Massive Online Analysis: Difference between revisions
m Deli nk moved page MOA (Massive Online Analysis) to Massive online analysis |
KMaster888 (talk | contribs) subjective ce |
||
(20 intermediate revisions by 17 users not shown) | |||
Line 1: | Line 1: | ||
{{notability|date=May 2013}} |
{{notability|Products|date=May 2013}} |
||
{{Infobox software |
{{Infobox software |
||
| name = MOA |
| name = MOA |
||
| developer = [[University of Waikato]] |
| developer = [[University of Waikato]] |
||
| latest release version = |
| latest release version = {{wikidata|property|reference|P348}} |
||
| latest release date = |
| latest release date = {{start date and age|{{wikidata|qualifier|P348|P577}}}} |
||
| operating system = [[Cross-platform]] |
| operating system = [[Cross-platform]] |
||
| genre = [[Machine Learning]] |
| genre = [[Machine Learning]] |
||
| license = [[GNU General Public License]] |
| license = [[GNU General Public License]] |
||
| website = http://moa.cms.waikato.ac.nz/ |
| website = {{url|http://moa.cms.waikato.ac.nz/}} |
||
}} |
}} |
||
''' |
'''Massive Online Analysis''' ('''MOA''') is a free [[open-source software]] project specific for [[data stream mining]] with [[concept drift]]. It is written in [[Java (programming language)|Java]] and developed at the [[University of Waikato]], [[New Zealand]].<ref name="bifet2010moa">{{cite journal |
||
|last1=Bifet |first1=Albert |
|last1=Bifet |first1=Albert |
||
|last2=Holmes |first2=Geoff |
|last2=Holmes |first2=Geoff |
||
Line 21: | Line 20: | ||
|volume=99 |
|volume=99 |
||
|pages=1601–1604|year=2010 |
|pages=1601–1604|year=2010 |
||
}}</ref> |
|||
}}</ref> is a free open-source software specific for [[Data stream mining]] with [[Concept drift]]. It's written in [[Java (programming language)|Java]] and developed at the [[University of Waikato]], [[New Zealand]]. |
|||
==Description== |
==Description== |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
MOA contains several collections of machine learning algorithms: |
MOA contains several collections of machine learning algorithms: |
||
Line 51: | Line 50: | ||
*** Pegasos |
*** Pegasos |
||
** Drift classifiers |
** Drift classifiers |
||
** |
***Self-Adjusting Memory<ref name="LosingHammer2017">{{cite journal|last1=Losing|first1=Viktor|last2=Hammer|first2=Barbara|last3=Wersing|first3=Heiko|title=Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM)|journal=Knowledge and Information Systems|volume=54|pages=171–201|year=2017|issn=0885-6125|doi=10.1007/s10115-017-1137-y|s2cid=29600755}}</ref> |
||
***Probabilistic Adaptive Windowing |
|||
⚫ | ** [[ |
||
** Multi-label classifiers<ref name="ReadBifet2012">{{cite journal|last1=Read|first1=Jesse|last2=Bifet|first2=Albert|last3=Holmes|first3=Geoff|last4=Pfahringer|first4=Bernhard|title=Scalable and efficient multi-label classification for evolving data streams|journal=Machine Learning|volume=88|issue=1–2|year=2012|pages=243–272|issn=0885-6125|doi=10.1007/s10994-012-5279-6|s2cid=14676146|doi-access=free}}</ref> |
|||
⚫ | ** [[Active learning (machine learning)|Active learning]] classifiers <ref name="ZliobaiteBifet2014">{{cite journal|last1=Zliobaite|first1=Indre|last2=Bifet|first2=Albert|last3=Pfahringer|first3=Bernhard|last4=Holmes|first4=Geoffrey|title=Active Learning With Drifting Streaming Data|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=25|issue=1|year=2014|pages=27–39|issn=2162-237X|doi=10.1109/TNNLS.2012.2236570|pmid=24806642|s2cid=14687075}}</ref> |
||
* [[Regression analysis|Regression]] |
* [[Regression analysis|Regression]] |
||
** FIMTDD<ref name="IkonomovskaGama2010">{{cite journal|last1=Ikonomovska|first1=Elena|last2=Gama|first2=João|last3=Džeroski|first3=Sašo|title=Learning model trees from evolving data streams|journal=Data Mining and Knowledge Discovery|volume=23|issue=1|year=2010|pages=128–168|issn=1384-5810|doi=10.1007/s10618-010-0201-y}}</ref> |
** FIMTDD<ref name="IkonomovskaGama2010">{{cite journal|last1=Ikonomovska|first1=Elena|last2=Gama|first2=João|last3=Džeroski|first3=Sašo|title=Learning model trees from evolving data streams|journal=Data Mining and Knowledge Discovery|volume=23|issue=1|year=2010|pages=128–168|issn=1384-5810|doi=10.1007/s10618-010-0201-y|s2cid=7114108|url=http://repositorio.inesctec.pt/bitstream/123456789/2929/1/PS-08759.pdf}}</ref> |
||
