Jump to content

Ash: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
New section Effect on precipitation
top potash
 
(25 intermediate revisions by 15 users not shown)
Line 1: Line 1:
{{short description|Waste product of fires}}
{{Short description|Waste product of fires}}
{{Hatnote group|
{{about|the residue of burning a material|volcanic ash|volcanic ash|the plants called ash|Fraxinus|other uses}}
{{About-distinguish|the residue of burning a material|Volcanic ash|Ash (plant)}}
{{Other uses}}
}}
{{Multiple issues|
{{Expand French|Cendre|date=June 2023}}
{{Expand French|Cendre|date=June 2023}}
{{refimprove|date=January 2016}}
{{More citations needed|date=January 2016}}
}}

[[File:Wood ash.jpg|thumb|[[Wood ash]]]]
{{Pollution sidebar|Air}}
{{Pollution sidebar|Air}}

[[File:Wood ash.jpg|thumb|Wood ash]]
'''Ash''' or '''ashes''' are the solid remnants of [[fire]]s.<ref>{{Cite web|url=http://www.dictionary.com/browse/ash|title=the definition of ash|website=www.dictionary.com|language=en|access-date=2018-06-18}}</ref> Specifically, ''ash'' refers to all non-[[aqueous]], non-[[gas]]eous residues that remain after something [[combustion|burns]]. In [[analytical chemistry]], to analyse the mineral and metal content of [[chemical sample]]s, [[ash (analytical chemistry)|ash]] is the non-[[gas]]eous, non-[[liquid]] residue after complete combustion.
'''Ash''' is the solid remnants of [[fire]]s.<ref>{{Cite web|url=http://www.dictionary.com/browse/ash|title=the definition of ash|website=www.dictionary.com|language=en|access-date=2018-06-18}}</ref> Specifically, ''ash'' refers to all non-[[aqueous]], non-[[gas]]eous residues that remain after something [[combustion|burns]]. In [[analytical chemistry]], to analyse the mineral and metal content of [[chemical sample]]s, [[ash (analytical chemistry)|ash]] is the non-[[gas]]eous, non-[[liquid]] residue after complete combustion.


Ashes as the end product of [[incomplete combustion]] are mostly [[mineral]], but usually still contain an amount of [[combustible]] [[organic compound|organic]] or other [[Redox|oxidizable]] residues. The best-known type of ash is [[wood ash]], as a product of wood combustion in [[campfire]]s, [[fireplace]]s, etc. The darker the wood ashes, the higher the content of remaining [[charcoal]] from incomplete combustion. The ashes are of different types. Some ashes contain [[natural compound]]s that make [[soil]] [[Soil fertility|fertile]]. Others have [[chemical compound]]s that can be [[toxic]] but may break up in soil from chemical changes and [[microorganism]] activity.
Ashes as the end product of [[incomplete combustion]] are mostly [[mineral]], but usually still contain an amount of [[combustible]] [[organic compound|organic]] or other [[Redox|oxidizable]] residues. The best-known type of ash is [[wood ash]], as a product of wood combustion in [[campfire]]s, [[fireplace]]s, etc. The darker the wood ashes, the higher the content of remaining [[charcoal]] from incomplete combustion. The ashes are of different types. Some ashes contain [[natural compound]]s that make [[soil]] [[Soil fertility|fertile]]. Others have [[chemical compound]]s that can be [[toxic]] but may break up in soil from chemical changes and [[microorganism]] activity.


Like [[soap]], ash is also a [[disinfecting]] agent ([[alkaline]]).<ref>Howard et al. 2002: Healthy Villages A guide for communities and community health workers. CHAPTER 8 Personal, domestic and community hygiene. WHO. Accessed Oct. 2014. http://www.who.int/water_sanitation_health/hygiene/settings/hvchap8.pdf</ref> The [[World Health Organization]] recommends ash or sand as alternative for handwashing when soap is not available.<ref>WHO 2014: Water Sanitation Health. How can personal hygiene be maintained in difficult circumstances? Accessed Oct. 2014 [https://web.archive.org/web/20050214144405/http://www.who.int/water_sanitation_health/emergencies/qa/emergencies_qa17/en/]</ref>
Like [[soap]], ash is also a [[disinfecting]] agent ([[alkaline]]).<ref>Howard et al. 2002: Healthy Villages A guide for communities and community health workers. CHAPTER 8 Personal, domestic and community hygiene. WHO. Accessed Oct. 2014. http://www.who.int/water_sanitation_health/hygiene/settings/hvchap8.pdf</ref> The [[World Health Organization]] recommends ash or sand as alternative for handwashing when soap is not available.<ref>WHO 2014: Water Sanitation Health. How can personal hygiene be maintained in difficult circumstances? Accessed Oct. 2014 [https://web.archive.org/web/20050214144405/http://www.who.int/water_sanitation_health/emergencies/qa/emergencies_qa17/en/]</ref> Before industrialization, ash soaked in water was the primary means of obtaining [[potash]].


