Jump to content

Julius Plücker: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tag: Reverted
m v2.05b - Bot T5 CW#2 - Fix errors for CW project (Tag with incorrect syntax - Reference before punctuation)
 
(22 intermediate revisions by 17 users not shown)
Line 5: Line 5:
| image = Julius Plücker.jpg
| image = Julius Plücker.jpg
| caption = Julius Plücker
| caption = Julius Plücker
| birth_date = {{birth date|1801|6|16|df=y}}{{citation needed|date=April 2015}}
| birth_date = {{birth date|1801|6|16|df=y}}
| birth_place = [[Elberfeld]], [[Duchy of Berg]], [[Holy Roman Empire]]{{citation needed|date=April 2015}}
| birth_place = [[Elberfeld]], [[Duchy of Berg]], [[Holy Roman Empire]]
| death_date = {{death date and age|1868|5|22|1801|6|16|df=y}}{{citation needed|date=April 2015}}
| death_date = {{death date and age|1868|5|22|1801|6|16|df=y}}
| death_place = [[Bonn]], [[Kingdom of Prussia]]{{citation needed|date=April 2015}}
| death_place = [[Bonn]], [[Kingdom of Prussia]]
| nationality = [[Germans|German]] {{citation needed|date=April 2015}} <!--Did Germany exist that time?-->
| nationality = [[Germans|German]]
| field = [[Mathematics]]<br>[[Physics]]
| field = [[Mathematics]]<br>[[Physics]]
| workplaces = [[University of Bonn]]<br />[[University of Berlin]]<br />[[University of Halle]]
| workplaces = [[University of Bonn]]<br />[[University of Berlin]]<br />[[University of Halle]]
| alma_mater = [[University of Bonn]]<br />[[University of Heidelberg]]<br />[[University of Berlin]]<br />[[University of Paris]]<br />[[University of Marburg]]
| alma_mater = [[University of Bonn]]<br />[[University of Heidelberg]]<br />[[University of Berlin]]<br />[[University of Paris]]<br />[[University of Marburg]]

{{citation needed|date=April 2015}}
| doctoral_advisor = [[Christian Ludwig Gerling]]<ref>{{Cite web|url=https://www.mathgenealogy.org/id.php?id=7402|title=Julius Plücker – The Mathematics Genealogy Project|website=www.mathgenealogy.org}}</ref>
| doctoral_advisor = [[Christian Ludwig Gerling]]<ref name = "Genealogy">{{Cite web|url=https://www.mathgenealogy.org/id.php?id=7402|title=Julius Plücker – The Mathematics Genealogy Project|website=www.mathgenealogy.org}}</ref>
| doctoral_students = [[Felix Klein]]{{citation needed|date=April 2015}}<br />[[August Beer]]{{citation needed|date=April 2015}}
| doctoral_students = [[Felix Klein]]<br />[[August Beer]]<br /> [[Johann Hittorf]] <br /> Friedrich Lange <ref name = "Genealogy></ref>
| known_for = {{Plainlist|
| known_for = {{Plainlist|
*[[Plücker's conoid]]
*[[Plücker's conoid]]
Line 29: Line 29:
}}
}}


'''Julius Plücker''' (16 June 1801 – 22 May 1868) was a German [[mathematician]] and [[physicist]]. He made fundamental contributions to the field of [[analytical geometry]] and was a pioneer in the investigations of [[cathode ray]]s that led eventually to the discovery of the [[electron]]. He also vastly extended the study of [[Gabriel Lamé|Lamé]] curves.
'''Julius Plücker''' (16 June 1801 – 22 May 1868) was a German [[mathematician]] and [[physicist]]. He made fundamental contributions to the field of [[analytical geometry]] and was a pioneer in the investigations of [[cathode ray]]s that led eventually to the [[discovery of the electron]]. He also vastly extended the study of [[Lamé curve]]s.


