http://www.speclab.com/compound/c75694.htm |date=2007-06-09 }}
* {{ICSC|0047|00}}
* {{ICSC|0047|00}}
* {{PGCH|0290}}
* {{PGCH|0290}}
Line 115: Line 129:
[[Category:Refrigerants]]
[[Category:Refrigerants]]
[[Category:Greenhouse gases]]
[[Category:Greenhouse gases]]
[[Category:Ozone-depleting chemical substances]]

Latest revision as of 10:35, 6 December 2024

Trichlorofluoromethane
Names
Preferred IUPAC name
Trichloro(fluoro)methane
Other names
Trichlorofluoromethane
Fluorotrichloromethane
Fluorochloroform
Freon 11
CFC 11
R 11
Arcton 9
Freon 11A
Freon 11B
Freon HE
Freon MF
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.812 Edit this at Wikidata
EC Number
  • 200-892-3
RTECS number
  • PB6125000
UNII
  • InChI=1S/CCl3F/c2-1(3,4)5 checkY
    Key: CYRMSUTZVYGINF-UHFFFAOYSA-N checkY
  • InChI=1/CCl3F/c2-1(3,4)5
  • C(F)(Cl)(Cl)Cl
  • ClC(Cl)(Cl)F
Properties
CCl3F
Molar mass 137.36 g·mol−1
Appearance Colorless liquid/gas
Odor nearly odorless[1]
Density 1.494 g/cm3
Melting point −110.48 °C (−166.86 °F; 162.67 K)
Boiling point 23.77 °C (74.79 °F; 296.92 K)
1.1 g/L (at 20 °C)
log P 2.53
Vapor pressure 89 kPa at 20 °C
131 kPa at 30 °C
Thermal conductivity 0.0079 W m−1 K−1 (gas at 300 K, ignoring pressure dependence)[2][verification needed]
Hazards
GHS labelling:[4]
GHS07: Exclamation mark
Warning
H420
P502
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
26,200 ppm (rat, 4 hr)
100,000 ppm (rat, 20 min)
100,000 ppm (rat, 2 hr)[3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1000 ppm (5600 mg/m3)[1]
REL (Recommended)
C 1000 ppm (5600 mg/m3)[1]
IDLH (Immediate danger)
2000 ppm[1]
Safety data sheet (SDS) ICSC 0047
Supplementary data page
Trichlorofluoromethane (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Trichlorofluoromethane, also called freon-11, CFC-11, or R-11, is a chlorofluorocarbon (CFC). It is a colorless, faintly ethereal, and sweetish-smelling liquid that boils around room temperature.[5] CFC-11 is a Class 1 ozone-depleting substance which damages Earth's protective stratospheric ozone layer.[6] R-11 is not flammable at ambient temperature and pressure but it can become very combustible if heated and ignited by a strong ignition source.

Historical use

[edit]

Trichlorofluoromethane was first widely used as a refrigerant. Because of its high boiling point compared to most refrigerants, it can be used in systems with a low operating pressure, making the mechanical design of such systems less demanding than that of higher-pressure refrigerants R-12 or R-22.

Trichlorofluoromethane is used as a reference compound for fluorine-19 NMR studies.

Trichlorofluoromethane was formerly used in the drinking bird novelty, largely because it has a boiling point of 23.77 °C (74.79 °F). The replacement, dichloromethane, boiling point 39.6 °C (103.3 °F), requires a higher ambient temperature to work.

Prior to the knowledge of the ozone depletion potential of chlorine in refrigerants and other possible harmful effects on the environment, trichlorofluoromethane was sometimes used as a cleaning/rinsing agent for low-pressure systems.[7]

Production

[edit]

Trichlorofluoromethane can be obtained by reacting carbon tetrachloride with hydrogen fluoride at 435 °C and 70 atm, producing a mixture of trichlorofluoromethane, tetrafluoromethane and dichlorodifluoromethane in a ratio of 77:18:5. The reaction can also be carried out in the presence of antimony(III) chloride or antimony(V) chloride:[8]

Trichlorofluoromethane is also formed as one of the byproducts when graphite reacts with chlorine and hydrogen fluoride at 500 °C.[8]

Sodium hexafluorosilicate under pressure at 270 °C, titanium(IV) fluoride, chlorine trifluoride, cobalt(III) fluoride, iodine pentafluoride, and bromine trifluoride are also suitable fluorinating agents for carbon tetrachloride.[8][9]

Trichlorofluoromethane was included in the production moratorium in the Montreal Protocol of 1987. It is assigned an ozone depletion potential of 1.0, and U.S. production was ended on January 1, 1996.[6]