==Natural occurrence==
==Natural occurrence==
Line 15: Line 22:


==Composition==
==Composition==
{{seealso|Ash (chemistry)|Plasma ashing}}
{{see also|Ash (chemistry)|Plasma ashing}}
{{expand section|date=May 2024}}
{{expand section|date=May 2024}}
The composition of the ash varies depending on the product burned and its origin. The "ash content" or "mineral content" of a product is derived its incineration under temperatures ranging from {{convert|150|C|F}} to {{convert|900|C|F}}.<ref name="ash-content"></ref>
The composition of the ash varies depending on the product burned and its origin. The "ash content" or "mineral content" of a product is derived its incineration under temperatures ranging from {{convert|150|C|F}} to {{convert|900|C|F}}.<ref name="ash-content" />


===Wood and plant matter===
===Wood and plant matter===
Line 31: Line 38:
* 1–6% [[phosphorus]] in the form of [[phosphorus pentoxide]] ({{chem2|P2O5}})
* 1–6% [[phosphorus]] in the form of [[phosphorus pentoxide]] ({{chem2|P2O5}})
* 3% in total of [[oxides]] such as [[iron oxide]], [[manganese oxide]], and [[sodium oxide]]
* 3% in total of [[oxides]] such as [[iron oxide]], [[manganese oxide]], and [[sodium oxide]]
The [[pH]] of the ash is between 10 and 13, mostly due to the fact that the oxides of calcium, potassium, and sodium are strong [[base (chemistry)|bases]]. [[Acidic]] components such as [[carbon dioxide]], [[phosphoric acid]], [[silicic acid]], and [[sulfuric acid]] are rarely present and, in the presence of the previously mentioned bases, are generally found in the form of [[salts]], respectively [[carbonates]], [[phosphates]], [[silicates]] and [[sulphates]].
The [[pH]] of the ash is between 10 and 13, mostly due to the fact that the oxides of calcium, potassium, and sodium are strong [[base (chemistry)|bases]]. [[Acidic]] components such as [[carbon dioxide]], [[phosphoric acid]], [[silicic acid]], and [[sulfuric acid]] are rarely present and, in the presence of the previously mentioned bases, are generally found in the form of [[salts]], respectively [[carbonates]], [[phosphates]], [[silicates]] and [[sulphates]].


Strictly speaking, calcium and potassium salts produce the aforementioned calcium oxide (also known as quicklime) and potassium during the combustion of organic matter. But, in practice, quicklime is only obtained via [[lime-kiln]], and [[potash]] (from potassium carbonate) or [[baking soda]] (from sodium carbonate) is extracted from the ashes.
Strictly speaking, calcium and potassium salts produce the aforementioned calcium oxide (also known as quicklime) and potassium during the combustion of organic matter. But, in practice, quicklime is only obtained via [[lime-kiln]], and [[potash]] (from potassium carbonate) or [[baking soda]] (from sodium carbonate) is extracted from the ashes.
Line 37: Line 44:
Other substances such as [[sulfur]], [[chlorine]], [[iron]] or [[sodium]] only appear in small quantities. Still others are rarely found in wood, such as [[aluminum]], [[zinc]], and [[boron]]. (depending on the [[trace elements]] drawn from the soil by the incinerated plants).
Other substances such as [[sulfur]], [[chlorine]], [[iron]] or [[sodium]] only appear in small quantities. Still others are rarely found in wood, such as [[aluminum]], [[zinc]], and [[boron]]. (depending on the [[trace elements]] drawn from the soil by the incinerated plants).


