MRB constant: Difference between revisions
→Definition: Removed dead link |
GreenC bot (talk | contribs) Reformat 1 archive link. Wayback Medic 2.5 per WP:USURPURL and JUDI batch #20 |
||
(43 intermediate revisions by 23 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mathematical constant described by Marvin Ray Burns}} |
|||
{{notability|reason=Being discussed on talk page|date=January 2015}} |
|||
[[File:MRB-Gif.gif|thumb|right|195px|First 100 partial sums of <math>(-1)^k (k^{1/k} - 1)</math>]]The '''MRB constant''' is a [[mathematical constant]], with decimal expansion {{nowrap|0.187859…}} {{OEIS|A037077}}. The constant is named after its discoverer, Marvin Ray Burns, who published his discovery of the constant in 1999.<ref>{{cite web|url=http://www.plouffe.fr/simon/constants/mrburns.txt|title=mrburns|last=Plouffe|first=Simon|access-date=12 January 2015}}</ref> Burns had initially called the constant "rc" for root constant<ref>{{cite web|url=http://math2.org/mmb/thread/901|title=RC|last=Burns|first=Marvin R.|date=23 January 1999|website=math2.org|access-date=5 May 2009}}</ref> but, at [[Simon Plouffe|Simon Plouffe's]] suggestion, the constant was renamed the 'Marvin Ray Burns's Constant', or "MRB constant".<ref>{{cite web|url=http://www.plouffe.fr/simon/articles/Tableofconstants.pdf|title=Tables of Constants|last=Plouffe|first=Simon|date=20 November 1999|publisher=Laboratoire de combinatoire et d'informatique mathématique|access-date=5 May 2009}}</ref> |
|||
[[File:MRB messy.gif|thumb|right|195px|Marvin R. Burns, the constant's author, in 1999]] |
|||
The MRB constant is defined as the [[upper limit]] of the [[partial sums]]<ref name="Weisstein" /><ref>{{cite arXiv|eprint=0912.3844|first=Richard J.|last=Mathar|title=Numerical Evaluation of the Oscillatory Integral Over exp(iπx) x^*1/x) Between 1 and Infinity|year=2009|class=math.CA}}</ref><ref>{{cite web|url=http://www.perfscipress.com/papers/UniversalTOC25.pdf|title=Unified algorithms for polylogarithm, L-series, and zeta variants|last=Crandall|first=Richard|publisher=PSI Press|archive-url=https://web.archive.org/web/20130430193005/http://www.perfscipress.com/papers/UniversalTOC25.pdf|archive-date=April 30, 2013|url-status=usurped|access-date=16 January 2015}}</ref><ref>{{OEIS|id=A037077}}</ref><ref>{{OEIS|id=A160755}}</ref><ref>{{OEIS|id=A173273}}</ref><ref>{{cite web|url=http://www.bitman.name/math/article/962|title=MRB (costante)|last=Fiorentini|first=Mauro|website=bitman.name|language=italian|access-date=14 January 2015}}</ref> |
|||
The '''MRB constant,''' named after Marvin Ray Burns, is a [[mathematical constant]] for which no [[closed-form expression]] is known. It is not known whether the MRB constant is [[algebraic number|algebraic]], [[transcendental number|transcendental]], or even [[irrational number|irrational]]. |
|||
The numerical value of MRB constant, truncated to 6 [[decimal|decimal places]], is |
|||
:{{nowrap|0.187859…}} {{OEIS|A037077}}. |
|||
==Definition== |
|||
[[File:MRB-Gif.gif|thumb|right|195px|MRB First 100 points]] |
|||
⚫ | |||
⚫ | |||
Its [[partial sum]]s |
|||
: <math>s_n = \sum_{k=1}^n (-1)^k k^{1/k}</math> |
: <math>s_n = \sum_{k=1}^n (-1)^k k^{1/k}</math> |
||
are bounded so that their [[limit point]]s form an [[interval (mathematics)|interval]] [−0.812140…,0.187859…] of length 1. The [[upper limit]] point 0.187859… is what is known as the MRB constant.<ref>{{cite web|last1=Weisstein|first1=Eric W|title="MRB Constant.|url=http://mathworld.wolfram.com/MRBConstant.html|website=MathWorld|publisher=MathWorld--A Wolfram Web Resource|accessdate=12 January 2015}}</ref><ref>{{cite web|last1=MATHAR|first1=RICHARD J|title=NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(iπx) x^*1/x) BETWEEN 1 AND INFINITY|url=http://arxiv.org/pdf/0912.3844v3.pdf|website=arxiv|publisher=Cornell University|accessdate=12 January 2015}}</ref><ref>{{cite web|last1=Crandall|first1=Richard|title=Unified algorithms for polylogarithm, L-series, and zeta variants|url=http://web.archive.org/web/20130430193005/http://www.perfscipress.com/papers/UniversalTOC25.pdf|website=http://web.archive.org/|publisher=PSI Press|accessdate=16 January 2015}}</ref><ref>{{OEIS|id=A037077}}</ref><ref>{{OEIS|id=A160755}}</ref><ref> {{OEIS|id=A173273}}</ref> |
|||
As <math>n</math> grows to infinity, the sums have [[Limit inferior and limit superior|upper and lower limit points]] of −0.812140… and 0.187859…, separated by an [[interval (mathematics)|interval]] of length 1. The constant can also be explicitly defined by the following infinite sums:<ref name="Weisstein">{{MathWorld |title=MRB Constant |urlname=MRBConstant}}</ref> |
|||
: <math>0.187859\ldots = \sum_{k=1}^{\infty} (-1)^k (k^{1/k} - 1) = \sum_{k=1}^{\infty} \left((2k)^{1/(2k)} - (2k-1)^{1/(2k-1)}\right).</math> |