** AMRules<ref name="AlmeidaFerreira2013">{{cite |
** AMRules<ref name="AlmeidaFerreira2013">{{cite book|last1=Almeida|first1=Ezilda|title=Advanced Information Systems Engineering|last2=Ferreira|first2=Carlos|last3=Gama|first3=João|chapter=Adaptive Model Rules from Data Streams|volume=8188|year=2013|pages=480–492|issn=0302-9743|doi=10.1007/978-3-642-40988-2_31|series=Lecture Notes in Computer Science|isbn=978-3-642-38708-1|citeseerx=10.1.1.638.5472}}</ref> |
||
* [[data clustering|Clustering]]<ref name="KranenKremer2010">{{cite |
* [[data clustering|Clustering]]<ref name="KranenKremer2010">{{cite book|last1=Kranen|first1=Philipp|title=2010 IEEE International Conference on Data Mining Workshops|last2=Kremer|first2=Hardy|last3=Jansen|first3=Timm|last4=Seidl|first4=Thomas|last5=Bifet|first5=Albert|last6=Holmes|first6=Geoff|last7=Pfahringer|first7=Bernhard|chapter=Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA|year=2010|pages=1400–1403|doi=10.1109/ICDMW.2010.17|isbn=978-1-4244-9244-2|s2cid=2064336}}</ref> |
||
** StreamKM++ |
** StreamKM++ |
||
** CluStream |
** CluStream |
||
** ClusTree |
** ClusTree |
||
** D-Stream |
** D-Stream |
||
** CobWeb. |
** CobWeb. |
||
* Outlier detection<ref name="GeorgiadisKontaki2013">{{cite |
* Outlier detection<ref name="GeorgiadisKontaki2013">{{cite book|last1=Georgiadis|first1=Dimitrios|title=Proceedings of the 2013 international conference on Management of data - SIGMOD '13|last2=Kontaki|first2=Maria|last3=Gounaris|first3=Anastasios|last4=Papadopoulos|first4=Apostolos N.|last5=Tsichlas|first5=Kostas|last6=Manolopoulos|first6=Yannis|chapter=Continuous outlier detection in data streams|year=2013|pages=1061|doi=10.1145/2463676.2463691|isbn=9781450320375|s2cid=1886134}}</ref> |
||
** STORM |
** STORM |
||
** Abstract-C |
** Abstract-C |
||
** COD |
** COD |
||
** MCOD |
** MCOD |
||
** AnyOut<ref name="AssentKranen2012">{{cite |
** AnyOut<ref name="AssentKranen2012">{{cite book|last1=Assent|first1=Ira|title=Database Systems for Advanced Applications|last2=Kranen|first2=Philipp|last3=Baldauf|first3=Corinna|last4=Seidl|first4=Thomas|chapter=AnyOut: Anytime Outlier Detection on Streaming Data|volume=7238|year=2012|pages=228–242|issn=0302-9743|doi=10.1007/978-3-642-29038-1_18|series=Lecture Notes in Computer Science|isbn=978-3-642-29037-4}}</ref> |
||
* [[Recommender system |
* [[Recommender system]]s |
||
** BRISMFPredictor |
** BRISMFPredictor |
||
* Frequent pattern mining |
* [[Frequent pattern mining]] |
||
** Itemsets<ref name="Quadrana2013">{{cite journal|last1=Quadrana|first1=Massimo|last2=Bifet|first2=Albert|last3=Gavaldà|first3=Ricard|title=An Efficient Closed Frequent Itemset Miner for the MOA Stream Mining System|year=2013|pages=203|doi=10.3233/978-1-61499-320-9-203}}</ref> |
** Itemsets<ref name="Quadrana2013">{{cite journal|last1=Quadrana|first1=Massimo|last2=Bifet|first2=Albert|last3=Gavaldà|first3=Ricard|title=An Efficient Closed Frequent Itemset Miner for the MOA Stream Mining System|journal=Frontiers in Artificial Intelligence and Applications|volume=256|issue=Artificial Intelligence Research and Development|year=2013|pages=203|doi=10.3233/978-1-61499-320-9-203}}</ref> |
||
** Graphs<ref name="BifetHolmes2011">{{cite |
** Graphs<ref name="BifetHolmes2011">{{cite book|last1=Bifet|first1=Albert|title=Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '11|last2=Holmes|first2=Geoff|last3=Pfahringer|first3=Bernhard|last4=Gavaldà|first4=Ricard|chapter=Mining frequent closed graphs on evolving data streams|year=2011|pages=591|doi=10.1145/2020408.2020501|isbn=9781450308137|citeseerx=10.1.1.297.1721|s2cid=8588858}}</ref> |
||
* Change detection algorithms<ref name="BifetRead2013">{{cite |