Mineral content in ash depends on the species of tree burned, even in the same soil conditions. More chloride is found in [[conifer|conifer trees]] than [[broadleaf trees]], with seven times as much found in [[spruces]] than in [[oak trees]]. There is twice as much [[phosphoric acid]] in the [[European aspen]] than in [[Oak|oaks]] and twice as much [[magnesium]] in [[elm|elm trees]] than in the [[Scotch pine]].
Mineral content in ash depends on the species of tree burned, even in the same soil conditions. More chloride is found in [[conifer|conifer trees]] than [[broadleaf trees]], with seven times as much found in [[spruces]] than in [[oak trees]]. There is twice as much [[phosphoric acid]] in the [[European aspen]] than in [[oak]]s and twice as much [[magnesium]] in [[elm|elm trees]] than in the [[Scotch pine]].


Ash composition also varies by which part of the tree was burnt. Silicon and calcium salts are more abundant in bark than in wood, while potassium salts are primarily found in wood. Compositional variation also occurred based on the season in which the tree died.
Ash composition also varies by which part of the tree was burnt. Silicon and calcium salts are more abundant in bark than in wood, while potassium salts are primarily found in wood. Compositional variation also occurred based on the season in which the tree died.
Line 45: Line 52:


=== Cremation ashes ===
=== Cremation ashes ===
Cremation ashes, also called cremated remains or "cremains," are the bodily remains left from [[cremation]].<ref>{{cite web |title=What Are Cremains? (& What to Do with Them) » Urns {{!}} Online |url=https://www.usurnsonline.com/cremation/cremains/ |website=www.usurnsonline.com|date=31 May 2022 }}</ref> They often take the form of a grey powder resembling coarse [[sand]]. While often referred to as ''ashes'', the remains primarily consist of powdered bone fragments due to the cremation process, which eliminates the body's organic materials.<ref>{{cite web |title=All About Cremation Ashes {{!}} What Are Human Ashes Made of {{!}} Scattering Ashes |url=https://www.cremationsolutions.com/information/scattering-ashes/all-about-cremation-ashes |website=www.cremationsolutions.com}}</ref><ref>{{cite web |title=Education {{!}} Cremation ashes |url=https://www.lonite.ca/education/cremation-ashes.html |website=www.lonite.ca}}</ref> People often store these ashes in containers like [[urn]]s, although they are also sometimes buried or scattered in specific locations.<ref>{{cite web |title=What To Do With Cremated Remains |url=https://www.cremation.com/cremation-memorialization/10-things-to-do-with-cremated-remains/ |website=cremation.com |access-date=25 June 2023}}</ref>
Cremation ashes, also called cremated remains or "cremains," are the bodily remains left from [[cremation]].<ref>{{cite web |title=What Are Cremains? (& What to Do with Them) |url=https://www.usurnsonline.com/cremation/cremains/ |website=usurnsonline.com|date=31 May 2022 }}</ref> They often take the form of a grey powder resembling coarse [[sand]]. While often referred to as ''ashes'', the remains primarily consist of powdered bone fragments due to the cremation process, which eliminates the body's organic materials.<ref>{{cite web |title=Education {{!}} Cremation ashes |url=https://www.lonite.ca/education/cremation-ashes.html |website=www.lonite.ca}}</ref> People often store these ashes in containers like [[urn]]s, although they are also sometimes buried or scattered in specific locations.<ref>{{cite web |title=What To Do With Cremated Remains |url=https://www.cremation.com/cremation-memorialization/10-things-to-do-with-cremated-remains/ |website=cremation.com |access-date=25 June 2023}}</ref>


===Food ashes===
===Food ashes===
Line 51: Line 58:


