Jump to content

Dysprosium titanate: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
2over0 (talk | contribs)
m reflist
m space group format
 
(25 intermediate revisions by 19 users not shown)
Line 1: Line 1:
{{Chembox
'''Dysprosium titanate''' ([[dysprosium|Dy]]<sub>2</sub>[[titanium|Ti]]<sub>2</sub>[[oxygen|O]]<sub>7</sub>) is an [[inorganic compound]], a [[ceramic]] of the [[titanate]] family, with [[pyrochlore]] structure. Its CAS number is {{CASREF|CAS=68993-46-4}}.
| Watchedfields =
| verifiedrevid =
| ImageFile = Fragment of pyrochlore lattice in spin ice state.png
| ImageFile_Ref =
| ImageSize =
| ImageName =
| IUPACName = Dysprosium titanate
| OtherNames =
| Section1 = {{Chembox Identifiers
| CASNo = 68993-46-4
| PubChem =
| SMILES = [Dy+3].[Dy+3].[Ti+4].[Ti+4].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2]
| StdInChI=1S/2Dy.7O.2Ti/q2*+3;7*-2;2*+4
| StdInChIKey =
}}
| Section2 = {{Chembox Properties
| Dy=2|Ti=2|O=7
| Appearance =
| Density = 6.8 g/cm<sup>3</sup><ref name=str/>
| MeltingPt =
| BoilingPt =
| Solubility =
}}
|Section3={{Chembox Structure
| Structure_ref =<ref name=str>{{cite journal|title= Preparation of new oxide nitrides with the pyrochlore structure |journal=Russ. J. Inorg. Chem.|year= 1991|volume=36|pages=1389–1392|author=Dolgikh V.A., Lavat E.A.}}</ref>
| CrystalStruct = [[Pyrochlore]]
| SpaceGroup = ''Fd''{{overline|3}}''m'', [[Pearson symbol|cF88]], No. 227
| Coordination =
| LattConst_a = 1.0136 nm
| UnitCellFormulas = 8
}}
|Section4={{Chembox Related
| OtherAnions =
| OtherCations = [[Holmium titanate]]
| OtherCompounds =
}}
}}


'''Dysprosium titanate''' ([[dysprosium|Dy]]<sub>2</sub>[[titanium|Ti]]<sub>2</sub>[[oxygen|O]]<sub>7</sub> or Dy<sub>2</sub>TiO<sub>5</sub>) is an [[inorganic compound]], specifically a [[ceramic]] of the [[titanate]] family. Two common phases of this compound exist with differing properties: Dy<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> and Dy<sub>2</sub>TiO<sub>5</sub>. Dysprosium titanate is commonly used throughout the nuclear industry in nuclear [[control rod]]s and as a host for nuclear waste.<ref name=":0">{{Cite journal |last1=Sherrod |first1=Roman |last2=O’Quinn |first2=Eric C. |last3=Gussev |first3=Igor M. |last4=Overstreet |first4=Cale |last5=Neuefeind |first5=Joerg |last6=Lang |first6=Maik K. |date=2021-04-16 |title=Comparison of short-range order in irradiated dysprosium titanates |journal=npj Materials Degradation |language=en |volume=5 |issue=1 |page=19 |doi=10.1038/s41529-021-00165-6 |issn=2397-2106|doi-access=free |bibcode=2021npjMD...5...19S }}</ref><ref name=":1">{{cite journal |last1=Risovany |first1=V.D. |last2=Varlashova |first2=E.E. |last3=Suslov |first3=D.N. |year=2000 |title=Dysprosium titanate as an absorber material for control rods |journal=Journal of Nuclear Materials |volume=281 |issue=1 |pages=84–89 |bibcode=2000JNuM..281...84R |doi=10.1016/S0022-3115(00)00129-X}}</ref>
Dysprosium titanate, like [[holmium titanate]] and [[holmium stannate]], is a [[spin ice]] material. In 2009, [[quasiparticle]]s resembling [[Magnetic monopole#"Monopoles" in condensed-matter systems|magnetic monopoles]] were observed at low temperature and high magnetic field.<ref>
{{cite web
|url=http://www.sciencedaily.com/releases/2009/09/090903163725.htm
|title=Magnetic Monopoles Detected In A Real Magnet For The First Time
|publisher=''[[Science Daily]]''
|date=2009-09-04
|accessdate=2009-09-04
}}</ref><ref>
{{cite web
|url=http://dx.doi.org/10.1126/science.1178868
|title=Dirac Strings and Magnetic Monopoles in Spin Ice Dy<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>
|author=D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czter-nasty, M. Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R.S. Perry
|publisher=''[[Science (journal)|Science]]'', DOI: 10.1126/science.1178868
|issue=DOI: 10.1126/science.1178868
|submitted=2009-07-09
|date=2009-09-03
|accessdate=2009-09-04
}}</ref>


