AU Microscopii: Difference between revisions
Kilawyn Punx (talk | contribs) →See also: added link to exoplanet list |
Citation bot (talk | contribs) Altered pages. Add: issue, volume. | Use this bot. Report bugs. | Suggested by Headbomb | Category:CS1 maint: bibcode | #UCB_Category 22/27 |
||
(12 intermediate revisions by 8 users not shown) | |||
Line 60: | Line 60: | ||
AU Microscopii has been observed in every part of the [[electromagnetic spectrum]] from [[radio]] to [[X-ray]] and is known to undergo [[flare star|flaring]] activity at all these wavelengths.<ref name=apj421_2_800/><ref name=apj414_2_L49/><ref name=apj312_822/><ref name = "TSIKOUDI2000"/> Its flaring behaviour was first identified in 1973.<ref name=apjs25_1/><ref name=mnras197_815/> Underlying these random outbreaks is a nearly [[sinusoidal]] variation in its brightness with a period of 4.865 days. The amplitude of this variation changes slowly with time. The [[UBV photometric system|V band]] brightness variation was approximately 0.3 [[Absolute magnitude|magnitude]]s in 1971; by 1980 it was merely 0.1 magnitudes.<ref name=aaa174_1_139/> |
AU Microscopii has been observed in every part of the [[electromagnetic spectrum]] from [[radio]] to [[X-ray]] and is known to undergo [[flare star|flaring]] activity at all these wavelengths.<ref name=apj421_2_800/><ref name=apj414_2_L49/><ref name=apj312_822/><ref name = "TSIKOUDI2000"/> Its flaring behaviour was first identified in 1973.<ref name=apjs25_1/><ref name=mnras197_815/> Underlying these random outbreaks is a nearly [[sinusoidal]] variation in its brightness with a period of 4.865 days. The amplitude of this variation changes slowly with time. The [[UBV photometric system|V band]] brightness variation was approximately 0.3 [[Absolute magnitude|magnitude]]s in 1971; by 1980 it was merely 0.1 magnitudes.<ref name=aaa174_1_139/> |
||
{{clear left}} |
{{clear left}} |
||
== Planetary system == |
== Planetary system == |
||
AU Microscopii's debris disk has an asymmetric structure and an inner gap or hole cleared of debris, which has led a number of astronomers to search for planets orbiting AU Microscopii. By 2007, no searches had led to any detections of planets.<ref name = "METCHEVETAL05" /><ref name = "MASCIADRIETAL05"/> However, in 2020 the discovery of a Neptune-sized planet was announced based on [[astronomical transit|transit]] observations by [[Transiting Exoplanet Survey Satellite|TESS]].<ref name=PlavchanNature_2020/> Its rotation axis is well aligned with the rotation axis of the parent star, with the misalignment being equal to 5{{±|16|15}}°.<ref name=Duncan2020/> |
AU Microscopii's debris disk has an asymmetric structure and an inner gap or hole cleared of debris, which has led a number of astronomers to search for planets orbiting AU Microscopii. By 2007, no searches had led to any detections of planets.<ref name = "METCHEVETAL05" /><ref name = "MASCIADRIETAL05"/> However, in 2020 the discovery of a Neptune-sized planet was announced based on [[astronomical transit|transit]] observations by [[Transiting Exoplanet Survey Satellite|TESS]].<ref name=PlavchanNature_2020/> Its rotation axis is well aligned with the rotation axis of the parent star, with the misalignment being equal to 5{{±|16|15}}°.<ref name=Duncan2020/> |
||
Since 2018, a second planet, AU Microscopii c, was suspected to exist. It was confirmed in December 2020, after additional transit events were documented by the TESS observatory.<ref name=Martioli2020/> |
Since 2018, a second planet, AU Microscopii c, was suspected to exist. It was confirmed in December 2020, after additional transit events were documented by the TESS observatory.<ref name=Martioli2020/> A 2024 study which performed measurements of [[Rossiter–McLaughlin effect]] for the planet c revealed that the planet is possibly misaligned with the star's rotation axis, returning a poorly constrained value of projected [[Axial_tilt#Extrasolar_planets|obliquity]] ''λ''<sub>c</sub> = {{val|67.8|31.7|49.0|u=deg}}.<ref name=Yu2024 /> |
||
A third planet in the system was suspected since 2022 based on [[transit-timing variation]]s,<ref name=Wittrock2022/> and "validated" in 2023, although several possible orbital periods of planet d cannot be ruled out yet. This planet has a mass comparable to that of Earth.<ref name=Wittrock2023/> [[Doppler spectroscopy|Radial velocity]] observations have also found evidence for a fourth, outer planet as of 2023.<ref name="Donati2023"/> |
A third planet in the system was suspected since 2022 based on [[transit-timing variation]]s,<ref name=Wittrock2022/> and "validated" in 2023, although several possible orbital periods of planet d cannot be ruled out yet. This planet has a mass comparable to that of Earth.<ref name=Wittrock2023/> [[Doppler spectroscopy|Radial velocity]] observations have also found evidence for a fourth, outer planet as of 2023.<ref name="Donati2023"/> Observations of the AU Microscopii system with the [[James Webb Space Telescope]] were unable to confirm the presence of previously unknown companions.<ref name="Joshua E 2308">{{Cite journal |last1=Lawson |first1=Kellen |last2=Schlieder |first2=Joshua E. |last3=Leisenring |first3=Jarron M. |last4=Bogat |first4=Ell |last5=Beichman |first5=Charles A. |last6=Bryden |first6=Geoffrey |last7=Gáspár |first7=András |last8=Groff |first8=Tyler D. |last9=McElwain |first9=Michael W. |last10=Meyer |first10=Michael R. |last11=Barclay |first11=Thomas |last12=Calissendorff |first12=Per |last13=De Furio |first13=Matthew |last14=Ygouf |first14=Marie |last15=Boccaletti |first15=Anthony |date=2023-10-01 |title=JWST/NIRCam Coronagraphy of the Young Planet-hosting Debris Disk AU Microscopii |journal=The Astronomical Journal |volume=166 |issue=4 |pages=150 |doi=10.3847/1538-3881/aced08 |doi-access=free |arxiv=2308.02486 |bibcode=2023AJ....166..150L |issn=0004-6256}}</ref> |
||
{{OrbitboxPlanet begin |
{{OrbitboxPlanet begin |
||
Line 114: | Line 115: | ||
}} |
}} |
||
{{Orbitbox end}} |
{{Orbitbox end}} |
||
===Debris disk=== |
===Debris disk=== |
||
[[Image:Debris disk AU Mic HST.jpg|left|thumb|[[Hubble Space Telescope]] image of the debris disk around AU Microscopii.]] |
[[Image:Debris disk AU Mic HST.jpg|left|thumb|[[Hubble Space Telescope]] image of the debris disk around AU Microscopii.]] |
||
[[File:Mysterious ripples moving through the disc of AU Microscopii.webm|thumb|left|This short time lapse sequence shows images of the debris |
[[File:Mysterious ripples moving through the disc of AU Microscopii.webm|thumb|left|This short time lapse sequence shows images of the debris disk's "fast-moving features".]] |
||
⚫ | [[File:Dusty Debris Disk Around AU Mic (au-mic1).jpeg|thumb|left|300px|[[James Webb Space Telescope]] has imaged (Au Mic) the inner workings of a dusty disk surrounding a nearby red dwarf star.<ref>{{cite news |date=October 18, 2023 |title=Dusty Debris Disk Around AU Mic6 |url=https://esawebb.org/images/au-mic1/}}</ref> ]] |
||
⚫ | AU Microscopii |
||
⚫ | All-sky observations with the [[IRAS|Infrared Astronomy Satellite]] revealed faint infrared emission from AU Microscopii.<ref>{{Cite web |title=IRASFSC - IRAS Faint Source Catalog, Version 2.0 |url=https://heasarc.gsfc.nasa.gov/W3Browse/all/irasfsc.html |access-date=2024-05-10 |website=heasarc.gsfc.nasa.gov}}</ref><ref>{{Cite journal |last=Moshir |first=M. |display-authors=etal |date=1990-01-01 |title=IRAS Faint Source Catalogue, version 2.0. |url=https://ui.adsabs.harvard.edu/abs/1990IRASF.C......0M |journal=IRAS Faint Source Catalogue |pages=0|bibcode=1990IRASF.C......0M }}</ref> This emission is due to a circumstellar [[Debris disk|disk of dust]] which first resolved at optical wavelengths in 2003 by [[Paul Kalas]] and collaborators using the [[UH88|University of Hawaii 2.2-m telescope]] on [[Mauna Kea]], Hawaii.<ref name="KALASETAL04" /> This large debris disk faces the earth edge-on at nearly 90 degrees,<ref>{{cite journal|author = Paul Kalas, James R. Graham and Mark Clampin|title = A planetary system as the origin of structure in Fomalhaut's dust belt|journal = Nature|date = 23 June 2005|pages = 1067–1070|bibcode = 2005Natur.435.1067K|doi = 10.1038/nature03601|issue = 7045|volume = 435|pmid = 15973402|arxiv = astro-ph/0506574 |s2cid = 4406070}}</ref> and measures at least 200 [[Astronomical unit|AU]] in radius. At these large distances from the star, the lifetime of dust in the disk exceeds the age of AU Microscopii.