=== Joss paper ash ===
=== Joss paper ash ===
Metal contents analysis of ash samples shows that [[joss paper]] burning emits a lot of toxic components causing ... There is a significant amount of [[heavy metals]] in the dust fume and bottom ash, e.g., [[aluminium]], [[iron]], [[manganese]], [[copper]], [[lead]], [[zinc]] and [[cadmium]].<ref>{{cite journal | doi=10.1016/j.matpr.2020.08.686 | title=Heavy metals emissions from joss paper burning rituals and the air quality around a specific incinerator | year=2021 | last1=Giang | first1=Lam Van | last2=Thanh | first2=Tran | last3=Hien | first3=Truong Thanh | last4=Tan | first4=Lam Van | last5=Thi Bich Phuong | first5=Tran | last6=Huu Loc | first6=Ho | journal=Materials Today: Proceedings | volume=38 | pages=2751–2757 | s2cid=226353498 | doi-access=free }}</ref><ref>{{Cite journal |url=https://www.researchgate.net/publication/280221481 |doi=10.1039/C5EM00312A |title=Annual air pollution caused by the Hungry Ghost Festival |year=2015 |last1=Khezri |first1=B. |last2=Chan |first2=Y. Y. |last3=Tiong |first3=L. Y. D. |last4=Webster |first4=R. D. |journal=Environmental Science: Processes & Impacts |volume=17 |issue=9 |pages=1578–1586 |pmid=26220212 |hdl=10356/82684 |hdl-access=free }}</ref>
Analysis of the contents of ash samples shows that [[joss paper]] burning can emit many pollutants detrimental to air quality. There is a significant amount of [[heavy metals]] in the dust fume and bottom ash, e.g., [[aluminium]], [[iron]], [[manganese]], [[copper]], [[lead]], [[zinc]] and [[cadmium]].<ref>{{cite journal | doi=10.1016/j.matpr.2020.08.686 | title=Heavy metals emissions from joss paper burning rituals and the air quality around a specific incinerator | year=2021 | last1=Giang | first1=Lam Van | last2=Thanh | first2=Tran | last3=Hien | first3=Truong Thanh | last4=Tan | first4=Lam Van | last5=Thi Bich Phuong | first5=Tran | last6=Huu Loc | first6=Ho | journal=Materials Today: Proceedings | volume=38 | pages=2751–2757 | s2cid=226353498 | doi-access=free }}</ref><ref>{{Cite journal |url=https://www.researchgate.net/publication/280221481 |doi=10.1039/C5EM00312A |title=Annual air pollution caused by the Hungry Ghost Festival |year=2015 |last1=Khezri |first1=B. |last2=Chan |first2=Y. Y. |last3=Tiong |first3=L. Y. D. |last4=Webster |first4=R. D. |journal=Environmental Science: Processes & Impacts |volume=17 |issue=9 |pages=1578–1586 |pmid=26220212 |hdl=10356/82684 |hdl-access=free }}</ref>


“Burning of joss paper accounted for up to 42% of the atmospheric rBC [refractory black carbon] mass, higher than traffic (14-17%), crop residue (10-17%), coal (18-20%) during the Hanyi festival in northwest China", according to a 2022 study, "the overall air quality can be worsened due to the practice of uncontrolled burning of joss paper during the festival, which is not just confined to the people who do the burning, and “burning joss paper during worship activities is common in China and most Asian countries with similar traditions.<ref>{{cite journal |vauthors=Lin C, Huang RJ, Duan J, Zhong H, Xu W, Wu Y, Zhang R |title=Large contribution from worship activities to the atmospheric soot particles in northwest China |journal=Environ Pollut |volume=299 |issue= |pages=118907 |date=April 2022 |pmid=35091017 |doi=10.1016/j.envpol.2022.118907 |url=}}</ref>
"Burning of joss paper accounted for up to 42% of the atmospheric rBC [refractory black carbon] mass, higher than traffic (14-17%), crop residue (10-17%), coal (18-20%) during the Hanyi festival in northwest China", according to a 2022 study, "the overall air quality can be worsened due to the practice of uncontrolled burning of joss paper during the festival, which is not just confined to the people who do the burning," and "burning joss paper during worship activities is common in China and most Asian countries with similar traditions."<ref>{{cite journal |vauthors=Lin C, Huang RJ, Duan J, Zhong H, Xu W, Wu Y, Zhang R |title=Large contribution from worship activities to the atmospheric soot particles in northwest China |journal=Environ Pollut |volume=299 |issue= |pages=118907 |date=April 2022 |pmid=35091017 |doi=10.1016/j.envpol.2022.118907 |bibcode=2022EPoll.29918907L |url=}}</ref>


=== Slash-and-burn ash ===
=== Slash-and-burn ash ===
{{main|Slash-and-burn}}
{{main|Slash-and-burn}}
{{empty section|date=August 2024}}
{{expand section|date=August 2024}}