== Biography ==
== Biography ==
{{Unreferenced section|date=April 2015}}


=== Early years ===
=== Early years ===
Plücker was born at [[Elberfeld]] (now part of [[Wuppertal]]). After being educated at [[Düsseldorf]] and at the universities of [[Bonn]], [[Heidelberg]] and Berlin he went to Paris in 1823, where he came under the influence of the great school of French geometers, whose founder, [[Gaspard Monge]], had only recently died.
Plücker was born at [[Elberfeld]] (now part of [[Wuppertal]]). After being educated at [[Düsseldorf]] and at the universities of [[University of Bonn|Bonn]], [[University of Heidelberg|Heidelberg]] and [[University of Berlin|Berlin]] he went to [[University of Paris|Paris]] in 1823,<ref name = "Gedächtniss">{{cite journal|doi=10.11588/heidok.00012662|title=Zum Gedächtniss an Julius Plücker |year=1872|last1=Clebsch|first1=Alfred|journal=[[Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen]]|volume=16|doi-access=free}}</ref> where he came under the influence of the great school of French geometers, whose founder, [[Gaspard Monge]], had only recently died.


In 1825 he returned to Bonn, and in 1828 was made professor of mathematics.
In 1825 he returned to Bonn, and in 1828 was made professor of mathematics.<ref name="Gedächtniss"></ref>


In the same year he published the first volume of his ''Analytisch-geometrische Entwicklungen'', which introduced the method of "abridged notation".
In the same year he published the first volume of his ''Analytisch-geometrische Entwicklungen'', which introduced the method of "abridged notation".


In 1831 he published the second volume, in which he clearly established on a firm and independent basis [[projective duality]].
In 1831 he published the second volume, in which he clearly established on a firm and independent basis [[projective duality]].
J plucker> ur fav scientist


=== Career ===
=== Career ===
Line 49: Line 47:
Plücker, first by himself and afterwards in conjunction with [[Johann Wilhelm Hittorf|Johann Hittorf]], made many important discoveries in the spectroscopy of gases. He was the first to use the vacuum tube with the capillary part now called a [[Geissler tube]], by means of which the luminous intensity of feeble electric discharges was raised sufficiently to allow of spectroscopic investigation. He anticipated [[Robert Wilhelm Bunsen]] and [[Gustav Kirchhoff]] in announcing that the lines of the spectrum were characteristic of the chemical substance which emitted them, and in indicating the value of this discovery in chemical analysis. According to Hittorf, he was the first who saw the three lines of the hydrogen spectrum, which a few months after his death, were recognized in the spectrum of the solar protuberances.
Plücker, first by himself and afterwards in conjunction with [[Johann Wilhelm Hittorf|Johann Hittorf]], made many important discoveries in the spectroscopy of gases. He was the first to use the vacuum tube with the capillary part now called a [[Geissler tube]], by means of which the luminous intensity of feeble electric discharges was raised sufficiently to allow of spectroscopic investigation. He anticipated [[Robert Wilhelm Bunsen]] and [[Gustav Kirchhoff]] in announcing that the lines of the spectrum were characteristic of the chemical substance which emitted them, and in indicating the value of this discovery in chemical analysis. According to Hittorf, he was the first who saw the three lines of the hydrogen spectrum, which a few months after his death, were recognized in the spectrum of the solar protuberances.