== History ==
It was recently used in experimental proof of the existence of [[magnetic monopole]]s.
Dysprosium titanate was one of the first materials that was discovered to be a [[spin ice]], along with [[holmium titanate]] (Ho<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>), in 1997.<ref name=":2">{{Cite journal |last=Gardner |first=Jason S. |date=2010 |title=Magnetic pyrochlore oxides |url=https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.53 |journal=Reviews of Modern Physics |volume=82 |issue=1 |pages=53–107 |doi=10.1103/RevModPhys.82.53|arxiv=0906.3661 |bibcode=2010RvMP...82...53G }}</ref> The existence of these materials was predicted by [[Linus Pauling]] in 1935, but neutron scattering experiments confirmed their existence as holmium titanate satisfied the model.<ref>{{Cite journal |last=Harris |first=M. J. |date=1997 |title=Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2Ti2O7 |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.2554 |journal=Physical Review Letters |volume=79 |issue=13 |pages=2554–2557 |doi=10.1103/PhysRevLett.79.2554}}</ref>


Since its discovery as a spin ice, dysprosium titanate has continued to be a focus of research because the magnetic frustration that results from its pyrochlore lattice. In 2009, [[quasiparticle]]s resembling [[Magnetic monopole#"Monopoles" in condensed-matter systems|magnetic monopoles]] were observed at low temperature and high magnetic field through neutron-scattering experiments.<ref>
Dysprosium titanate ([[dysprosium|Dy]]<sub>2</sub>[[titanium|Ti]][[oxygen|O]]<sub>5</sub>) is being investigated as a new material for [[nuclear reactor]] [[control rod]]s.
{{cite web |date=2009-09-04 |title=Magnetic Monopoles Detected In A Real Magnet For The First Time |url=https://www.sciencedaily.com/releases/2009/09/090903163725.htm |access-date=2009-09-04 |work=[[Science Daily]]}}</ref> The study demonstrated the existence of Dirac strings in dysprosium titanate and the presence of monopole characteristics at low temperatures.<ref>{{Cite journal |last1=Morris |first1=D. J. P. |last2=Tennant |first2=D. A. |last3=Grigera |first3=S. A. |last4=Klemke |first4=B. |last5=Castelnovo |first5=C. |last6=Moessner |first6=R. |last7=Czternasty |first7=C. |last8=Meissner |first8=M. |last9=Rule |first9=K. C. |last10=Hoffmann |first10=J.-U. |last11=Kiefer |first11=K. |last12=Gerischer |first12=S. |last13=Slobinsky |first13=D. |last14=Perry |first14=R. S. |date=2009-10-16 |title=Dirac Strings and Magnetic Monopoles in the Spin Ice Dy2Ti2O7 |url=https://www.science.org/doi/10.1126/science.1178868 |journal=Science |volume=326 |issue=5951 |pages=411–414 |doi=10.1126/science.1178868|pmid=19729617 |arxiv=1011.1174 }}</ref>