=== Wildfire ash ===
=== Wildfire ash ===
High levels of [[heavy metals]], including [[lead]], [[arsenic]], [[cadmium]], and copper were found in the ash debris following the 2007 Californian [[wildfire]]s. A [[national clean-up campaign]] was organised ...<ref>{{cite journal |vauthors=Finlay SE, Moffat A, Gazzard R, Baker D, Murray V |title=Health impacts of wildfires |journal= PLOS Currents|volume=4 |issue= |pages=e4f959951cce2c |date=November 2012 |pmid=23145351 |pmc=3492003 |doi=10.1371/4f959951cce2c |doi-broken-date=31 January 2024 |doi-access=free }}</ref> In the devastating California [[Camp Fire (2018)]] that killed 85 people, lead levels increased by around 50 times in the hours following the fire at a site nearby ([[Chico, California|Chico]]). [[Zinc]] concentration also increased significantly in Modesto, 150 miles away. Heavy metals such as [[manganese]] and calcium were found in numerous California fires as well.<ref>{{cite web |url=https://amp.theguardian.com/world/2021/jul/21/wildfire-smoke-air-hazardous-toxic-metals-study-california |title=Wildfire smoke can increase hazardous toxic metals in air, study finds &#124; Climate crisis &#124; The Guardian}}</ref>
High levels of [[heavy metals]], including [[lead]], [[arsenic]], [[cadmium]], and copper were found in the ash debris following the 2007 Californian [[wildfire]]s. A [[national clean-up campaign]] was organised ...<ref>{{cite journal |vauthors=Finlay SE, Moffat A, Gazzard R, Baker D, Murray V |title=Health impacts of wildfires |journal= PLOS Currents|volume=4 |issue= |pages=e4f959951cce2c |date=November 2012 |pmid=23145351 |pmc=3492003 |doi=10.1371/4f959951cce2c |doi-broken-date=1 November 2024 |doi-access=free }}</ref> In the devastating California [[Camp Fire (2018)]] that killed 85 people, lead levels increased by around 50 times in the hours following the fire at a site nearby ([[Chico, California|Chico]]). [[Zinc]] concentration also increased significantly in Modesto, 150 miles away. Heavy metals such as [[manganese]] and calcium were found in numerous California fires as well.<ref>{{cite web |url=https://amp.theguardian.com/world/2021/jul/21/wildfire-smoke-air-hazardous-toxic-metals-study-california |title=Wildfire smoke can increase hazardous toxic metals in air, study finds &#124; Climate crisis &#124; The Guardian|date=21 July 2021 }}</ref>


===Others===
===Others===
Line 71: Line 78:
** [[Bottom ash]]
** [[Bottom ash]]
** [[Fly ash]]
** [[Fly ash]]
* [[Volcanic ash]], ash that consists of fragmented [[volcanic glass|glass]], rock, and [[mineral|minerals]] that appears during an [[Types of volcanic eruptions|eruption]].
* [[Volcanic ash]], ash that consists of fragmented [[volcanic glass|glass]], rock, and [[mineral]]s that appears during an [[Types of volcanic eruptions|eruption]].
* [[Wood ash]]
* [[Wood ash]]


==Other Properties==
==Other Properties==
{{seealso|Particulates}}
{{see also|Particulates}}
{{expand section|date=August 2024}}
{{expand section|date=August 2024}}
===Shape===
===Size===
===Hardness===
===Incomplete combustion===


==Aging process==
==Aging process==
{{seealso|Particle number|Surface-area-to-volume ratio}}
{{see also|Particle number|Surface-area-to-volume ratio}}
{{expand section|date=May 2024}}
{{expand section|date=May 2024}}


Line 89: Line 92:
{{main|Global distillation}}
{{main|Global distillation}}
{{expand section|date=May 2024}}
{{expand section|date=May 2024}}

==Uses==
===Fertilizer===
Ashes have been used since the Neolithic period as fertilizer because they are rich in minerals, especially potash and essential nutrients. They are the main fertilizer in slash-and-burn agriculture, which eventually evolved into controlled burn and forest clearing practices. People in ancient history already possessed extensive knowledge of the nutrients produced by (from social 10th textbook)(manufacturing industries )different ashes.<ref>Sobrado Correa, H. (2004). La fertilisation des terres dans la Galice de l'Ancien Régime (xviie-xixe siècle). Histoire & Sociétés Rurales, 21, 39-72. https://doi.org/10.3917/hsr.021.0039</ref> For clay soil in particular, using ash without modification or using {{lang|fr|charrée}}, ash whose minerals have been washed with water, was necessary.