<ref name="KALASETAL04" /> The disk has a gas to dust mass ratio of no more than 6:1, much lower than the usually assumed primordial value of 100:1.<ref name="ROBERGEETAL05" /> The debris disk is therefore referred to as "gas-poor", as the primordial gas within the circumstellar system has been mostly depleted.<ref>{{Cite journal |last1=Roberge |first1=Aki |last2=Weinberger |first2=Alycia J. |last3=Redfield |first3=Seth |last4=Feldman |first4=Paul D. |date=2005-06-01 |title=Rapid Dissipation of Primordial Gas from the AU Microscopii Debris Disk |url=https://ui.adsabs.harvard.edu/abs/2005ApJ...626L.105R |journal=The Astrophysical Journal |volume=626 |issue=2 |pages=L105–L108 |doi=10.1086/431899 |arxiv=astro-ph/0505302 |bibcode=2005ApJ...626L.105R |issn=0004-637X}}</ref> The total amount of dust visible in the disk is estimated to be at least a lunar mass, while the larger [[planetesimal]]s from which the dust is produced are inferred to have at least six lunar masses.<ref>{{cite journal|author1=C. H. Chen |author2=B. M. Patten |author3=M. W. Werner |author4=C. D. Dowell |author5=K. R. Stapelfeldt |author6=I. Song |author7=J. R. Stauffer |author8=M. Blaylock |author9=K. D. Gordon |author10=V. Krause |name-list-style=amp |title = A Spitzer Study of Dusty Disks around Nearby, Young Stars|journal = The Astrophysical Journal|date = December 1, 2005|issue = 2|pages = 1372–1384|bibcode = 2005ApJ...634.1372C|doi = 10.1086/497124|volume = 634|doi-access=free }}</ref> |
||
⚫ | The [[Astronomical spectroscopy|spectral energy distribution]] of AU Microscopii's debris disk at [[Submillimetre astronomy|submillimetre]] wavelengths indicate the presence of an inner hole in the disk extending to 17 AU,<ref>{{cite journal|title = A Submillimeter Search of Nearby Young Stars for Cold Dust: Discovery of Debris Disks around Two Low-Mass Stars|author1=Michael C. Liu |author2=Brenda C. Matthews |author3=Jonathan P. Williams |author4=Paul G. Kalas |name-list-style=amp |journal = [[The Astrophysical Journal]]|date = June 10, 2004|volume = 608|issue = 1|pages = 526–532|bibcode = 2004ApJ...608..526L|doi = 10.1086/392531|arxiv = astro-ph/0403131 |s2cid=9178164 }}</ref> while scattered light images estimate the inner hole to be 12 AU in radius.<ref name |
||
⚫ | The [[Astronomical spectroscopy|spectral energy distribution]] of AU Microscopii's debris disk at [[Submillimetre astronomy|submillimetre]] wavelengths indicate the presence of an inner hole in the disk extending to 17 AU,<ref>{{cite journal|title = A Submillimeter Search of Nearby Young Stars for Cold Dust: Discovery of Debris Disks around Two Low-Mass Stars|author1=Michael C. Liu |author2=Brenda C. Matthews |author3=Jonathan P. Williams |author4=Paul G. Kalas |name-list-style=amp |journal = [[The Astrophysical Journal]]|date = June 10, 2004|volume = 608|issue = 1|pages = 526–532|bibcode = 2004ApJ...608..526L|doi = 10.1086/392531|arxiv = astro-ph/0403131 |s2cid=9178164 }}</ref> while scattered light images estimate the inner hole to be 12 AU in radius.<ref name="KIRSTETAL05" /> Combining the spectral energy distribution with the surface brightness profile yields a smaller estimate of the radius of the inner hole, 1 - 10 AU.<ref name="METCHEVETAL05" /> The inner part of the disk is [[asymmetry|asymmetric]] and shows structure in the inner 40 AU.<ref name="LIU04" /> The inner structure has been compared with that expected to be seen if the disk is influenced by larger bodies or has undergone recent planet formation.<ref name="LIU04" /> The [[surface brightness]] (brightness per area) of the disk in the near infrared <math style="vertical-align:+0em">\scriptstyle I</math> as a function of projected distance <math style="vertical-align:+0em">\scriptstyle r</math> from the star follows a characteristic shape. The inner <math style="vertical-align:+0em">\scriptstyle r\,<\,15 AU</math> of the disk appear approximately constant in density and the brightness is unchanging, more-or-less flat.<ref name="KIRSTETAL05" /> Around <math style="vertical-align:-0.07em">\scriptstyle r\, \approx\, 15 AU</math> the density and surface brightness begins to decrease: first it decreases slowly in proportion to distance as <math style="vertical-align:+0em">\scriptstyle I\, \propto \, r^{-1.8}</math>; then outside <math style="vertical-align:+0em">\scriptstyle r\, \approx\, 43 AU</math>, the density and brightness drops much more steeply, as <math style="vertical-align:+0em">\scriptstyle I\, \propto \, r^{-4.7}</math>.<ref name="KIRSTETAL05" /> This "broken power-law" shape is similar to the shape of the profile of β Pic's disk. |
||
The inner part of the disk is [[asymmetry|asymmetric]] and shows structure in the inner 40 AU.<ref name = "LIU04"/> The inner structure has been compared with that expected to be seen if the disk is influenced by larger bodies or has undergone recent planet formation.<ref name = "LIU04"/> |
|||
In October 2015 it was reported that astronomers using the [[Very Large Telescope]] (VLT) had detected very unusual outward-moving features in the disk. By comparing the VLT images with those taken by the [[Hubble Space Telescope]] in 2010 and 2011 it was found that the wave-like structures are moving away from the star at speeds of up to 10 kilometers per second (22,000 miles per hour). The waves farther away from the star seem to be moving faster than those close to it, and at least three of the features are moving fast enough to escape the gravitational pull of the star.<ref name="Ripples">{{cite web|title=Mysterious Ripples Found Racing Through Planet-Forming Disk |url=http://hubblesite.org/newscenter/archive/releases/2015/36/ |website=Hubblesite |access-date=8 October 2015 |archive-url=https://web.archive.org/web/20151011023230/http://hubblesite.org/newscenter/archive/releases/2015/36/full/ |archive-date=11 October 2015 |url-status=live }}</ref> Follow-up observations with the [[VLT-SPHERE|SPHERE]] instrument on the [[Very Large Telescope]] were able to confirm the presence of the fast-moving features,<ref>{{Cite journal |last1=Boccaletti |first1=A. |last2=Sezestre |first2=E. |last3=Lagrange |first3=A.-M. |last4=Thébault |first4=P. |last5=Gratton |first5=R. |last6=Langlois |first6=M. |last7=Thalmann |first7=C. |last8=Janson |first8=M. |last9=Delorme |first9=P. |last10=Augereau |first10=J.-C. |last11=Schneider |first11=G. |last12=Milli |first12=J. |last13=Grady |first13=C. |last14=Debes |first14=J. |last15=Kral |first15=Q. |date=2018-06-01 |title=Observations of fast-moving features in the debris disk of AU Mic on a three-year timescale: Confirmation and new discoveries |url=https://www.aanda.org/articles/aa/abs/2018/06/aa32462-17/aa32462-17.html |journal=Astronomy & Astrophysics |language=en |volume=614 |pages=A52 |doi=10.1051/0004-6361/201732462 |arxiv=1803.05354 |bibcode=2018A&A...614A..52B |issn=0004-6361}}</ref> and James Webb Space Telescope observations found similar features within the disk in two NIRCam filters;<ref name="Joshua E 2308"/> however, these features have not been detected in the radio with [[Atacama Large Millimeter Array]] observations.<ref>{{Cite journal |last1=Daley |first1=Cail |last2=Hughes |first2=A. Meredith |last3=Carter |first3=Evan S. |last4=Flaherty |first4=Kevin |last5=Lambros |first5=Zachary |last6=Pan |first6=Margaret |last7=Schlichting |first7=Hilke |last8=Chiang |first8=Eugene |last9=Wyatt |first9=Mark |last10=Wilner |first10=David |last11=Andrews |first11=Sean |last12=Carpenter |first12=John |date=2019-04-01 |title=The Mass of Stirring Bodies in the AU Mic Debris Disk Inferred from Resolved Vertical Structure |journal=The Astrophysical Journal |volume=875 |issue=2 |pages=87 |doi=10.3847/1538-4357/ab1074 |doi-access=free |arxiv=1904.00027 |bibcode=2019ApJ...875...87D |issn=0004-637X}}</ref><ref name="Evan S 2207">{{Cite journal |last1=Vizgan |first1=David |last2=Meredith Hughes |first2=A. |last3=Carter |first3=Evan S. |last4=Flaherty |first4=Kevin M. |last5=Pan |first5=Margaret |last6=Chiang |first6=Eugene |last7=Schlichting |first7=Hilke |last8=Wilner |first8=David J. |last9=Andrews |first9=Sean M. |last10=Carpenter |first10=John M. |last11=Moór |first11=Attila |last12=MacGregor |first12=Meredith A. |date=2022-08-01 |title=Multiwavelength Vertical Structure in the AU Mic Debris Disk: Characterizing the Collisional Cascade |journal=The Astrophysical Journal |volume=935 |issue=2 |pages=131 |doi=10.3847/1538-4357/ac80b8 |doi-access=free |arxiv=2207.05277 |bibcode=2022ApJ...935..131V |issn=0004-637X}}</ref> These fast-moving features have been described as "dust avalanches", where dust particles catastrophically collide into planetesimals within the disk.<ref>{{Cite journal |last1=Chiang |first1=Eugene |last2=Fung |first2=Jeffrey |date=2017-10-05 |title=Stellar Winds and Dust Avalanches in the AU Mic Debris Disk |journal=The Astrophysical Journal |volume=848 |issue=1 |pages=4 |doi=10.3847/1538-4357/aa89e6 |doi-access=free |arxiv=1707.08970 |bibcode=2017ApJ...848....4C |issn=0004-637X}}</ref><ref name="Evan S 2207"/> |