In 1865, Plücker returned to the field of geometry and invented what was known as ''[[line geometry]]'' in the nineteenth century. In [[projective geometry]], [[Plücker coordinates]] refer to a set of [[homogeneous co-ordinates]] introduced initially to embed the space of lines in projective space <math>\mathbf{P}^3</math> as a [[quadric (algebraic geometry)|quadric]] in <math>\mathbf{P}^5</math>. The construction uses 2×2 [[minor determinant]]s, or equivalently the second [[exterior power]] of the underlying vector space of dimension 4. It is now part of the theory of [[Grassmannian]]s <math>\mathbf{Gr}(k, V)</math>
In 1865, Plücker returned to the field of geometry and invented what was known as ''[[line geometry]]'' in the nineteenth century. In [[projective geometry]], [[Plücker coordinates]] refer to a set of [[homogeneous co-ordinates]] introduced initially to embed the space of lines in projective space <math>\mathbf{P}^3</math> as a [[quadric (algebraic geometry)|quadric]] in <math>\mathbf{P}^5</math>. The construction uses 2×2 [[minor determinant]]s, or equivalently the second [[exterior power]] of the underlying [[vector space]] of dimension 4. It is now part of the theory of [[Grassmannian]]s <math>\mathbf{Gr}(k, V)</math>
(<math> k </math>-dimensional subspaces of an <math>n</math>-dimensional vectore space <math> V</math>), to which the generalization of these co-ordinates to <math>k \times k </math> minors of the <math> n \times k </math> matrix of homogeneous coordinates, also known as [[Plücker coordinates]], apply. The embedding of the Grassmannian <math>\mathbf{Gr}(k, V)</math>
(<math> k </math>-dimensional subspaces of an <math>n</math>-dimensional vector space <math> V</math>), to which the generalization of these co-ordinates to <math>k \times k </math> minors of the <math> n \times k </math> matrix of homogeneous coordinates, also known as [[Plücker coordinates]], apply. The embedding of the Grassmannian <math>\mathbf{Gr}(k, V)</math>
into the projectivization <math> \mathbf{P}(\Lambda^k(V))</math> of the <math>k</math>th exterior power of <math>V</math>
into the projectivization <math> \mathbf{P}(\Lambda^k(V))</math> of the <math>k</math>th exterior power of <math>V</math>
is known as the [[Plucker embedding|Plücker embedding]].
is known as the [[Plucker embedding|Plücker embedding]].
Line 63: Line 61:
* 1868: Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement. Erste Abtheilung. Leipzig.
* 1868: Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement. Erste Abtheilung. Leipzig.
* 1869: Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement. Zweite Abtheilung. Ed. F. Klein. Leipzig.
* 1869: Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement. Zweite Abtheilung. Ed. F. Klein. Leipzig.
* 1895–1896: ''Gesammelte Wissenschaftliche Abhandlungen'', Band 1 (vol. 1), Mathematische Abhandlungen (edited by [[Arthur Moritz Schoenflies]] & [[Friedrich Pockels]]), Teubner 1895,<ref>{{cite journal|doi=10.1090/S0002-9904-1897-00469-4|title=Book Review: ''Julius Plückers gesammelte mathematische Abhandlungen''|year=1897|last1=Scott|first1=Charlotte Angas|author-link=Charlotte Scott|journal=[[Bulletin of the American Mathematical Society]]|volume=4|issue=3|pages=121–126|mr=1557565|doi-access=free}}</ref> [https://archive.org/details/juliusplckersge02pockgoog Archive], Band 2 (vol. 2), Physikalische Abhandlungen (edited by Friedrich Pockels), 1896, [https://archive.org/details/juliusplckersge00pockgoog Archive]


==Awards==
==Awards==
Line 72: Line 71:
*[[Grassmannian]]
*[[Grassmannian]]
*[[Ion pump (physics)|Ion pump]]
*[[Ion pump (physics)|Ion pump]]
*[[Parameter space]]
*[[Timeline of low-temperature technology]]
*[[Timeline of low-temperature technology]]


Line 84: Line 84:


== External links ==
== External links ==
{{Commons | Julius Plücker}}
{{Commons }}
* {{MathGenealogy|id=7402}}
* {{MathGenealogy|id=7402}}
* [http://www.crtsite.com/page7.html The Cathode Ray Tube site]
* [http://www.crtsite.com/page7.html The Cathode Ray Tube site]
Line 107: Line 107:
[[Category:People from Elberfeld]]
[[Category:People from Elberfeld]]
[[Category:People from the Rhine Province]]
[[Category:People from the Rhine Province]]
[[Category:University of Bonn faculty]]
[[Category:Academic staff of the University of Bonn]]
[[Category:Foreign Members of the Royal Society]]
[[Category:Foreign members of the Royal Society]]
[[Category:Scientists from Wuppertal]]
[[Category:Scientists from Wuppertal]]
[[Category:University of Paris alumni]]
[[Category:Mathematicians from the Kingdom of Prussia]]

Latest revision as of 21:01, 9 December 2024

Julius Plücker
Julius Plücker
Born(1801-06-16)16 June 1801
Died22 May 1868(1868-05-22) (aged 66)
NationalityGerman
Alma materUniversity of Bonn
University of Heidelberg
University of Berlin
University of Paris
University of Marburg
Known for
AwardsCopley Medal (1866)
Scientific career
FieldsMathematics
Physics
InstitutionsUniversity of Bonn
University of Berlin
University of Halle
Doctoral advisorChristian Ludwig Gerling[1]
Doctoral studentsFelix Klein
August Beer
Johann Hittorf
Friedrich Lange [1]

Julius Plücker (16 June 1801 – 22 May 1868) was a German mathematician and physicist. He made fundamental contributions to the field of analytical geometry and was a pioneer in the investigations of cathode rays that led eventually to the discovery of the electron. He also vastly extended the study of Lamé curves.