===Laundry===
Because ashes contain potash, they can be used to make biodegradable laundry detergent. The demand for organic products has led to renewed interest for laundry using ash derived from wood.<ref>[http://www.manaterra.org/asso/archives/665 La lessive à la cendre, faite maison]</ref> The French word for laundry {{lang|fr|lessive}} is from the Latin word {{lang|la|lixivia}}, which means a substance made from ash and used to wash laundry. This usage also developed into a small, traditional architectural structure to the west of Rhône mainstem: the {{lang|fr|bugadière}}, a masonry structure built with stone or cob, that looks like a cabinet and that carries dirty laundry and fireplace ash; when the {{lang|fr|bugadière}} is full, the laundry and ash are moved to a laundry container and boiled in water.

Laundry using ash derived from wood has the benefit of being free, easy to produce, sustainable, and as efficient as standard laundry washing methods.


==Health effects==
==Health effects==
{{main|Particulates#Health effects}}
{{main|Particulates#Health effects}}
{{Further|Wildfire#Airborne hazards|Joss paper#Health impact|Brain health and pollution|Heavy metals}}
{{Further|Wildfire#Airborne hazards|Joss paper#Health impact|Brain health and pollution|Heavy metals}}
{{seealso|Cough|Lead poisoning|Health impacts of sawdust}}
{{see also|Cough|Lead poisoning|Health impacts of sawdust}}
{{expand section|date=May 2024}}
{{expand section|date=May 2024}}
===Mechanism===
====Oxidative stress====
====Inflammation====
====Others====

===Health conditions===


== Effect on precipitation ==
== Effect on precipitation ==
{{main|Cloud condensation nuclei}}

{{expand section|date=August 2024}}
"Particles of dust or smoke in the atmosphere are essential for precipitation. These particles, called 'condensation nuclei,' provide a surface for water vapor to condense upon. This helps water droplets gather together and become large enough to fall to the earth"<ref name="nationalgeographic">{{cite web | title=Precipitation | website=National Geographic | date=19 Oct 2023 | url=https://education.nationalgeographic.org/resource/precipitation/ | access-date=19 Aug 2024}}</ref>


== Effect on climate change ==
== Effect on climate change ==
{{seealso|Wildfire#Carbon_dioxide and other emissions from fires}}
{{see also|Wildfire#Carbon_dioxide and other emissions from fires}}
{{expand section|date=May 2024}}
{{expand section|date=May 2024}}



Latest revision as of 23:17, 16 December 2024

Wood ash

Ash is the solid remnants of fires.[1] Specifically, ash refers to all non-aqueous, non-gaseous residues that remain after something burns. In analytical chemistry, to analyse the mineral and metal content of chemical samples, ash is the non-gaseous, non-liquid residue after complete combustion.

Ashes as the end product of incomplete combustion are mostly mineral, but usually still contain an amount of combustible organic or other oxidizable residues. The best-known type of ash is wood ash, as a product of wood combustion in campfires, fireplaces, etc. The darker the wood ashes, the higher the content of remaining charcoal from incomplete combustion. The ashes are of different types. Some ashes contain natural compounds that make soil fertile. Others have chemical compounds that can be toxic but may break up in soil from chemical changes and microorganism activity.

Like soap, ash is also a disinfecting agent (alkaline).[2] The World Health Organization recommends ash or sand as alternative for handwashing when soap is not available.[3] Before industrialization, ash soaked in water was the primary means of obtaining potash.

Natural occurrence

[edit]

Ash occurs naturally from any fire that burns vegetation, and may disperse in the soil to fertilise it, or clump under it for long enough to carbonise into coal.

Composition

[edit]

The composition of the ash varies depending on the product burned and its origin. The "ash content" or "mineral content" of a product is derived its incineration under temperatures ranging from 150 °C (302 °F) to 900 °C (1,650 °F).[4]

Wood and plant matter

[edit]

The composition of ash derived from wood and other plant matter varies based on plant species, parts of the plants (such as bark, trunk, or young branches with foliage), type of soil, and time of year. The composition of these ashes also differ greatly depending on mode of combustion.

Wood ashes, in addition to residual carbonaceous materials (unconsumed embers, activated carbons impregnated with carbonaceous particles, tars, various gases, etc.), contain a between 20% and 50% calcium in the form of calcium oxide and are generally rich in potassium carbonate. Ashes derived from grasses, and the Gramineae family in particular, are rich in silica.[5] The color of the ash comes from small proportions of inorganic minerals such as iron oxides and manganese. The oxidized metal elements that constitute wood ash are mostly considered alkaline.