|||
The [[surface brightness]] (brightness per area) of the disk in the near infrared <math style="vertical-align:+0em">\scriptstyle I</math> as a function of projected distance <math style="vertical-align:+0em">\scriptstyle r</math> from the star follows a characteristic shape. The inner <math style="vertical-align:+0em">\scriptstyle r\,<\,15 AU</math> of the disk appear approximately constant in density and the brightness is unchanging, more-or-less flat.<ref name = "KIRSTETAL05" /> Around <math style="vertical-align:-0.07em">\scriptstyle r\, \approx\, 15 AU</math> the density and surface brightness begins to decrease: first it decreases slowly in proportion to distance as <math style="vertical-align:+0em">\scriptstyle I\, \propto \, r^{-1.8}</math>; then outside <math style="vertical-align:+0em">\scriptstyle r\, \approx\, 43 AU</math>, the density and brightness drops much more steeply, as <math style="vertical-align:+0em">\scriptstyle I\, \propto \, r^{-4.7}</math>.<ref name = "KIRSTETAL05" /> This "broken power-law" shape is similar to the shape of the profile of β Pic's disk. |
|||
In October 2015 it was reported that astronomers using the [[Very Large Telescope]] (VLT) had detected very unusual outward-moving features in the disk. By comparing the VLT images with those taken by the [[Hubble Space Telescope]] in 2010 and 2011 it was found that the wave-like structures are moving away from the star at speeds of up to 10 kilometers per second (22,000 miles per hour). The waves farther away from the star seem to be moving faster than those close to it, and at least three of the features are moving fast enough to escape the gravitational pull of the star.<ref name=Ripples>{{cite web|title=Mysterious Ripples Found Racing Through Planet-Forming Disk |url=http://hubblesite.org/newscenter/archive/releases/2015/36/ |website=Hubblesite |access-date=8 October 2015 |archive-url=https://web.archive.org/web/20151011023230/http://hubblesite.org/newscenter/archive/releases/2015/36/full/ |archive-date=11 October 2015 |url-status=live }}</ref> |
|||
==Methods of observation== |
==Methods of observation== |
||
Line 132: | Line 132: | ||
AU Mic's disk has been observed at a variety of different [[wavelength]]s, giving humans different types of information about the system. The light from the disk observed at [[visible light|optical wavelengths]] is stellar light that has reflected (scattered) off dust particles into Earth's line of sight. Observations at these wavelengths utilize a [[coronagraph|coronagraphic spot]] to block the bright light coming directly from the star. Such observations provide high-resolution images of the disk. Because light having a wavelength longer than the size of a dust grain is scattered only poorly, comparing images at different wavelengths (visible and near-infrared, for example) gives humans information about the sizes of the dust grains in the disk.<ref name="ucbn0108">{{cite news | first=Robert | last=Sanders | title=Dust around nearby star like powder snow | publisher=UC Berkeley News | date=2007-01-08 | url=http://www.berkeley.edu/news/media/releases/2007/01/08_dust.shtml | access-date=2007-01-11 | archive-url= https://web.archive.org/web/20070115065231/http://www.berkeley.edu/news/media/releases/2007/01/08_dust.shtml| archive-date= 15 January 2007 | url-status= live}}</ref> |
AU Mic's disk has been observed at a variety of different [[wavelength]]s, giving humans different types of information about the system. The light from the disk observed at [[visible light|optical wavelengths]] is stellar light that has reflected (scattered) off dust particles into Earth's line of sight. Observations at these wavelengths utilize a [[coronagraph|coronagraphic spot]] to block the bright light coming directly from the star. Such observations provide high-resolution images of the disk. Because light having a wavelength longer than the size of a dust grain is scattered only poorly, comparing images at different wavelengths (visible and near-infrared, for example) gives humans information about the sizes of the dust grains in the disk.<ref name="ucbn0108">{{cite news | first=Robert | last=Sanders | title=Dust around nearby star like powder snow | publisher=UC Berkeley News | date=2007-01-08 | url=http://www.berkeley.edu/news/media/releases/2007/01/08_dust.shtml | access-date=2007-01-11 | archive-url= https://web.archive.org/web/20070115065231/http://www.berkeley.edu/news/media/releases/2007/01/08_dust.shtml| archive-date= 15 January 2007 | url-status= live}}</ref> |
||
[[File:Hubble captures blobs of material sweeping through stellar disc AU Microscopii.tif|thumb |
[[File:Hubble captures blobs of material sweeping through stellar disc AU Microscopii.tif|thumb|Hubble observations of blobs of material sweeping through stellar disc.<ref>{{cite web |title=Hubble captures blobs of material sweeping through stellar disc |url=https://www.spacetelescope.org/images/opo1902a/ |website=www.spacetelescope.org |access-date=10 January 2019 |language=en}}</ref>]] |
||
Optical observations have been made with the Hubble Space Telescope and [[Keck Telescope]]s. The system has also been observed at [[infrared]] and sub-millimeter wavelengths. This light is emitted directly by dust grains as a result of their internal heat (modified [[blackbody]] radiation). The disk cannot be resolved at these wavelengths, so such observations are measurements of the amount of light coming from the entire system. Observations at increasingly longer wavelengths give information about dust particles of larger sizes and at larger distances from the star. |
Optical observations have been made with the [[Hubble Space Telescope]] and [[Keck Telescope]]s. The system has also been observed at [[infrared]] and sub-millimeter wavelengths with the [[James Clerk Maxwell Telescope]], [[Spitzer Space Telescope]], and the [[James Webb Space Telescope]]. This light is emitted directly by dust grains as a result of their internal heat (modified [[blackbody]] radiation). The disk cannot be resolved at these wavelengths, so such observations are measurements of the amount of light coming from the entire system. Observations at increasingly longer wavelengths give information about dust particles of larger sizes and at larger distances from the star. |
||
{{clear}} |
{{clear}} |
||
⚫ | [[File:Dusty Debris Disk Around AU Mic (au-mic1).jpeg|thumb|left|300px|[[James Webb Space Telescope]] has imaged (Au Mic) the inner workings of a dusty disk surrounding a nearby red dwarf star. |
||
== See also == |
== See also == |
||
Line 143: | Line 141: | ||
* [[List of exoplanets discovered in 2020]] - AU Microscopii b and c |
* [[List of exoplanets discovered in 2020]] - AU Microscopii b and c |
||
* [[List of exoplanets discovered in 2023]] - AU Microscopii d |
* [[List of exoplanets discovered in 2023]] - AU Microscopii d |
||
== References == |
== References == |
||
Line 188: | Line 185: | ||
<ref name="LIU04">{{cite journal|title = Substructure in the Circumstellar Disk Around the Young Star AU Microscopii|author = Michael C. Liu|journal = Science|date = 3 September 2004|volume = 305|pages = 1442–1444|doi = 10.1126/science.1102929|pmid = 15308766|issue = 5689|arxiv = astro-ph/0408164 |bibcode = 2004Sci...305.1442L |s2cid = 8457455}}</ref> |
<ref name="LIU04">{{cite journal|title = Substructure in the Circumstellar Disk Around the Young Star AU Microscopii|author = Michael C. Liu|journal = Science|date = 3 September 2004|volume = 305|pages = 1442–1444|doi = 10.1126/science.1102929|pmid = 15308766|issue = 5689|arxiv = astro-ph/0408164 |bibcode = 2004Sci...305.1442L |s2cid = 8457455}}</ref> |
||