Biography

[edit]

Early years

[edit]

Plücker was born at Elberfeld (now part of Wuppertal). After being educated at Düsseldorf and at the universities of Bonn, Heidelberg and Berlin he went to Paris in 1823,[2] where he came under the influence of the great school of French geometers, whose founder, Gaspard Monge, had only recently died.

In 1825 he returned to Bonn, and in 1828 was made professor of mathematics.[2]

In the same year he published the first volume of his Analytisch-geometrische Entwicklungen, which introduced the method of "abridged notation".

In 1831 he published the second volume, in which he clearly established on a firm and independent basis projective duality.

Career

[edit]

In 1836, Plücker was made professor of physics at University of Bonn. In 1858, after a year of working with vacuum tubes of his Bonn colleague Heinrich Geißler,[3] he published his first classical researches on the action of the magnet on the electric discharge in rarefied gases. He found that the discharge caused a fluorescent glow to form on the glass walls of the vacuum tube, and that the glow could be made to shift by applying an electromagnet to the tube, thus creating a magnetic field.[4] It was later shown that the glow was produced by cathode rays.

Plücker, first by himself and afterwards in conjunction with Johann Hittorf, made many important discoveries in the spectroscopy of gases. He was the first to use the vacuum tube with the capillary part now called a Geissler tube, by means of which the luminous intensity of feeble electric discharges was raised sufficiently to allow of spectroscopic investigation. He anticipated Robert Wilhelm Bunsen and Gustav Kirchhoff in announcing that the lines of the spectrum were characteristic of the chemical substance which emitted them, and in indicating the value of this discovery in chemical analysis. According to Hittorf, he was the first who saw the three lines of the hydrogen spectrum, which a few months after his death, were recognized in the spectrum of the solar protuberances.

In 1865, Plücker returned to the field of geometry and invented what was known as line geometry in the nineteenth century. In projective geometry, Plücker coordinates refer to a set of homogeneous co-ordinates introduced initially to embed the space of lines in projective space as a quadric in . The construction uses 2×2 minor determinants, or equivalently the second exterior power of the underlying vector space of dimension 4. It is now part of the theory of Grassmannians (-dimensional subspaces of an -dimensional vector space ), to which the generalization of these co-ordinates to minors of the matrix of homogeneous coordinates, also known as Plücker coordinates, apply. The embedding of the Grassmannian into the projectivization of the th exterior power of is known as the Plücker embedding.

Bibliography

[edit]

Awards

[edit]

Plücker was the recipient of the Copley Medal from the Royal Society in 1866.[6]

See also

[edit]

References

[edit]
  1. ^ a b "Julius Plücker – The Mathematics Genealogy Project". www.mathgenealogy.org.
  2. ^ a b Clebsch, Alfred (1872). "Zum Gedächtniss an Julius Plücker". Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen. 16. doi:10.11588/heidok.00012662.
  3. ^ John Theodore Merz, A history of European thought in the nineteenth century (2). W. Blackwood and sons, 1912, pp. 189–190.
  4. ^ "Julius Plucker". chemed.chem.purdue.edu.
  5. ^ Scott, Charlotte Angas (1897). "Book Review: Julius Plückers gesammelte mathematische Abhandlungen". Bulletin of the American Mathematical Society. 4 (3): 121–126. doi:10.1090/S0002-9904-1897-00469-4. MR 1557565.
  6. ^ "Julius Plücker – Biography". Maths History.

Bibliography

[edit]
  • Born, Heinrich, Die Stadt Elberfeld. Festschrift zur Dreihundert-Feier 1910. J.H. Born, Elberfeld 1910
  • Giermann, Heiko, Stammfolge der Familie Plücker, in: Deutsches Geschlechterbuch, 217. Bd, A. Starke Verlag, Limburg a.d.L. 2004
  • Strutz, Edmund, Die Ahnentafeln der Elberfelder Bürgermeister und Stadtrichter 1708–1808. 2. Auflage, Verlag Degener & Co., Neustadt an der Aisch 1963 ISBN 3-7686-4069-8
  • Gustav Karsten (1888), "Plücker, Julius", Allgemeine Deutsche Biographie (in German), vol. 26, Leipzig: Duncker & Humblot, pp. 321–323
[edit]