For example, ash collected from wood boilers is composed of[6]

The pH of the ash is between 10 and 13, mostly due to the fact that the oxides of calcium, potassium, and sodium are strong bases. Acidic components such as carbon dioxide, phosphoric acid, silicic acid, and sulfuric acid are rarely present and, in the presence of the previously mentioned bases, are generally found in the form of salts, respectively carbonates, phosphates, silicates and sulphates.

Strictly speaking, calcium and potassium salts produce the aforementioned calcium oxide (also known as quicklime) and potassium during the combustion of organic matter. But, in practice, quicklime is only obtained via lime-kiln, and potash (from potassium carbonate) or baking soda (from sodium carbonate) is extracted from the ashes.

Other substances such as sulfur, chlorine, iron or sodium only appear in small quantities. Still others are rarely found in wood, such as aluminum, zinc, and boron. (depending on the trace elements drawn from the soil by the incinerated plants).

Mineral content in ash depends on the species of tree burned, even in the same soil conditions. More chloride is found in conifer trees than broadleaf trees, with seven times as much found in spruces than in oak trees. There is twice as much phosphoric acid in the European aspen than in oaks and twice as much magnesium in elm trees than in the Scotch pine.

Ash composition also varies by which part of the tree was burnt. Silicon and calcium salts are more abundant in bark than in wood, while potassium salts are primarily found in wood. Compositional variation also occurred based on the season in which the tree died.

Specific types

[edit]
Joss paper ash. With wind and dispersion, the size of particulates decreases, while the number of particles increases.

Cremation ashes

[edit]

Cremation ashes, also called cremated remains or "cremains," are the bodily remains left from cremation.[7] They often take the form of a grey powder resembling coarse sand. While often referred to as ashes, the remains primarily consist of powdered bone fragments due to the cremation process, which eliminates the body's organic materials.[8] People often store these ashes in containers like urns, although they are also sometimes buried or scattered in specific locations.[9]

Food ashes

[edit]

In food processing, mineral and ash content is used to characterize the presence of organic and inorganic components in food for monitoring quality, nutritional quantification and labeling, analyzing microbiological stability, and more.[4] This process can be used to measure minerals like calcium, sodium, potassium, and phosphorus as well as metal content such as lead, mercury, cadmium, and aluminum.

Joss paper ash

[edit]

Analysis of the contents of ash samples shows that joss paper burning can emit many pollutants detrimental to air quality. There is a significant amount of heavy metals in the dust fume and bottom ash, e.g., aluminium, iron, manganese, copper, lead, zinc and cadmium.[10][11]

"Burning of joss paper accounted for up to 42% of the atmospheric rBC [refractory black carbon] mass, higher than traffic (14-17%), crop residue (10-17%), coal (18-20%) during the Hanyi festival in northwest China", according to a 2022 study, "the overall air quality can be worsened due to the practice of uncontrolled burning of joss paper during the festival, which is not just confined to the people who do the burning," and "burning joss paper during worship activities is common in China and most Asian countries with similar traditions."[12]

Slash-and-burn ash

[edit]

Wildfire ash

[edit]

High levels of heavy metals, including lead, arsenic, cadmium, and copper were found in the ash debris following the 2007 Californian wildfires. A national clean-up campaign was organised ...[13] In the devastating California Camp Fire (2018) that killed 85 people, lead levels increased by around 50 times in the hours following the fire at a site nearby (Chico). Zinc concentration also increased significantly in Modesto, 150 miles away. Heavy metals such as manganese and calcium were found in numerous California fires as well.[14]

Others

[edit]

Other Properties

[edit]

Aging process

[edit]

Global distillation

[edit]

Uses

[edit]

Fertilizer

[edit]

Ashes have been used since the Neolithic period as fertilizer because they are rich in minerals, especially potash and essential nutrients. They are the main fertilizer in slash-and-burn agriculture, which eventually evolved into controlled burn and forest clearing practices. People in ancient history already possessed extensive knowledge of the nutrients produced by (from social 10th textbook)(manufacturing industries )different ashes.[15] For clay soil in particular, using ash without modification or using charrée, ash whose minerals have been washed with water, was necessary.