: <math>0.187859\ldots = \sum_{k=1}^{\infty} (-1)^k (k^{1/k} - 1) = \sum_{k=1}^{\infty} \left((2k)^{1/(2k)} - (2k-1)^{1/(2k-1)}\right).</math> |
||
⚫ | |||
There is no known [[closed-form expression]] of the MRB constant.<ref>{{cite book |title=Mathematical Constants |last=Finch |first=Steven R. |authorlink= |coauthors= |year=2003 |publisher=[[Cambridge University Press]] |location=[[Cambridge, England]] |isbn=0-521-81805-2 |page=450 |pages=}}</ref> |
|||
⚫ | |||
There is no known [[closed-form expression]] of the MRB constant,<ref>{{cite book|title=Mathematical Constants|url=https://archive.org/details/mathematicalcons0000finc|url-access=registration|last=Finch|first=Steven R.|publisher=[[Cambridge University Press]]|year=2003|isbn=0-521-81805-2|location=[[Cambridge, England]]|page=[https://archive.org/details/mathematicalcons0000finc/page/450 450]}}</ref> nor is it known whether the MRB constant is [[algebraic number|algebraic]], [[Transcendental number|transcendental]] or even [[irrational number|irrational]]. |
|||
==History== |
|||
Marvin Ray Burns published his discovery of the constant in 1999. The discovery is a result of a "math [[wikt:binge|binge]]" that started in the spring of 1994.<ref>{{cite web | last=Burns | first=Marvin R. | coauthors= | title=Captivity’s Captor: Now is the Time for the Chorus of Conversion | url=https://oncourse.iu.edu/access/content/user/marburns/Filemanager_Public_Files/final1.doc | date=2002-04-12 | work= | publisher=[[Indiana University]] | accessdate=2009-05-05 }}</ref> Before verifying with colleague [[Simon Plouffe]] that such a constant had not already been discovered or at least not widely published, Burns called the constant "rc" for root constant.<ref>{{cite web | last=Burns | first=Marvin R. | coauthors= | title=RC | url=http://math2.org/mmb/thread/901 | date=1999-01-23 | work= | publisher=[http://math2.org/ math2.org] | accessdate=2009-05-05 }}</ref> At Plouffe's suggestion, the constant was renamed Marvin Ray Burns's Constant, and then shortened to "MRB constant" in 1999.<ref>{{cite web | last=Plouffe| first=Simon | coauthors= | title=Tables of Constants | url=http://www.plouffe.fr/simon/articles/Tableofconstants.pdf | date=1999-11-20 | publisher=[http://lacim.uqam.ca/?lang=en Laboratoire de combinatoire et d'informatique mathématique] | accessdate=2009-05-05 }}</ref> |
|||
==References== |
==References== |
||
Line 28: | Line 20: | ||
==External links== |
==External links== |
||
{{Portal|Mathematics}} |
{{Portal|Mathematics}} |
||
* [http://marvinrayburns.com/ Official site of M.R. Burns, constant's |
* [http://marvinrayburns.com/ Official site of M.R. Burns, constant's namesake and discoverer] |
||
[[Category:Mathematical constants]] |
[[Category:Mathematical constants]] |
||
[[Category:Number theory]] |
Latest revision as of 04:31, 21 December 2024
The MRB constant is a mathematical constant, with decimal expansion 0.187859… (sequence A037077 in the OEIS). The constant is named after its discoverer, Marvin Ray Burns, who published his discovery of the constant in 1999.[1] Burns had initially called the constant "rc" for root constant[2] but, at Simon Plouffe's suggestion, the constant was renamed the 'Marvin Ray Burns's Constant', or "MRB constant".[3]
The MRB constant is defined as the upper limit of the partial sums[4][5][6][7][8][9][10]
As grows to infinity, the sums have upper and lower limit points of −0.812140… and 0.187859…, separated by an interval of length 1. The constant can also be explicitly defined by the following infinite sums:[4]
The constant relates to the divergent series:
There is no known closed-form expression of the MRB constant,[11] nor is it known whether the MRB constant is algebraic, transcendental or even irrational.
References
[edit]- ^ Plouffe, Simon. "mrburns". Retrieved 12 January 2015.
- ^ Burns, Marvin R. (23 January 1999). "RC". math2.org. Retrieved 5 May 2009.
- ^ Plouffe, Simon (20 November 1999). "Tables of Constants" (PDF). Laboratoire de combinatoire et d'informatique mathématique. Retrieved 5 May 2009.
- ^ a b Weisstein, Eric W. "MRB Constant". MathWorld.
- ^ Mathar, Richard J. (2009). "Numerical Evaluation of the Oscillatory Integral Over exp(iπx) x^*1/x) Between 1 and Infinity". arXiv:0912.3844 [math.CA].
- ^ Crandall, Richard. "Unified algorithms for polylogarithm, L-series, and zeta variants" (PDF). PSI Press. Archived from the original on April 30, 2013. Retrieved 16 January 2015.
- ^ (sequence A037077 in the OEIS)
- ^ (sequence A160755 in the OEIS)
- ^ (sequence A173273 in the OEIS)
- ^ Fiorentini, Mauro. "MRB (costante)". bitman.name (in Italian). Retrieved 14 January 2015.
- ^ Finch, Steven R. (2003). Mathematical Constants. Cambridge, England: Cambridge University Press. p. 450. ISBN 0-521-81805-2.