Regulatory challenges

[edit]

In 2018, the atmospheric concentration of CFC-11 was noted by researchers to be declining more slowly than expected,[10][11] and it subsequently emerged that it remains in widespread use as a blowing agent for polyurethane foam insulation in the construction industry of China.[12] In 2021, researchers announced that emissions declined by 20,000 U.S. tons from 2018 to 2019, which mostly reversed the previous spike in emissions.[13] In 2022, the European Commission announced an updated regulation that mandates the recovery and prevention of emissions of CFC-11 blowing agents from foam insulation in demolition waste, which is still emitted at significant scale.[14]

Dangers

[edit]

R11, like most chlorofluorocarbons, forms phosgene gas when exposed to a naked flame.[15]

Use in Planetary Astrophysics

[edit]

Because trichlorofluoromethane is one of the easiest to detect chlorofluorocarbons produced by anthropogenic activity, it is has been used in attempting to detect industrial pollution in the atmospheres of earth-like exoplanets.[16]

[edit]

See also

[edit]

References

[edit]
  1. ^ a b c d NIOSH Pocket Guide to Chemical Hazards. "#0290". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ Touloukian, Y.S., Liley, P.E., and Saxena, S.C. Thermophysical properties of matter - the TPRC data series. Volume 3. Thermal conductivity - nonmetallic liquids and gases. Data book. 1970.
  3. ^ "Fluorotrichloromethane". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. ^ Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  5. ^ Siegemund, Günter; Schwertfeger, Werner; Feiring, Andrew; Smart, Bruce; Behr, Fred; Vogel, Herward; McKusick, Blaine (2002). "Fluorine Compounds, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_349. ISBN 978-3527306732.
  6. ^ a b "International Treaties and Cooperation about the Protection of the Stratospheric Ozone Layer". U.S. Environmental Protection Agency. 15 July 2015. Retrieved 2021-02-14.
  7. ^ "R-10 ,R-11 ,R-12 GASES - ملتقى التبريد والتكييف HVACafe". ملتقى التبريد والتكييف HVACafe (in Arabic). 2017-05-25. Archived from the original on 2018-05-18. Retrieved 2018-05-18.
  8. ^ a b c Katritzky, Alan R.; Gilchrist, Thomas L.; Meth-Cohn, Otto; Rees, Charles Wayne (1995), Comprehensive Organic Functional Group Transformations, Elsevier, p. 220, ISBN 978-0-08-042704-1 – via Google Books
  9. ^ Banks, A.A.; Emeléus, H.J.; Haszeldine, R. N.; Kerrigan, V. (December 1948). "443. The reaction of bromine trifluoride and iodine pentafluoride with carbon tetrachloride, tetrabromide, and tetraiodide and with tetraiodoethylene". Journal of the Chemical Society: 2188–2190. doi:10.1039/JR9480002188.
  10. ^ Montzka SA, Dutton GS, Yu P, et al. (2018). "An unexpected and persistent increase in global emissions of ozone-depleting CFC-11". Nature. 557 (7705). Springer Nature: 413–417. Bibcode:2018Natur.557..413M. doi:10.1038/s41586-018-0106-2. hdl:1983/fd5eaf00-34b1-4689-9f23-410a54182b61. PMID 29769666. S2CID 21705434.
  11. ^ Johnson, Scott (5 May 2018). "It seems someone is producing a banned ozone-depleting chemical again". Ars Technica. Retrieved 18 October 2018. Decline of CFC-11 has slowed in recent years, pointing to a renewed source
  12. ^ McGrath, Matt (9 July 2018). "China 'home foam' gas key to ozone mystery". BBC News. Retrieved 9 July 2018.
  13. ^ Chu, Jennifer (2021-02-10). "Reductions in CFC-11 emissions put ozone recovery back on track". MIT News.
  14. ^ "Proposal for a regulation of the european parliament and the council on substances that deplete the ozone layer" (PDF). European Commission. European Commission-DG Environment. 2022-05-04. Retrieved 24 November 2022.
  15. ^ Orr, Bryan (4 January 2021). "False Alarms: The Legacy of Phosgene Gas". HVAC School. Retrieved 9 May 2022.
  16. ^ Lin, Henry W.; Abad, Gonzalo Gonzalez; Loeb, Abraham (2014-08-12). "Detecting industrial pollution in the atmospheres of earth-like exoplanets". The Astrophysical Journal. 792 (1): L7. arXiv:1406.3025. doi:10.1088/2041-8205/792/1/L7. ISSN 2041-8213.
[edit]