* Change detection algorithms<ref name="BifetRead2013">{{cite book|last1=Bifet|first1=Albert|title=Advances in Intelligent Data Analysis XII|last2=Read|first2=Jesse|last3=Pfahringer|first3=Bernhard|last4=Holmes|first4=Geoff|last5=Žliobaitė|first5=Indrė|chapter=CD-MOA: Change Detection Framework for Massive Online Analysis|volume=8207|year=2013|pages=92–103|issn=0302-9743|doi=10.1007/978-3-642-41398-8_9|series=Lecture Notes in Computer Science|isbn=978-3-642-41397-1}}</ref> |
||
These algorithms are designed for large scale machine learning, dealing with concept drift, and big data streams in real time. |
These algorithms are designed for large scale machine learning, dealing with concept drift, and big data streams in real time. |
||
MOA supports bi-directional interaction with [[Weka (machine learning)]]. MOA is [[free software]] released under the [[GNU GPL]]. |
MOA supports bi-directional interaction with [[Weka (machine learning)|Weka]]. MOA is [[free software]] released under the [[GNU GPL]]. |
||
==See also== |
==See also== |
||
{{Portal|Free software}} |
{{Portal|Free and open-source software}} |
||
* [https://adams.cms.waikato.ac.nz/ ADAMS Workflow]: Workflow engine for MOA and |
* [https://adams.cms.waikato.ac.nz/ ADAMS Workflow]: Workflow engine for MOA and Weka |
||
* [http://www-ai.cs.uni-dortmund.de/SOFTWARE/streams/ Streams]: Flexible module environment for the design and execution of data stream experiments |
* [http://www-ai.cs.uni-dortmund.de/SOFTWARE/streams/ Streams]: Flexible module environment for the design and execution of data stream experiments |
||
* [[Weka (machine learning)]] |
|||
* [[Vowpal Wabbit]] |
* [[Vowpal Wabbit]] |
||
* [[List of numerical analysis software]] |
* [[List of numerical analysis software]] |
||
Line 92: | Line 92: | ||
== External links == |
== External links == |
||
* [http://moa.cs.waikato.ac.nz/ MOA Project home page at University of Waikato in New Zealand] |
* [http://moa.cs.waikato.ac.nz/ MOA Project home page at University of Waikato in New Zealand] |
||
* [http://samoa-project.net/ SAMOA Project home page at Yahoo Labs] |
* [http://samoa-project.net/ SAMOA Project home page at Yahoo Labs] |
||
[[Category:Data mining and machine learning software]] |
[[Category:Data mining and machine learning software]] |
||
[[Category:Free science software]] |
[[Category:Free science software]] |
||
[[Category: |
[[Category:Java (programming language) software]] |
||
[[Category:Free data analysis software]] |
[[Category:Free data analysis software]] |
Latest revision as of 15:23, 13 December 2024
The topic of this article may not meet Wikipedia's notability guidelines for products and services. (May 2013) |
Developer(s) | University of Waikato |
---|---|
Stable release | 24.07.0[1]
/ 18 July 2024 |
Repository | |
Operating system | Cross-platform |
Type | Machine Learning |
License | GNU General Public License |
Website | moa |
Massive Online Analysis (MOA) is a free open-source software project specific for data stream mining with concept drift. It is written in Java and developed at the University of Waikato, New Zealand.[2]
Description
[edit]MOA is an open-source framework software that allows to build and run experiments of machine learning or data mining on evolving data streams. It includes a set of learners and stream generators that can be used from the graphical user interface (GUI), the command-line, and the Java API.
MOA contains several collections of machine learning algorithms:
- Classification
- Bayesian classifiers
- Naive Bayes
- Naive Bayes Multinomial
- Decision trees classifiers
- Decision Stump
- Hoeffding Tree
- Hoeffding Option Tree
- Hoeffding Adaptive Tree
- Meta classifiers
- Bagging
- Boosting
- Bagging using ADWIN
- Bagging using Adaptive-Size Hoeffding Trees.
- Perceptron Stacking of Restricted Hoeffding Trees
- Leveraging Bagging
- Online Accuracy Updated Ensemble
- Function classifiers
- Perceptron
- Stochastic gradient descent (SGD)
- Pegasos
- Drift classifiers
- Self-Adjusting Memory[3]
- Probabilistic Adaptive Windowing
- Multi-label classifiers[4]
- Active learning classifiers [5]
- Bayesian classifiers
- Regression
- Clustering[8]
- StreamKM++
- CluStream
- ClusTree
- D-Stream
- CobWeb.