<ref name="KIRSTETAL05">{{cite journal|author1=John E. Kirst |author2=D. R. Ardila |author3=D. A. Golimowski |author4=M. Clampin |author5=H. C. Ford |author6=G. D. Illingworth |author7=G. F. Hartig |author8=F. Bartko |author9=N. Benítez |author10=J. P. Blakeslee |author11=R. J. Bouwens |author12=L. D. Bradley |author13=T. J. Broadhurst |author14=R. A. Brown |author15=C. J. Burrows |author16=E. S. Cheng |author17=N. J. G. Cross |author18=R. Demarco |author19=P. D. Feldman |author20=M. Franx |author21=T. Goto |author22=C. Gronwall |author23=B. Holden |author24=N. Homeier |author25=L. Infante |author26=R. A. Kimble |author27=M. P. Lesser |author28=A. R. Martel |author29=S. Mei |author30=F. Mennanteau |author31=G. R. Meurer |author32=G. K. Miley |author33=V. Motta |author34=M. Postman |author35=P. Rosati |author36=M. Sirianni |author37=W. B. Sparks |author38=H. D. Tran |author39=Z. I. Tsvetanov |author40=R. L. White |author41=W. Zheng |name-list-style=amp |title = Hubble Space Telescope Advanced Camera for Surveys Coronagraphic Imaging of the AU Microscopii Debris Disk|date=February 2005|journal = The Astronomical Journal|volume = 129|issue = 2|pages = 1008–1017|bibcode = 2005AJ....129.1008K|doi = 10.1086/426755|s2cid=53497065 }}</ref> |
<ref name="KIRSTETAL05">{{cite journal|author1=John E. Kirst |author2=D. R. Ardila |author3=D. A. Golimowski |author4=M. Clampin |author5=H. C. Ford |author6=G. D. Illingworth |author7=G. F. Hartig |author8=F. Bartko |author9=N. Benítez |author10=J. P. Blakeslee |author11=R. J. Bouwens |author12=L. D. Bradley |author13=T. J. Broadhurst |author14=R. A. Brown |author15=C. J. Burrows |author16=E. S. Cheng |author17=N. J. G. Cross |author18=R. Demarco |author19=P. D. Feldman |author20=M. Franx |author21=T. Goto |author22=C. Gronwall |author23=B. Holden |author24=N. Homeier |author25=L. Infante |author26=R. A. Kimble |author27=M. P. Lesser |author28=A. R. Martel |author29=S. Mei |author30=F. Mennanteau |author31=G. R. Meurer |author32=G. K. Miley |author33=V. Motta |author34=M. Postman |author35=P. Rosati |author36=M. Sirianni |author37=W. B. Sparks |author38=H. D. Tran |author39=Z. I. Tsvetanov |author40=R. L. White |author41=W. Zheng |name-list-style=amp |title = Hubble Space Telescope Advanced Camera for Surveys Coronagraphic Imaging of the AU Microscopii Debris Disk|date=February 2005|journal = The Astronomical Journal|volume = 129|issue = 2|pages = 1008–1017|bibcode = 2005AJ....129.1008K|doi = 10.1086/426755|s2cid=53497065 |citeseerx=10.1.1.561.8393 }}</ref> |
||
<ref name="METCHEVETAL05">{{cite journal|author1=Stanimir A. Metchev |author2=Joshua A. Eisner |author3=Lynne A. Hillenbrand |name-list-style=amp |title = Adaptive Optics Imaging of the AU Microscopii Circumstellar Disk: Evidence for Dynamical Evolution|journal = The Astrophysical Journal|date = March 20, 2005|volume = 622|issue = 1|pages = 451–462|bibcode = 2005ApJ...622..451M|doi = 10.1086/427869|arxiv = astro-ph/0412143 |s2cid=16455262 }}</ref> |
<ref name="METCHEVETAL05">{{cite journal|author1=Stanimir A. Metchev |author2=Joshua A. Eisner |author3=Lynne A. Hillenbrand|author3-link= Lynne Hillenbrand |name-list-style=amp |title = Adaptive Optics Imaging of the AU Microscopii Circumstellar Disk: Evidence for Dynamical Evolution|journal = The Astrophysical Journal|date = March 20, 2005|volume = 622|issue = 1|pages = 451–462|bibcode = 2005ApJ...622..451M|doi = 10.1086/427869|arxiv = astro-ph/0412143 |s2cid=16455262 }}</ref> |
||
<ref name="MASCIADRIETAL05">{{cite journal|author1=E. Masciadri |author2=R. Mundt |author3=Th. Henning |author4=C. Alvarez |name-list-style=amp |title = A Search for Hot Massive Extrasolar Planets around Nearby Young Stars with the Adaptive Optics System NACO|journal = The Astrophysical Journal|date = 1 June 2005|volume = 625|issue = 2|pages = 1004–1018|bibcode = 2005ApJ...625.1004M|doi = 10.1086/429687|arxiv = astro-ph/0502376 |s2cid=15070805 }}</ref> |
<ref name="MASCIADRIETAL05">{{cite journal|author1=E. Masciadri |author2=R. Mundt |author3=Th. Henning |author4=C. Alvarez |name-list-style=amp |title = A Search for Hot Massive Extrasolar Planets around Nearby Young Stars with the Adaptive Optics System NACO|journal = The Astrophysical Journal|date = 1 June 2005|volume = 625|issue = 2|pages = 1004–1018|bibcode = 2005ApJ...625.1004M|doi = 10.1086/429687|arxiv = astro-ph/0502376 |s2cid=15070805 }}</ref> |
||
Line 204: | Line 201: | ||
<ref name="Szabó2021">{{cite journal |last1=Szabó |first1=Gy. M. |last2=Gandolfi |first2=D. |display-authors=etal |date=October 2021 |title=The changing face of AU Mic b: stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS |journal=[[Astronomy & Astrophysics]] |volume=654 |issue= |pages=A159 |doi=10.1051/0004-6361/202140345 |arxiv=2108.02149 |bibcode=2021A&A...654A.159S|s2cid=236912985 }}</ref> |
<ref name="Szabó2021">{{cite journal |last1=Szabó |first1=Gy. M. |last2=Gandolfi |first2=D. |display-authors=etal |date=October 2021 |title=The changing face of AU Mic b: stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS |journal=[[Astronomy & Astrophysics]] |volume=654 |issue= |pages=A159 |doi=10.1051/0004-6361/202140345 |arxiv=2108.02149 |bibcode=2021A&A...654A.159S|s2cid=236912985 }}</ref> |
||
<ref name="Cale2021">{{cite journal | title=Diving Beneath the Sea of Stellar Activity: Chromatic Radial Velocities of the Young AU Mic Planetary System | last1=Cale | first1=Bryson L. | last2=Reefe | first2=Michael | last3=Plavchan | first3=Peter | last4=Tanner | first4=Angelle | last5=Gaidos | first5=Eric | last6=Gagné | first6=Jonathan | last7=Gao | first7=Peter | last8=Kane | first8=Stephen R. | last9=Béjar | first9=Víctor J. S. | last10=Lodieu | first10=Nicolas | last11=Anglada-Escudé | first11=Guillem | last12=Ribas | first12=Ignasi | last13=Pallé | first13=Enric | last14=Quirrenbach | first14=Andreas | last15= |
<ref name="Cale2021">{{cite journal | title=Diving Beneath the Sea of Stellar Activity: Chromatic Radial Velocities of the Young AU Mic Planetary System | last1=Cale | first1=Bryson L. | last2=Reefe | first2=Michael | last3=Plavchan | first3=Peter | last4=Tanner | first4=Angelle | last5=Gaidos | first5=Eric | last6=Gagné | first6=Jonathan | last7=Gao | first7=Peter | last8=Kane | first8=Stephen R. | last9=Béjar | first9=Víctor J. S. | last10=Lodieu | first10=Nicolas | last11=Anglada-Escudé | first11=Guillem | last12=Ribas | first12=Ignasi | last13=Pallé | first13=Enric | last14=Quirrenbach | first14=Andreas | last15=Am 27 November 2024ado | first15=Pedro J. | last16=Reiners | first16=Ansgar | last17=Caballero | first17=José A. | last18=Rosa Zapatero Osorio | first18=María | last19=Dreizler | first19=Stefan | last20=Howard | first20=Andrew W. | last21=Fulton | first21=Benjamin J. | last22=Xuesong Wang | first22=Sharon | last23=Collins | first23=Kevin I. | last24=El Mufti | first24=Mohammed | last25=Wittrock | first25=Justin | last26=Gilbert | first26=Emily A. | last27=Barclay | first27=Thomas | last28=Klein | first28=Baptiste | last29=Martioli | first29=Eder | last30=Wittenmyer | first30=Robert | last31=Wright | first31=Duncan | last32=Addison | first32=Brett | last33=Hirano | first33=Teruyuki | last34=Tamura | first34=Motohide | last35=Kotani | first35=Takayuki | last36=Narita | first36=Norio | last37=Vermilion | first37=David | last38=Lee | first38=Rena A. | last39=Geneser | first39=Claire | last40=Teske | first40=Johanna | last41=Quinn | first41=Samuel N. | last42=Latham | first42=David W. | last43=Esquerdo | first43=Gilbert A. | last44=Calkins | first44=Michael L. | last45=Berlind | first45=Perry | last46=Zohrabi | first46=Farzaneh | last47=Stibbards | first47=Caitlin | last48=Kotnana | first48=Srihan | last49=Jenkins | first49=Jon | last50=Twicken | first50=Joseph D. | last51=Henze | first51=Christopher | last52=Kidwell | first52=Richard | last53=Burke | first53=Christopher | last54=Villaseñor | first54=Joel | last55=Boyd | first55=Patricia | display-authors=1 | journal=The Astronomical Journal | date=1 December 2021 | volume=162 | issue=6 | at=295 | arxiv=2109.13996 | bibcode=2021AJ....162..295C | bibcode-access=free | doi=10.3847/1538-3881/ac2c80 | doi-access=free }}</ref> |
||