== Structure ==
The Dy<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> phase exhibits a cubic [[pyrochlore]] structure where the Dy<sup>3+</sup> ions form a network of corner-sharing tetrahedra.<ref name=":2" /><ref>{{Cite journal |last1=Scharffe |first1=S. |last2=Kolland |first2=G. |last3=Valldor |first3=M. |last4=Cho |first4=V. |last5=Welter |first5=J. F. |last6=Lorenz |first6=T. |date=2015-06-01 |title=Heat transport of the spin-ice materials Ho2Ti2O7 and Dy2Ti2O7 |url=https://www.sciencedirect.com/science/article/abs/pii/S0304885314011238 |journal=Journal of Magnetism and Magnetic Materials |series=Selected papers from the sixth Moscow International Symposium on Magnetism (MISM-2014) |volume=383 |pages=83–87 |doi=10.1016/j.jmmm.2014.11.015 |issn=0304-8853|arxiv=1406.4037 }}</ref> It is notable for its ability to withstand structural change in the presence of radiation from high energy ions.<ref name=":0"/>

Dy<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> can be "stuffed" by adding additional lanthanide atoms into the pyrochlore to generate Dy<sub>2</sub>TiO<sub>5.</sub><ref>{{Cite journal |last1=Aughterson |first1=Robert D. |last2=Lumpkin |first2=Gregory R. |last3=Thorogood |first3=Gordon J. |last4=Zhang |first4=Zhaoming |last5=Gault |first5=Baptiste |last6=Cairney |first6=Julie M. |date=2015-07-01 |title=Crystal chemistry of the orthorhombic Ln2TiO5 compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy |url=https://www.sciencedirect.com/science/article/abs/pii/S002245961500081X |journal=Journal of Solid State Chemistry |volume=227 |pages=60–67 |doi=10.1016/j.jssc.2015.03.003 |issn=0022-4596}}</ref> In this instance, Dy<sup>3+</sup> is 5-coordinated with oxygen, which produces an orthorhombic structure in the Dy<sub>2</sub>TiO<sub>5</sub> phase. This phase also possesses a large [[Neutron cross section|neutron absorption cross section]], which makes it desirable for various nuclear applications.<ref name=":1" /> This can, however, pose difficulties when characterizing this compound through the use of neutron diffraction.<ref>{{Cite journal |last=Shamblin |first=Jacob |date=2016 |title=Crystal structure and partial Ising-like magnetic ordering of orthorhombic Dy2TiO5 |url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.024413 |journal=Physical Review B |volume=94 |issue=2 |page=024413 |doi=10.1103/PhysRevB.94.024413}}</ref>

== Synthesis ==
Dysprosium titanate can be synthesized using various methods. The traditional synthesis process involve high-frequency induction melting of dysprosium oxide and titania in a cooled crucible. Sol-gel synthesis has also been utilized as a method to produce the compound in powder form. More recent developments have displayed the viability of mechanochemical processes using anatase and dysprosium oxide as reagents to produce dysprosium titanate [[Nanoparticle|nanopowders]].<ref>{{Cite journal |last1=Sharipzyanova |first1=G. Kh. |last2=Eremeeva |first2=Zh. V. |last3=Karlina |first3=Y. I. |date=2024-03-01 |title=Study of the mechanical properties of dysprosium-titanate and dysprosium-hafnate nanopowders |url=https://link.springer.com/article/10.1007/s11015-024-01695-5 |journal=Metallurgist |language=en |volume=67 |issue=11 |pages=1971–1977 |doi=10.1007/s11015-024-01695-5 |issn=1573-8892}}</ref><ref name=":3">{{Cite journal |last1=Eremeeva |first1=Zh. V. |last2=Panov |first2=V. S. |last3=Myakisheva |first3=L. V. |last4=Lizunov |first4=A. V. |last5=Nepapushev |first5=A. A. |last6=Sidorenko |first6=D. A. |last7=Vorotilo |first7=S. |date=2017-11-01 |title=Structure and properties of mechanochemically synthesized dysprosium titanate Dy2TiO5 |url=https://www.sciencedirect.com/science/article/abs/pii/S0022311517300594 |journal=Journal of Nuclear Materials |volume=495 |pages=38–48 |doi=10.1016/j.jnucmat.2017.07.058 |issn=0022-3115}}</ref>