- Outlier detection[9]
- STORM
- Abstract-C
- COD
- MCOD
- AnyOut[10]
- Recommender systems
- BRISMFPredictor
- Frequent pattern mining
- Change detection algorithms[13]
These algorithms are designed for large scale machine learning, dealing with concept drift, and big data streams in real time.
MOA supports bi-directional interaction with Weka. MOA is free software released under the GNU GPL.
See also
[edit]- ADAMS Workflow: Workflow engine for MOA and Weka
- Streams: Flexible module environment for the design and execution of data stream experiments
- Vowpal Wabbit
- List of numerical analysis software
References
[edit]- ^ "Release 24.07.0". 18 July 2024. Retrieved 23 July 2024.
- ^ Bifet, Albert; Holmes, Geoff; Kirkby, Richard; Pfahringer, Bernhard (2010). "MOA: Massive online analysis". The Journal of Machine Learning Research. 99: 1601–1604.
- ^ Losing, Viktor; Hammer, Barbara; Wersing, Heiko (2017). "Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM)". Knowledge and Information Systems. 54: 171–201. doi:10.1007/s10115-017-1137-y. ISSN 0885-6125. S2CID 29600755.
- ^ Read, Jesse; Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard (2012). "Scalable and efficient multi-label classification for evolving data streams". Machine Learning. 88 (1–2): 243–272. doi:10.1007/s10994-012-5279-6. ISSN 0885-6125. S2CID 14676146.
- ^ Zliobaite, Indre; Bifet, Albert; Pfahringer, Bernhard; Holmes, Geoffrey (2014). "Active Learning With Drifting Streaming Data". IEEE Transactions on Neural Networks and Learning Systems. 25 (1): 27–39. doi:10.1109/TNNLS.2012.2236570. ISSN 2162-237X. PMID 24806642. S2CID 14687075.
- ^ Ikonomovska, Elena; Gama, João; Džeroski, Sašo (2010). "Learning model trees from evolving data streams" (PDF). Data Mining and Knowledge Discovery. 23 (1): 128–168. doi:10.1007/s10618-010-0201-y. ISSN 1384-5810. S2CID 7114108.
- ^ Almeida, Ezilda; Ferreira, Carlos; Gama, João (2013). "Adaptive Model Rules from Data Streams". Advanced Information Systems Engineering. Lecture Notes in Computer Science. Vol. 8188. pp. 480–492. CiteSeerX 10.1.1.638.5472. doi:10.1007/978-3-642-40988-2_31. ISBN 978-3-642-38708-1. ISSN 0302-9743.
- ^ Kranen, Philipp; Kremer, Hardy; Jansen, Timm; Seidl, Thomas; Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard (2010). "Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA". 2010 IEEE International Conference on Data Mining Workshops. pp. 1400–1403. doi:10.1109/ICDMW.2010.17. ISBN 978-1-4244-9244-2. S2CID 2064336.
- ^ Georgiadis, Dimitrios; Kontaki, Maria; Gounaris, Anastasios; Papadopoulos, Apostolos N.; Tsichlas, Kostas; Manolopoulos, Yannis (2013). "Continuous outlier detection in data streams". Proceedings of the 2013 international conference on Management of data - SIGMOD '13. p. 1061. doi:10.1145/2463676.2463691. ISBN 9781450320375. S2CID 1886134.
- ^ Assent, Ira; Kranen, Philipp; Baldauf, Corinna; Seidl, Thomas (2012). "AnyOut: Anytime Outlier Detection on Streaming Data". Database Systems for Advanced Applications. Lecture Notes in Computer Science. Vol. 7238. pp. 228–242. doi:10.1007/978-3-642-29038-1_18. ISBN 978-3-642-29037-4. ISSN 0302-9743.
- ^ Quadrana, Massimo; Bifet, Albert; Gavaldà, Ricard (2013). "An Efficient Closed Frequent Itemset Miner for the MOA Stream Mining System". Frontiers in Artificial Intelligence and Applications. 256 (Artificial Intelligence Research and Development): 203. doi:10.3233/978-1-61499-320-9-203.
- ^ Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard; Gavaldà, Ricard (2011). "Mining frequent closed graphs on evolving data streams". Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '11. p. 591. CiteSeerX 10.1.1.297.1721. doi:10.1145/2020408.2020501. ISBN 9781450308137. S2CID 8588858.
- ^ Bifet, Albert; Read, Jesse; Pfahringer, Bernhard; Holmes, Geoff; Žliobaitė, Indrė (2013). "CD-MOA: Change Detection Framework for Massive Online Analysis". Advances in Intelligent Data Analysis XII. Lecture Notes in Computer Science. Vol. 8207. pp. 92–103. doi:10.1007/978-3-642-41398-8_9. ISBN 978-3-642-41397-1. ISSN 0302-9743.