<ref name=Wittrock2022>{{citation|arxiv=2202.05813|year=2022|title=Transit Timing Variations for AU Microscopii b and C|doi=10.3847/1538-3881/ac68e5 |last1=Wittrock |first1=Justin M. |last2=Dreizler |first2=Stefan |last3=Reefe |first3=Michael A. |last4=Morris |first4=Brett M. |last5=Plavchan |first5=Peter P. |last6=Lowrance |first6=Patrick J. |last7=Demory |first7=Brice-Olivier |last8=Ingalls |first8=James G. |last9=Gilbert |first9=Emily A. |last10=Barclay |first10=Thomas |last11=Cale |first11=Bryson L. |last12=Collins |first12=Karen A. |last13=Collins |first13=Kevin I. |last14=Crossfield |first14=Ian J. M. |last15=Dragomir |first15=Diana |last16=Eastman |first16=Jason D. |last17=Mufti |first17=Mohammed El |last18=Feliz |first18=Dax |last19=Gagné |first19=Jonathan |last20=Gaidos |first20=Eric |last21=Gao |first21=Peter |last22=Geneser |first22=Claire S. |last23=Hebb |first23=Leslie |last24=Henze |first24=Christopher E. |last25=Horne |first25=Keith D. |last26=Jenkins |first26=Jon M. |last27=Jensen |first27=Eric L. N. |last28=Kane |first28=Stephen R. |last29=Kaye |first29=Laurel |last30=Martioli |first30=Eder |journal=The Astronomical Journal |volume=164 |issue=1 |page=27 |bibcode=2022AJ....164...27W |s2cid=245001008 |display-authors=1 |doi-access=free }}</ref> |
<ref name=Wittrock2022>{{citation|arxiv=2202.05813|year=2022|title=Transit Timing Variations for AU Microscopii b and C|doi=10.3847/1538-3881/ac68e5 |last1=Wittrock |first1=Justin M. |last2=Dreizler |first2=Stefan |last3=Reefe |first3=Michael A. |last4=Morris |first4=Brett M. |last5=Plavchan |first5=Peter P. |last6=Lowrance |first6=Patrick J. |last7=Demory |first7=Brice-Olivier |last8=Ingalls |first8=James G. |last9=Gilbert |first9=Emily A. |last10=Barclay |first10=Thomas |last11=Cale |first11=Bryson L. |last12=Collins |first12=Karen A. |last13=Collins |first13=Kevin I. |last14=Crossfield |first14=Ian J. M. |last15=Dragomir |first15=Diana |last16=Eastman |first16=Jason D. |last17=Mufti |first17=Mohammed El |last18=Feliz |first18=Dax |last19=Gagné |first19=Jonathan |last20=Gaidos |first20=Eric |last21=Gao |first21=Peter |last22=Geneser |first22=Claire S. |last23=Hebb |first23=Leslie |last24=Henze |first24=Christopher E. |last25=Horne |first25=Keith D. |last26=Jenkins |first26=Jon M. |last27=Jensen |first27=Eric L. N. |last28=Kane |first28=Stephen R. |last29=Kaye |first29=Laurel |last30=Martioli |first30=Eder |journal=The Astronomical Journal |volume=164 |issue=1 |page=27 |bibcode=2022AJ....164...27W |s2cid=245001008 |display-authors=1 |doi-access=free }}</ref> |
||
Line 210: | Line 207: | ||
<ref name=Wittrock2023>{{citation|arxiv=2302.04922|year=2023|title=Validating AU Microscopii d with Transit Timing Variations|last1=Wittrock |first1=Justin M. |last2=Plavchan |first2=Peter |last3=Cale |first3=Bryson L. |last4=Barclay |first4=Thomas |last5=Gilbert |first5=Emily A. |last6=Ludwig |first6=Mathis R. |last7=Schwarz |first7=Richard P. |last8=Mekarnia |first8=Djamel |last9=Triaud |first9=Amaury |last10=Abe |first10=Lyu |last11=Suarez |first11=Olga |last12=Guillot |first12=Tristan |last13=Conti |first13=Dennis M. |last14=Collins |first14=Karen A. |last15=Waite |first15=Ian A. |last16=Kielkopf |first16=John F. |last17=Collins |first17=Kevin I. |last18=Dreizler |first18=Stefan |author19=Mohammed El Mufti |last20=Feliz |first20=Dax |last21=Gaidos |first21=Eric |last22=Geneser |first22=Claire |last23=Horne |first23=Keith |last24=Kane |first24=Stephen R. |last25=Lowrance |first25=Patrick J. |last26=Martioli |first26=Eder |last27=Radford |first27=Don J. |last28=Reefe |first28=Michael A. |last29=Roccatagliata |first29=Veronica |last30=Shporer |first30=Avi |journal=The Astronomical Journal |volume=166 |issue=6 |page=232 |doi=10.3847/1538-3881/acfda8 |bibcode=2023AJ....166..232W |display-authors=1 |doi-access=free }}</ref> |
<ref name=Wittrock2023>{{citation|arxiv=2302.04922|year=2023|title=Validating AU Microscopii d with Transit Timing Variations|last1=Wittrock |first1=Justin M. |last2=Plavchan |first2=Peter |last3=Cale |first3=Bryson L. |last4=Barclay |first4=Thomas |last5=Gilbert |first5=Emily A. |last6=Ludwig |first6=Mathis R. |last7=Schwarz |first7=Richard P. |last8=Mekarnia |first8=Djamel |last9=Triaud |first9=Amaury |last10=Abe |first10=Lyu |last11=Suarez |first11=Olga |last12=Guillot |first12=Tristan |last13=Conti |first13=Dennis M. |last14=Collins |first14=Karen A. |last15=Waite |first15=Ian A. |last16=Kielkopf |first16=John F. |last17=Collins |first17=Kevin I. |last18=Dreizler |first18=Stefan |author19=Mohammed El Mufti |last20=Feliz |first20=Dax |last21=Gaidos |first21=Eric |last22=Geneser |first22=Claire |last23=Horne |first23=Keith |last24=Kane |first24=Stephen R. |last25=Lowrance |first25=Patrick J. |last26=Martioli |first26=Eder |last27=Radford |first27=Don J. |last28=Reefe |first28=Michael A. |last29=Roccatagliata |first29=Veronica |last30=Shporer |first30=Avi |journal=The Astronomical Journal |volume=166 |issue=6 |page=232 |doi=10.3847/1538-3881/acfda8 |bibcode=2023AJ....166..232W |display-authors=1 |doi-access=free }}</ref> |
||
<ref name="Donati2023">{{cite journal |last1=Donati |first1=J-F |last2=Cristofari |first2=P I |last3=Finociety |first3=B |last4=Klein |first4=B |last5=Moutou |first5=C |last6=Gaidos |first6=E |last7=Cadieux |first7=C |last8=Artigau |first8=E |last9=Correia |first9=A C M |last10=Boué |first10=G |last11=Cook |first11=N J |last12=Carmona |first12=A |last13=Lehmann |first13=L T |last14=Bouvier |first14=J |last15=Martioli |first15=E |last16=Morin |first16=J |last17=Fouqué |first17=P |last18=Delfosse |first18=X |last19=Doyon |first19=R |last20=Hébrard |first20=G |last21=Alencar |first21=S H P |last22=Laskar |first22=J |last23=Arnold |first23=L |last24=Petit |first24=P |last25=Kóspál |first25=Á |last26=Vidotto |first26=A |last27=Folsom |first27=C P |display-authors=3 |title=The magnetic field and multiple planets of the young dwarf AU Mic |journal=[[Monthly Notices of the Royal Astronomical Society]] |date=24 April 2023 |volume=525 |pages=455–475 |issn=0035-8711 |doi=10.1093/mnras/stad1193 |arxiv=2304.09642|s2cid=258212637}}</ref> |
<ref name="Donati2023">{{cite journal |last1=Donati |first1=J-F |last2=Cristofari |first2=P I |last3=Finociety |first3=B |last4=Klein |first4=B |last5=Moutou |first5=C |last6=Gaidos |first6=E |last7=Cadieux |first7=C |last8=Artigau |first8=E |last9=Correia |first9=A C M |last10=Boué |first10=G |last11=Cook |first11=N J |last12=Carmona |first12=A |last13=Lehmann |first13=L T |last14=Bouvier |first14=J |last15=Martioli |first15=E |last16=Morin |first16=J |last17=Fouqué |first17=P |last18=Delfosse |first18=X |last19=Doyon |first19=R |last20=Hébrard |first20=G |last21=Alencar |first21=S H P |last22=Laskar |first22=J |last23=Arnold |first23=L |last24=Petit |first24=P |last25=Kóspál |first25=Á |last26=Vidotto |first26=A |last27=Folsom |first27=C P |display-authors=3 |title=The magnetic field and multiple planets of the young dwarf AU Mic |journal=[[Monthly Notices of the Royal Astronomical Society]] |date=24 April 2023 |volume=525 |pages=455–475 |issn=0035-8711 |doi=10.1093/mnras/stad1193 |doi-access=free |arxiv=2304.09642|s2cid=258212637}}</ref> |
||
<ref name=Yu2024>{{cite journal |last1=Yu |first1=H. |last2=Garai |first2=Z. |last3=Cretignier |first3=M. |last4=Szabó |first4=Gy M. |last5=Aigrain |first5=S. |last6=Gandolfi |first6=D. |last7=Bryant |first7=E. M. |last8=Correia |first8=A. C. M. |last9=Klein |first9=B. |last10=Brandeker |first10=A. |last11=Owen |first11=J. E. |last12=Günther |first12=M. N. |last13=Winn |first13=J. N. |last14=Heitzmann |first14=A. |last15=Cegla |first15=H. M. |last16=Wilson |first16=T. G. |last17=Gill |first17=S. |last18=Kriskovics |first18=L. |last19=Barragán |first19=O. |last20=Boldog |first20=A. |last21=Nielsen |first21=L. D. |last22=Billot |first22=N. |last23=Lafarga |first23=M. |last24=Meech |first24=A. |last25=Alibert |first25=Y. |last26=Alonso |first26=R. |last27=Bárczy |first27=T. |last28=Barrado |first28=D. |last29=Barros |first29=S. C. C. |last30=Baumjohann |first30=W. |last31=Bayliss |first31=D. |last32=Benz |first32=W. |last33=Bergomi |first33=M. |last34=Borsato |first34=L. |last35=Broeg |first35=C. |last36=Cameron |first36=A. Collier |last37=Csizmadia |first37=Sz |last38=Cubillos |first38=P. E. |last39=Davies |first39=M. B. |last40=Deleuil |first40=M. |last41=Deline |first41=A. |last42=Demangeon |first42=O. D. S. |last43=Demory |first43=B. -O. |last44=Derekas |first44=A. |last45=Doyle |first45=L. |last46=Edwards |first46=B. |last47=Egger |first47=J. A. |last48=Ehrenreich |first48=D. |last49=Erikson |first49=A. |last50=Fortier |first50=A. |last51=Fossati |first51=L. |last52=Fridlund |first52=M. |last53=Gazeas |first53=K. |last54=Gillon |first54=M. |last55=Güdel |first55=M. |last56=Helling |first56=Ch |last57=Isaak |first57=K. G. |last58=Kiss |first58=L. L. |last59=Korth |first59=J. |last60=Lam |first60=K. W. F. |last61=Laskar |first61=J. |last62=Etangs |first62=A. Lecavelier des |last63=Lendl |first63=M. |last64=Magrin |first64=D. |last65=Maxted |first65=P. F. L. |last66=McCormac |first66=J. |last67=Merín |first67=B. |last68=Mordasini |first68=C. |last69=Nascimbeni |first69=V. |last70=O'Brien |first70=S. M. |last71=Olofsson |first71=G. |last72=Ottensamer |first72=R. |last73=Pagano |first73=I. |last74=Pallé |first74=E. |last75=Peter |first75=G. |last76=Piazza |first76=D. |last77=Piotto |first77=G. |last78=Pollacco |first78=D. |last79=Queloz |first79=D. |last80=Ragazzoni |first80=R. |last81=Rando |first81=N. |last82=Rauer |first82=H. |last83=Ribas |first83=I. |last84=Santos |first84=N. C. |last85=Scandariato |first85=G. |last86=Ségransan |first86=D. |last87=Simon |first87=A. E. |last88=Smith |first88=A. M. S. |last89=Sousa |first89=S. G. |last90=Southworth |first90=R. |last91=Stalport |first91=M. |last92=Steinberger |first92=M. |last93=Sulis |first93=S. |last94=Udry |first94=S. |last95=Ulmer |first95=B. |last96=Ulmer-Moll |first96=S. |last97=Van Grootel |first97=V. |last98=Venturini |first98=J. |last99=Villaver |first99=E. |display-authors=1 |last100=Walton |first100=N. A. |last101=Wheatley |first101=P. J. |title=A possible misaligned orbit for the young planet AU Mic c |journal=[[Monthly Notices of the Royal Astronomical Society]] |type=Accepted manuscript |date=27 November 2024 |volume=536 |issue=3 |pages=2046–2063 |doi=10.1093/mnras/stae2655 |doi-access=free |arxiv=2411.16958 |bibcode=2024MNRAS.tmp.2571Y |s2cid=274280513}}</ref> <!--- this reference should be updated when final version is published --> |
|||
}} |
}} |
Latest revision as of 02:05, 22 December 2024
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Microscopium |
Right ascension | 20h 45m 09.53250s[1] |
Declination | –31° 20′ 27.2379″[1] |
Apparent magnitude (V) | 8.73[2] |
Characteristics | |
Spectral type | M1Ve[2] |
Apparent magnitude (V) | 8.627±0.052[3] |
Apparent magnitude (J) | 5.436±0.017[3] |
U−B color index | 1.01 |
B−V color index | 1.45 |
Variable type | Flare star |
Astrometry | |
Radial velocity (Rv) | −6.90±0.37[1] km/s |
Proper motion (μ) | RA: +281.319 mas/yr[1] Dec.: -360.148 mas/yr[1] |
Parallax (π) | 102.9432 ± 0.0231 mas[1] |
Distance | 31.683 ± 0.007 ly (9.714 ± 0.002 pc) |
Absolute magnitude (MV) | 8.61 |
Details | |
Mass | 0.60±0.04[3] M☉ |
Radius | 0.82±0.02[3] R☉ |
Luminosity | 0.102±0.002[3] L☉ |
Surface gravity (log g) | 4.52±0.05[3] cgs |
Temperature | 3665±31[3] K |
Rotation | 4.8367±0.0006 d[4] |
Rotational velocity (v sin i) | 8.5±0.2[3] km/s |
Age | 23±3, 18.5±2.4[3] Myr |
Other designations | |
Database references | |
SIMBAD | data |
ARICNS | data |
AU Microscopii (AU Mic) is a young red dwarf star located 31.7 light-years (9.7 parsecs) away – about 8 times as far as the closest star after the Sun.[5] The apparent visual magnitude of AU Microscopii is 8.73,[2] which is too dim to be seen with the naked eye. It was given this designation because it is in the southern constellation Microscopium and is a variable star. Like β Pictoris, AU Microscopii has a circumstellar disk of dust known as a debris disk and at least two exoplanets, with the presence of an additional two planets being likely.[6][3]
Stellar properties
[edit]AU Mic is a young star at only 22 million years old; less than 1% of the age of the Sun.[7] With a stellar classification of M1 Ve,[2] it is a red dwarf star[8] with a physical radius of 75% that of the Sun. Despite being half the Sun's mass,[9][10] it is radiating only 9%[11] as much luminosity as the Sun. This energy is being emitted from the star's outer atmosphere at an effective temperature of 3,700 K, giving it the cool orange-red hued glow of an M-type star.[12] AU Microscopii is a member of the β Pictoris moving group.[13][14] AU Microscopii may be gravitationally bound to the binary star system AT Microscopii.[15]
AU Microscopii has been observed in every part of the electromagnetic spectrum from radio to X-ray and is known to undergo flaring activity at all these wavelengths.[17][18][19][20] Its flaring behaviour was first identified in 1973.[21][22] Underlying these random outbreaks is a nearly sinusoidal variation in its brightness with a period of 4.865 days. The amplitude of this variation changes slowly with time. The V band brightness variation was approximately 0.3 magnitudes in 1971; by 1980 it was merely 0.1 magnitudes.[23]
Planetary system
[edit]AU Microscopii's debris disk has an asymmetric structure and an inner gap or hole cleared of debris, which has led a number of astronomers to search for planets orbiting AU Microscopii. By 2007, no searches had led to any detections of planets.[24][25] However, in 2020 the discovery of a Neptune-sized planet was announced based on transit observations by TESS.[7] Its rotation axis is well aligned with the rotation axis of the parent star, with the misalignment being equal to 5+16
−15°.[26]
Since 2018, a second planet, AU Microscopii c, was suspected to exist. It was confirmed in December 2020, after additional transit events were documented by the TESS observatory.[27] A 2024 study which performed measurements of Rossiter–McLaughlin effect for the planet c revealed that the planet is possibly misaligned with the star's rotation axis, returning a poorly constrained value of projected obliquity λc = 67.8°+31.7°
−49.0°.[28]
A third planet in the system was suspected since 2022 based on transit-timing variations,[29] and "validated" in 2023, although several possible orbital periods of planet d cannot be ruled out yet. This planet has a mass comparable to that of Earth.[6] Radial velocity observations have also found evidence for a fourth, outer planet as of 2023.[3] Observations of the AU Microscopii system with the James Webb Space Telescope were unable to confirm the presence of previously unknown companions.[30]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | 10.2+3.9 −2.7 M🜨 |
0.0645±0.0013 | 8.4630351±0.0000003 | 0.00021±0.00006 | 89.9904+0.0036 −0.0019° |
4.07±0.17 R🜨 |
d (unconfirmed) | 1.014±0.146 M🜨 | — | 12.73812±0.00128 | 0.00097±0.00042 | 88.10±0.43° | — |
c | 14.2+4.8 −3.5 M🜨 |
0.1101±0.0020 | 18.85901±0.00009 | 0.01056±0.00089 | 89.589+0.058 −0.068° |
3.24±0.16 R🜨 |
e (unconfirmed) | 35.2+6.7 −5.4 M🜨 |
— | 33.39±0.10 | — | — | — |
Debris disk | <50–>150 AU | — | — |
Debris disk
[edit]All-sky observations with the Infrared Astronomy Satellite revealed faint infrared emission from AU Microscopii.[33][34] This emission is due to a circumstellar disk of dust which first resolved at optical wavelengths in 2003 by Paul Kalas and collaborators using the University of Hawaii 2.2-m telescope on Mauna Kea, Hawaii.[5] This large debris disk faces the earth edge-on at nearly 90 degrees,[35] and measures at least 200 AU in radius. At these large distances from the star, the lifetime of dust in the disk exceeds the age of AU Microscopii.[5] The disk has a gas to dust mass ratio of no more than 6:1, much lower than the usually assumed primordial value of 100:1.[36] The debris disk is therefore referred to as "gas-poor", as the primordial gas within the circumstellar system has been mostly depleted.[37] The total amount of dust visible in the disk is estimated to be at least a lunar mass, while the larger planetesimals from which the dust is produced are inferred to have at least six lunar masses.[38]
The spectral energy distribution of AU Microscopii's debris disk at submillimetre wavelengths indicate the presence of an inner hole in the disk extending to 17 AU,[39] while scattered light images estimate the inner hole to be 12 AU in radius.[40] Combining the spectral energy distribution with the surface brightness profile yields a smaller estimate of the radius of the inner hole, 1 - 10 AU.[24] The inner part of the disk is asymmetric and shows structure in the inner 40 AU.[41] The inner structure has been compared with that expected to be seen if the disk is influenced by larger bodies or has undergone recent planet formation.[41] The surface brightness (brightness per area) of the disk in the near infrared as a function of projected distance from the star follows a characteristic shape. The inner of the disk appear approximately constant in density and the brightness is unchanging, more-or-less flat.[40] Around the density and surface brightness begins to decrease: first it decreases slowly in proportion to distance as ; then outside , the density and brightness drops much more steeply, as .[40] This "broken power-law" shape is similar to the shape of the profile of β Pic's disk.