== Uses and Applications ==
Dysprosium titanate has become a desirable material in nuclear industry because of various properties. The compound has a large neutron absorption cross-section, low thermal expansion, high heat capacity, high radiation resistance, and a high melting point,<ref>{{Cite journal |last1=Panneerselvam |first1=G |last2=Venkata Krishnan |first2=R |last3=Antony |first3=M. P |last4=Nagarajan |first4=K |last5=Vasudevan |first5=T |last6=Vasudeva Rao |first6=P. R |date=2004-05-01 |title=Thermophysical measurements on dysprosium and gadolinium titanates |url=https://www.sciencedirect.com/science/article/abs/pii/S0022311504000807 |journal=Journal of Nuclear Materials |volume=327 |issue=2 |pages=220–225 |doi=10.1016/j.jnucmat.2004.02.009 |bibcode=2004JNuM..327..220P |issn=0022-3115}}</ref><ref>{{Cite journal |last1=Lee |first1=Byung-Ho |last2=Kim |first2=Han-Soo |last3=Lee |first3=Sang-Hyun |last4=Sohn |first4=Dong-Seong |date=2007-04-01 |title=Measurement of the thermal properties of gadolinium and dysprosium titanate |url=https://www.sciencedirect.com/science/article/abs/pii/S004060310600606X |journal=Thermochimica Acta |series=6th KSTP Symposium |volume=455 |issue=1 |pages=100–104 |doi=10.1016/j.tca.2006.11.033 |bibcode=2007TcAc..455..100L |issn=0040-6031}}</ref> all of which make dysprosium titanate a favorable material to use in control rods for nuclear reactors.<ref name=":0" /><ref name=":3" />

Specifically, this material is used in the control rods for industrial thermal neutron reactors such as the [[VVER|VVER-1000]] reactor type.<ref>{{Cite journal |last1=Risovany |first1=V. D. |last2=Varlashova |first2=E. E. |last3=Suslov |first3=D. N. |date=2000-09-02 |title=Dysprosium titanate as an absorber material for control rods |url=https://www.sciencedirect.com/science/article/abs/pii/S002231150000129X |journal=Journal of Nuclear Materials |volume=281 |issue=1 |pages=84–89 |doi=10.1016/S0022-3115(00)00129-X |bibcode=2000JNuM..281...84R |issn=0022-3115}}</ref>


== References ==
== References ==
{{reflist}}
{{reflist}}


{{Dysprosium compounds}}
{{inorganic-compound-stub}}
{{Titanium compounds}}
{{Titanates}}

[[Category:Dysprosium compounds]]
[[Category:Dysprosium compounds]]
[[Category:Titanates]]
[[Category:Titanates]]
[[Category:Ceramic materials]]
[[Category:Ceramic materials]]
[[Category:Neutron poisons]]
[[Category:Neutron poisons]]
[[pl:Tytanian dysprozu]]

Latest revision as of 03:51, 21 December 2024

Dysprosium titanate
Names
IUPAC name
Dysprosium titanate
Identifiers
3D model (JSmol)
  • InChI=1S/2Dy.7O.2Ti/q2*+3;7*-2;2*+4
  • [Dy+3].[Dy+3].[Ti+4].[Ti+4].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2]
Properties
Dy2O7Ti2
Molar mass 532.727 g·mol−1
Density 6.8 g/cm3[1]
Structure[1]
Pyrochlore
Fd3m, cF88, No. 227
a = 1.0136 nm
8
Related compounds
Other cations
Holmium titanate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dysprosium titanate (Dy2Ti2O7 or Dy2TiO5) is an inorganic compound, specifically a ceramic of the titanate family. Two common phases of this compound exist with differing properties: Dy2Ti2O7 and Dy2TiO5. Dysprosium titanate is commonly used throughout the nuclear industry in nuclear control rods and as a host for nuclear waste.[2][3]