Laundry

[edit]

Because ashes contain potash, they can be used to make biodegradable laundry detergent. The demand for organic products has led to renewed interest for laundry using ash derived from wood.[16] The French word for laundry lessive is from the Latin word lixivia, which means a substance made from ash and used to wash laundry. This usage also developed into a small, traditional architectural structure to the west of Rhône mainstem: the bugadière, a masonry structure built with stone or cob, that looks like a cabinet and that carries dirty laundry and fireplace ash; when the bugadière is full, the laundry and ash are moved to a laundry container and boiled in water.

Laundry using ash derived from wood has the benefit of being free, easy to produce, sustainable, and as efficient as standard laundry washing methods.

Health effects

[edit]

Effect on precipitation

[edit]

"Particles of dust or smoke in the atmosphere are essential for precipitation. These particles, called 'condensation nuclei,' provide a surface for water vapor to condense upon. This helps water droplets gather together and become large enough to fall to the earth"[17]

Effect on climate change

[edit]

See also

[edit]

References

[edit]
  1. ^ "the definition of ash". www.dictionary.com. Retrieved 2018-06-18.
  2. ^ Howard et al. 2002: Healthy Villages A guide for communities and community health workers. CHAPTER 8 Personal, domestic and community hygiene. WHO. Accessed Oct. 2014. http://www.who.int/water_sanitation_health/hygiene/settings/hvchap8.pdf
  3. ^ WHO 2014: Water Sanitation Health. How can personal hygiene be maintained in difficult circumstances? Accessed Oct. 2014 [1]
  4. ^ a b McClements, D. Julian. "Analysis of Ash and Minerals". Analysis of Food Products Lectures. Retrieved 2024-06-15.
  5. ^ Pépin, Denis (2013). Composts et paillis: pour un jardin sain, facile et productif. Terre vivante. p. 54. ISBN 978-2360980918.
  6. ^ Couturier, Christian; Brasset, Thierry. "Gestion et valorisation de cendres de chaufferies bois" [Management and recovery of wood boiler ashes] (PDF) (in French). Agence de l'Environnement et de la Maîtrse de l'Energie. Archived from the original (PDF) on 2015-01-15. Retrieved 2024-06-24.
  7. ^ "What Are Cremains? (& What to Do with Them)". usurnsonline.com. 31 May 2022.
  8. ^ "Education | Cremation ashes". www.lonite.ca.
  9. ^ "What To Do With Cremated Remains". cremation.com. Retrieved 25 June 2023.
  10. ^ Giang, Lam Van; Thanh, Tran; Hien, Truong Thanh; Tan, Lam Van; Thi Bich Phuong, Tran; Huu Loc, Ho (2021). "Heavy metals emissions from joss paper burning rituals and the air quality around a specific incinerator". Materials Today: Proceedings. 38: 2751–2757. doi:10.1016/j.matpr.2020.08.686. S2CID 226353498.
  11. ^ Khezri, B.; Chan, Y. Y.; Tiong, L. Y. D.; Webster, R. D. (2015). "Annual air pollution caused by the Hungry Ghost Festival". Environmental Science: Processes & Impacts. 17 (9): 1578–1586. doi:10.1039/C5EM00312A. hdl:10356/82684. PMID 26220212.
  12. ^ Lin C, Huang RJ, Duan J, Zhong H, Xu W, Wu Y, Zhang R (April 2022). "Large contribution from worship activities to the atmospheric soot particles in northwest China". Environ Pollut. 299: 118907. Bibcode:2022EPoll.29918907L. doi:10.1016/j.envpol.2022.118907. PMID 35091017.
  13. ^ Finlay SE, Moffat A, Gazzard R, Baker D, Murray V (November 2012). "Health impacts of wildfires". PLOS Currents. 4: e4f959951cce2c. doi:10.1371/4f959951cce2c (inactive 1 November 2024). PMC 3492003. PMID 23145351.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  14. ^ "Wildfire smoke can increase hazardous toxic metals in air, study finds | Climate crisis | The Guardian". 21 July 2021.
  15. ^ Sobrado Correa, H. (2004). La fertilisation des terres dans la Galice de l'Ancien Régime (xviie-xixe siècle). Histoire & Sociétés Rurales, 21, 39-72. https://doi.org/10.3917/hsr.021.0039
  16. ^ La lessive à la cendre, faite maison
  17. ^ "Precipitation". National Geographic. 19 Oct 2023. Retrieved 19 Aug 2024.