In October 2015 it was reported that astronomers using the Very Large Telescope (VLT) had detected very unusual outward-moving features in the disk. By comparing the VLT images with those taken by the Hubble Space Telescope in 2010 and 2011 it was found that the wave-like structures are moving away from the star at speeds of up to 10 kilometers per second (22,000 miles per hour). The waves farther away from the star seem to be moving faster than those close to it, and at least three of the features are moving fast enough to escape the gravitational pull of the star.[42] Follow-up observations with the SPHERE instrument on the Very Large Telescope were able to confirm the presence of the fast-moving features,[43] and James Webb Space Telescope observations found similar features within the disk in two NIRCam filters;[30] however, these features have not been detected in the radio with Atacama Large Millimeter Array observations.[44][45] These fast-moving features have been described as "dust avalanches", where dust particles catastrophically collide into planetesimals within the disk.[46][45]
Methods of observation
[edit]AU Mic's disk has been observed at a variety of different wavelengths, giving humans different types of information about the system. The light from the disk observed at optical wavelengths is stellar light that has reflected (scattered) off dust particles into Earth's line of sight. Observations at these wavelengths utilize a coronagraphic spot to block the bright light coming directly from the star. Such observations provide high-resolution images of the disk. Because light having a wavelength longer than the size of a dust grain is scattered only poorly, comparing images at different wavelengths (visible and near-infrared, for example) gives humans information about the sizes of the dust grains in the disk.[47]
Optical observations have been made with the Hubble Space Telescope and Keck Telescopes. The system has also been observed at infrared and sub-millimeter wavelengths with the James Clerk Maxwell Telescope, Spitzer Space Telescope, and the James Webb Space Telescope. This light is emitted directly by dust grains as a result of their internal heat (modified blackbody radiation). The disk cannot be resolved at these wavelengths, so such observations are measurements of the amount of light coming from the entire system. Observations at increasingly longer wavelengths give information about dust particles of larger sizes and at larger distances from the star.
See also
[edit]- List of exoplanets discovered in 2020 - AU Microscopii b and c
- List of exoplanets discovered in 2023 - AU Microscopii d
References
[edit]- ^ a b c d e Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ a b c d Torres, C. A. O.; et al. (December 2006), "Search for associations containing young stars (SACY). I. Sample and searching method", Astronomy and Astrophysics, 460 (3): 695–708, arXiv:astro-ph/0609258, Bibcode:2006A&A...460..695T, doi:10.1051/0004-6361:20065602, S2CID 16080025
- ^ a b c d e f g h i j k l Donati, J-F; Cristofari, P I; Finociety, B; et al. (24 April 2023). "The magnetic field and multiple planets of the young dwarf AU Mic". Monthly Notices of the Royal Astronomical Society. 525: 455–475. arXiv:2304.09642. doi:10.1093/mnras/stad1193. ISSN 0035-8711. S2CID 258212637.
- ^ Szabó, Gy. M.; Gandolfi, D.; et al. (October 2021). "The changing face of AU Mic b: stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS". Astronomy & Astrophysics. 654: A159. arXiv:2108.02149. Bibcode:2021A&A...654A.159S. doi:10.1051/0004-6361/202140345. S2CID 236912985.
- ^ a b c Kalas, Paul; Liu, Michael C.; Matthews, Brenda C. (26 March 2004). "Discovery of a Large Dust Disk Around the Nearby Star AU Microscopii". Science. 303 (5666): 1990–1992. arXiv:astro-ph/0403132. Bibcode:2004Sci...303.1990K. doi:10.1126/science.1093420. PMID 14988511. S2CID 6943137.
- ^ a b c Wittrock, Justin M.; et al. (2023), "Validating AU Microscopii d with Transit Timing Variations", The Astronomical Journal, 166 (6): 232, arXiv:2302.04922, Bibcode:2023AJ....166..232W, doi:10.3847/1538-3881/acfda8
- ^ a b Plavchan, Peter; Barclay, Thomas; Gagné, Jonathan; et al. (2020). "A planet within the debris disk around the pre-main-sequence star AU Microscopii". Nature. 582 (7813): 497–500. arXiv:2006.13248. Bibcode:2020Natur.582..497P. doi:10.1038/s41586-020-2400-z. PMC 7323865. PMID 32581383.
- ^ Maran, S. P.; et al. (September 1991). "An Investigation of the Flare Star AU Mic with the Goddard High Resolution Spectrograph on the Hubble Space Telescope". Bulletin of the American Astronomical Society. 23: 1382. Bibcode:1991BAAS...23.1382M.
- ^ Del Zanna, G.; Landini, M.; Mason, H. E. (April 2002). "Spectroscopic diagnostics of stellar transition regions and coronae in the XUV: AU Mic in quiescence" (PDF). Astronomy and Astrophysics. 385 (3): 968–985. Bibcode:2002A&A...385..968D. doi:10.1051/0004-6361:20020164.
- ^ Mouillet, David (26 March 2004). "Nearby Planetary Disks". Science. 303 (5666): 1982–1983. doi:10.1126/science.1095851. PMID 15044792. S2CID 118888307.
- ^ Plavchan, Peter; et al. (June 2009), "New Debris Disks Around Young, Low-Mass Stars Discovered with the Spitzer Space Telescope", The Astrophysical Journal, 698 (2): 1068–1094, arXiv:0904.0819, Bibcode:2009ApJ...698.1068P, doi:10.1088/0004-637X/698/2/1068, S2CID 51417657
- ^ "The Colour of Stars", Australia Telescope, Outreach and Education, Commonwealth Scientific and Industrial Research Organisation, December 21, 2004, archived from the original on February 22, 2012, retrieved 2012-01-16
- ^ Zuckerman, B.; Song, Inseok (September 2004). "Young Stars Near the Sun". Annual Review of Astronomy & Astrophysics. 42 (1): 685–721. Bibcode:2004ARA&A..42..685Z. doi:10.1146/annurev.astro.42.053102.134111. S2CID 34114530.
- ^ Barrado y Navascués, David; et al. (August 1, 1999). "The age of beta Pictoris". The Astrophysical Journal. 520 (2): L123–L126. arXiv:astro-ph/9905242. Bibcode:1999ApJ...520L.123B. doi:10.1086/312162. S2CID 119365418.
- ^ Monsignori Fossi, B. C.; et al. (October 1995). "The EUV spectrum of AT Microscopii". Astronomy & Astrophysics. 302: 193. Bibcode:1995A&A...302..193M.
- ^ "MAST: Barbara A. Mikulski Archive for Space Telescopes". Space Telescope Science Institute. Retrieved 8 December 2021.
- ^ Maran, S. P.; et al. (1 February 1994). "Observing stellar coronae with the Goddard High Resolution Spectrograph. 1: The dMe star AU microscopoii". The Astrophysical Journal. 421 (2): 800–808. Bibcode:1994ApJ...421..800M. doi:10.1086/173692.
- ^ Cully, Scott L.; et al. (September 10, 1993). "Extreme Ultraviolet Explorer deep survey observations of a large flare on AU Microscopii". The Astrophysical Journal. 414 (2): L49–L52. Bibcode:1993ApJ...414L..49C. doi:10.1086/186993.
- ^ Kundu, M. R.; et al. (15 January 1987). "Microwave observations of the flare stars UV Ceti, AT Microscopii, and AU Microscopii". The Astrophysical Journal. 312: 822–829. Bibcode:1987ApJ...312..822K. doi:10.1086/164928.
- ^ Tsikoudi, V.; Kellett, B. J. (December 2000). "ROSAT All-Sky Survey X-ray and EUV observations of YY Gem and AU Mic". Monthly Notices of the Royal Astronomical Society. 319 (4): 1147–1153. Bibcode:2000MNRAS.319.1147T. doi:10.1046/j.1365-8711.2000.03905.x.
- ^ Kunkel, W. E. (1973). "Activity in Flare Stars in the Solar Neighborhood". The Astrophysical Journal Supplement. 25: 1. Bibcode:1973ApJS...25....1K. doi:10.1086/190263.
- ^ Butler, C. J.; et al. (December 1981). "Ultraviolet spectra of dwarf solar neighbourhood stars. I". Monthly Notices of the Royal Astronomical Society. 197 (3): 815–827. Bibcode:1981MNRAS.197..815B. doi:10.1093/mnras/197.3.815.
- ^ Butler, C. J.; et al. (March 1987). "Rotational modulation and flares on RS CVn and BY DRA systems. II - IUE observations of BY Draconis and AU Microscopii". Astronomy and Astrophysics. 174 (1–2): 139–157. Bibcode:1987A&A...174..139B.
- ^ a b Stanimir A. Metchev; Joshua A. Eisner & Lynne A. Hillenbrand (March 20, 2005). "Adaptive Optics Imaging of the AU Microscopii Circumstellar Disk: Evidence for Dynamical Evolution". The Astrophysical Journal. 622 (1): 451–462. arXiv:astro-ph/0412143. Bibcode:2005ApJ...622..451M. doi:10.1086/427869. S2CID 16455262.
- ^ E. Masciadri; R. Mundt; Th. Henning & C. Alvarez (1 June 2005). "A Search for Hot Massive Extrasolar Planets around Nearby Young Stars with the Adaptive Optics System NACO". The Astrophysical Journal. 625 (2): 1004–1018. arXiv:astro-ph/0502376. Bibcode:2005ApJ...625.1004M. doi:10.1086/429687. S2CID 15070805.