History

[edit]

Dysprosium titanate was one of the first materials that was discovered to be a spin ice, along with holmium titanate (Ho2Ti2O7), in 1997.[4] The existence of these materials was predicted by Linus Pauling in 1935, but neutron scattering experiments confirmed their existence as holmium titanate satisfied the model.[5]

Since its discovery as a spin ice, dysprosium titanate has continued to be a focus of research because the magnetic frustration that results from its pyrochlore lattice. In 2009, quasiparticles resembling magnetic monopoles were observed at low temperature and high magnetic field through neutron-scattering experiments.[6] The study demonstrated the existence of Dirac strings in dysprosium titanate and the presence of monopole characteristics at low temperatures.[7]

Structure

[edit]

The Dy2Ti2O7 phase exhibits a cubic pyrochlore structure where the Dy3+ ions form a network of corner-sharing tetrahedra.[4][8] It is notable for its ability to withstand structural change in the presence of radiation from high energy ions.[2]

Dy2Ti2O7 can be "stuffed" by adding additional lanthanide atoms into the pyrochlore to generate Dy2TiO5.[9] In this instance, Dy3+ is 5-coordinated with oxygen, which produces an orthorhombic structure in the Dy2TiO5 phase. This phase also possesses a large neutron absorption cross section, which makes it desirable for various nuclear applications.[3] This can, however, pose difficulties when characterizing this compound through the use of neutron diffraction.[10]

Synthesis

[edit]

Dysprosium titanate can be synthesized using various methods. The traditional synthesis process involve high-frequency induction melting of dysprosium oxide and titania in a cooled crucible. Sol-gel synthesis has also been utilized as a method to produce the compound in powder form. More recent developments have displayed the viability of mechanochemical processes using anatase and dysprosium oxide as reagents to produce dysprosium titanate nanopowders.[11][12]

Uses and Applications

[edit]

Dysprosium titanate has become a desirable material in nuclear industry because of various properties. The compound has a large neutron absorption cross-section, low thermal expansion, high heat capacity, high radiation resistance, and a high melting point,[13][14] all of which make dysprosium titanate a favorable material to use in control rods for nuclear reactors.[2][12]

Specifically, this material is used in the control rods for industrial thermal neutron reactors such as the VVER-1000 reactor type.[15]