- ^ Addison, Brett C.; Horner, Jonathan; Wittenmyer, Robert A.; Plavchan, Peter; Wright, Duncan J.; Nicholson, Belinda A.; Marshall, Jonathan P.; Clark, Jake T.; Kane, Stephen R.; Hirano, Teruyuki; Kielkopf, John; Shporer, Avi; Tinney, C. G.; Zhang, Hui; Ballard, Sarah; Bedding, Timothy; Bowler, Brendan P.; Mengel, Matthew W.; Okumura, Jack; Gaidos, Eric (2021), "The Youngest Planet to Have a Spin-Orbit Alignment Measurement AU Mic B", The Astronomical Journal, 162 (4): 137, arXiv:2006.13675, Bibcode:2021AJ....162..137A, doi:10.3847/1538-3881/ac1685, S2CID 220041674
- ^ a b Martioli, E.; Hébrard, G.; Correia, A. C. M.; Laskar, J.; Lecavelier Des Etangs, A. (2021), "New constraints on the planetary system around the young active star AU Mic", Astronomy & Astrophysics, 649: A177, arXiv:2012.13238, doi:10.1051/0004-6361/202040235, S2CID 229371309
- ^ Yu, H.; et al. (27 November 2024). "A possible misaligned orbit for the young planet AU Mic c". Monthly Notices of the Royal Astronomical Society (Accepted manuscript). 536 (3): 2046–2063. arXiv:2411.16958. Bibcode:2024MNRAS.tmp.2571Y. doi:10.1093/mnras/stae2655. S2CID 274280513.
{{cite journal}}
: CS1 maint: bibcode (link) - ^ Wittrock, Justin M.; et al. (2022), "Transit Timing Variations for AU Microscopii b and C", The Astronomical Journal, 164 (1): 27, arXiv:2202.05813, Bibcode:2022AJ....164...27W, doi:10.3847/1538-3881/ac68e5, S2CID 245001008
- ^ a b Lawson, Kellen; Schlieder, Joshua E.; Leisenring, Jarron M.; Bogat, Ell; Beichman, Charles A.; Bryden, Geoffrey; Gáspár, András; Groff, Tyler D.; McElwain, Michael W.; Meyer, Michael R.; Barclay, Thomas; Calissendorff, Per; De Furio, Matthew; Ygouf, Marie; Boccaletti, Anthony (2023-10-01). "JWST/NIRCam Coronagraphy of the Young Planet-hosting Debris Disk AU Microscopii". The Astronomical Journal. 166 (4): 150. arXiv:2308.02486. Bibcode:2023AJ....166..150L. doi:10.3847/1538-3881/aced08. ISSN 0004-6256.
- ^ Cale, Bryson L.; et al. (1 December 2021). "Diving Beneath the Sea of Stellar Activity: Chromatic Radial Velocities of the Young AU Mic Planetary System". The Astronomical Journal. 162 (6). 295. arXiv:2109.13996. Bibcode:2021AJ....162..295C. doi:10.3847/1538-3881/ac2c80.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ "Dusty Debris Disk Around AU Mic6". October 18, 2023.
- ^ "IRASFSC - IRAS Faint Source Catalog, Version 2.0". heasarc.gsfc.nasa.gov. Retrieved 2024-05-10.
- ^ Moshir, M.; et al. (1990-01-01). "IRAS Faint Source Catalogue, version 2.0". IRAS Faint Source Catalogue: 0. Bibcode:1990IRASF.C......0M.
- ^ Paul Kalas, James R. Graham and Mark Clampin (23 June 2005). "A planetary system as the origin of structure in Fomalhaut's dust belt". Nature. 435 (7045): 1067–1070. arXiv:astro-ph/0506574. Bibcode:2005Natur.435.1067K. doi:10.1038/nature03601. PMID 15973402. S2CID 4406070.
- ^ Aki Roberge; Alycia J. Weinberger; Seth Redfield & Paul D. Feldman (20 June 2005). "Rapid Dissipation of Primordial Gas from the AU Microscopii Debris Disk". The Astrophysical Journal. 626 (2): L105–L108. arXiv:astro-ph/0505302. Bibcode:2005ApJ...626L.105R. doi:10.1086/431899. S2CID 367734.
- ^ Roberge, Aki; Weinberger, Alycia J.; Redfield, Seth; Feldman, Paul D. (2005-06-01). "Rapid Dissipation of Primordial Gas from the AU Microscopii Debris Disk". The Astrophysical Journal. 626 (2): L105–L108. arXiv:astro-ph/0505302. Bibcode:2005ApJ...626L.105R. doi:10.1086/431899. ISSN 0004-637X.
- ^ C. H. Chen; B. M. Patten; M. W. Werner; C. D. Dowell; K. R. Stapelfeldt; I. Song; J. R. Stauffer; M. Blaylock; K. D. Gordon & V. Krause (December 1, 2005). "A Spitzer Study of Dusty Disks around Nearby, Young Stars". The Astrophysical Journal. 634 (2): 1372–1384. Bibcode:2005ApJ...634.1372C. doi:10.1086/497124.
- ^ Michael C. Liu; Brenda C. Matthews; Jonathan P. Williams & Paul G. Kalas (June 10, 2004). "A Submillimeter Search of Nearby Young Stars for Cold Dust: Discovery of Debris Disks around Two Low-Mass Stars". The Astrophysical Journal. 608 (1): 526–532. arXiv:astro-ph/0403131. Bibcode:2004ApJ...608..526L. doi:10.1086/392531. S2CID 9178164.
- ^ a b c John E. Kirst; D. R. Ardila; D. A. Golimowski; M. Clampin; H. C. Ford; G. D. Illingworth; G. F. Hartig; F. Bartko; N. Benítez; J. P. Blakeslee; R. J. Bouwens; L. D. Bradley; T. J. Broadhurst; R. A. Brown; C. J. Burrows; E. S. Cheng; N. J. G. Cross; R. Demarco; P. D. Feldman; M. Franx; T. Goto; C. Gronwall; B. Holden; N. Homeier; L. Infante; R. A. Kimble; M. P. Lesser; A. R. Martel; S. Mei; F. Mennanteau; G. R. Meurer; G. K. Miley; V. Motta; M. Postman; P. Rosati; M. Sirianni; W. B. Sparks; H. D. Tran; Z. I. Tsvetanov; R. L. White & W. Zheng (February 2005). "Hubble Space Telescope Advanced Camera for Surveys Coronagraphic Imaging of the AU Microscopii Debris Disk". The Astronomical Journal. 129 (2): 1008–1017. Bibcode:2005AJ....129.1008K. CiteSeerX 10.1.1.561.8393. doi:10.1086/426755. S2CID 53497065.
- ^ a b Michael C. Liu (3 September 2004). "Substructure in the Circumstellar Disk Around the Young Star AU Microscopii". Science. 305 (5689): 1442–1444. arXiv:astro-ph/0408164. Bibcode:2004Sci...305.1442L. doi:10.1126/science.1102929. PMID 15308766. S2CID 8457455.
- ^ "Mysterious Ripples Found Racing Through Planet-Forming Disk". Hubblesite. Archived from the original on 11 October 2015. Retrieved 8 October 2015.
- ^ Boccaletti, A.; Sezestre, E.; Lagrange, A.-M.; Thébault, P.; Gratton, R.; Langlois, M.; Thalmann, C.; Janson, M.; Delorme, P.; Augereau, J.-C.; Schneider, G.; Milli, J.; Grady, C.; Debes, J.; Kral, Q. (2018-06-01). "Observations of fast-moving features in the debris disk of AU Mic on a three-year timescale: Confirmation and new discoveries". Astronomy & Astrophysics. 614: A52. arXiv:1803.05354. Bibcode:2018A&A...614A..52B. doi:10.1051/0004-6361/201732462. ISSN 0004-6361.
- ^ Daley, Cail; Hughes, A. Meredith; Carter, Evan S.; Flaherty, Kevin; Lambros, Zachary; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; Wyatt, Mark; Wilner, David; Andrews, Sean; Carpenter, John (2019-04-01). "The Mass of Stirring Bodies in the AU Mic Debris Disk Inferred from Resolved Vertical Structure". The Astrophysical Journal. 875 (2): 87. arXiv:1904.00027. Bibcode:2019ApJ...875...87D. doi:10.3847/1538-4357/ab1074. ISSN 0004-637X.
- ^ a b Vizgan, David; Meredith Hughes, A.; Carter, Evan S.; Flaherty, Kevin M.; Pan, Margaret; Chiang, Eugene; Schlichting, Hilke; Wilner, David J.; Andrews, Sean M.; Carpenter, John M.; Moór, Attila; MacGregor, Meredith A. (2022-08-01). "Multiwavelength Vertical Structure in the AU Mic Debris Disk: Characterizing the Collisional Cascade". The Astrophysical Journal. 935 (2): 131. arXiv:2207.05277. Bibcode:2022ApJ...935..131V. doi:10.3847/1538-4357/ac80b8. ISSN 0004-637X.
- ^ Chiang, Eugene; Fung, Jeffrey (2017-10-05). "Stellar Winds and Dust Avalanches in the AU Mic Debris Disk". The Astrophysical Journal. 848 (1): 4. arXiv:1707.08970. Bibcode:2017ApJ...848....4C. doi:10.3847/1538-4357/aa89e6. ISSN 0004-637X.
- ^ Sanders, Robert (2007-01-08). "Dust around nearby star like powder snow". UC Berkeley News. Archived from the original on 15 January 2007. Retrieved 2007-01-11.
- ^ "Hubble captures blobs of material sweeping through stellar disc". www.spacetelescope.org. Retrieved 10 January 2019.
External links
[edit]- "AU and AT Microscopii AB". SolStation. 2004. Archived from the original on 11 November 2006. Retrieved 2006-12-20.