References

[edit]
  1. ^ a b Dolgikh V.A., Lavat E.A. (1991). "Preparation of new oxide nitrides with the pyrochlore structure". Russ. J. Inorg. Chem. 36: 1389–1392.
  2. ^ a b c Sherrod, Roman; O’Quinn, Eric C.; Gussev, Igor M.; Overstreet, Cale; Neuefeind, Joerg; Lang, Maik K. (2021-04-16). "Comparison of short-range order in irradiated dysprosium titanates". npj Materials Degradation. 5 (1): 19. Bibcode:2021npjMD...5...19S. doi:10.1038/s41529-021-00165-6. ISSN 2397-2106.
  3. ^ a b Risovany, V.D.; Varlashova, E.E.; Suslov, D.N. (2000). "Dysprosium titanate as an absorber material for control rods". Journal of Nuclear Materials. 281 (1): 84–89. Bibcode:2000JNuM..281...84R. doi:10.1016/S0022-3115(00)00129-X.
  4. ^ a b Gardner, Jason S. (2010). "Magnetic pyrochlore oxides". Reviews of Modern Physics. 82 (1): 53–107. arXiv:0906.3661. Bibcode:2010RvMP...82...53G. doi:10.1103/RevModPhys.82.53.
  5. ^ Harris, M. J. (1997). "Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2Ti2O7". Physical Review Letters. 79 (13): 2554–2557. doi:10.1103/PhysRevLett.79.2554.
  6. ^ "Magnetic Monopoles Detected In A Real Magnet For The First Time". Science Daily. 2009-09-04. Retrieved 2009-09-04.
  7. ^ Morris, D. J. P.; Tennant, D. A.; Grigera, S. A.; Klemke, B.; Castelnovo, C.; Moessner, R.; Czternasty, C.; Meissner, M.; Rule, K. C.; Hoffmann, J.-U.; Kiefer, K.; Gerischer, S.; Slobinsky, D.; Perry, R. S. (2009-10-16). "Dirac Strings and Magnetic Monopoles in the Spin Ice Dy2Ti2O7". Science. 326 (5951): 411–414. arXiv:1011.1174. doi:10.1126/science.1178868. PMID 19729617.
  8. ^ Scharffe, S.; Kolland, G.; Valldor, M.; Cho, V.; Welter, J. F.; Lorenz, T. (2015-06-01). "Heat transport of the spin-ice materials Ho2Ti2O7 and Dy2Ti2O7". Journal of Magnetism and Magnetic Materials. Selected papers from the sixth Moscow International Symposium on Magnetism (MISM-2014). 383: 83–87. arXiv:1406.4037. doi:10.1016/j.jmmm.2014.11.015. ISSN 0304-8853.
  9. ^ Aughterson, Robert D.; Lumpkin, Gregory R.; Thorogood, Gordon J.; Zhang, Zhaoming; Gault, Baptiste; Cairney, Julie M. (2015-07-01). "Crystal chemistry of the orthorhombic Ln2TiO5 compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy". Journal of Solid State Chemistry. 227: 60–67. doi:10.1016/j.jssc.2015.03.003. ISSN 0022-4596.
  10. ^ Shamblin, Jacob (2016). "Crystal structure and partial Ising-like magnetic ordering of orthorhombic Dy2TiO5". Physical Review B. 94 (2): 024413. doi:10.1103/PhysRevB.94.024413.
  11. ^ Sharipzyanova, G. Kh.; Eremeeva, Zh. V.; Karlina, Y. I. (2024-03-01). "Study of the mechanical properties of dysprosium-titanate and dysprosium-hafnate nanopowders". Metallurgist. 67 (11): 1971–1977. doi:10.1007/s11015-024-01695-5. ISSN 1573-8892.
  12. ^ a b Eremeeva, Zh. V.; Panov, V. S.; Myakisheva, L. V.; Lizunov, A. V.; Nepapushev, A. A.; Sidorenko, D. A.; Vorotilo, S. (2017-11-01). "Structure and properties of mechanochemically synthesized dysprosium titanate Dy2TiO5". Journal of Nuclear Materials. 495: 38–48. doi:10.1016/j.jnucmat.2017.07.058. ISSN 0022-3115.
  13. ^ Panneerselvam, G; Venkata Krishnan, R; Antony, M. P; Nagarajan, K; Vasudevan, T; Vasudeva Rao, P. R (2004-05-01). "Thermophysical measurements on dysprosium and gadolinium titanates". Journal of Nuclear Materials. 327 (2): 220–225. Bibcode:2004JNuM..327..220P. doi:10.1016/j.jnucmat.2004.02.009. ISSN 0022-3115.
  14. ^ Lee, Byung-Ho; Kim, Han-Soo; Lee, Sang-Hyun; Sohn, Dong-Seong (2007-04-01). "Measurement of the thermal properties of gadolinium and dysprosium titanate". Thermochimica Acta. 6th KSTP Symposium. 455 (1): 100–104. Bibcode:2007TcAc..455..100L. doi:10.1016/j.tca.2006.11.033. ISSN 0040-6031.
  15. ^ Risovany, V. D.; Varlashova, E. E.; Suslov, D. N. (2000-09-02). "Dysprosium titanate as an absorber material for control rods". Journal of Nuclear Materials. 281 (1): 84–89. Bibcode:2000JNuM..281...84R. doi:10.1016/S0022-3115(00)00129-X. ISSN 0022-3115.