Circle packing in an equilateral triangle: Difference between revisions
m -->{{Packing problem}} |
Added the missing figures of (possible) optimal packings |
||
(22 intermediate revisions by 15 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Two-dimensional packing problem}} |
|||
⚫ | '''Circle packing in an equilateral triangle''' is a [[packing problem]] in [[discrete mathematics]] where the objective is to pack |
||
⚫ | '''Circle packing in an equilateral triangle''' is a [[packing problem]] in [[discrete mathematics]] where the objective is to pack {{mvar|n}} [[unit circle]]s into the smallest possible [[equilateral triangle]]. Optimal solutions are known for {{math|''n'' < 13}} and for any [[triangular number]] of circles, and conjectures are available for {{math|''n'' < 28}}.<ref name="Melissen">{{citation |
||
| last = Melissen | first = Hans |
| last = Melissen | first = Hans |
||
| doi = 10.2307/2324212 |
| doi = 10.2307/2324212 |
||
Line 8: | Line 10: | ||
| title = Densest packings of congruent circles in an equilateral triangle |
| title = Densest packings of congruent circles in an equilateral triangle |
||
| volume = 100 |
| volume = 100 |
||
| year = 1993}}.</ref><ref>{{citation |
| year = 1993| jstor = 2324212 |
||
}}.</ref><ref>{{citation |
|||
| last1 = Melissen | first1 = J. B. M. |
| last1 = Melissen | first1 = J. B. M. |
||
| last2 = Schuur | first2 = P. C. |
| last2 = Schuur | first2 = P. C. |
||
| doi = 10.1016/0012-365X(95)90139-C |
| doi = 10.1016/0012-365X(95)90139-C |
||
| mr = 1356610 |
| mr = 1356610 |
||
| issue = |
| issue = 1–3 |
||
| journal = [[Discrete Mathematics (journal)|Discrete Mathematics]] |
| journal = [[Discrete Mathematics (journal)|Discrete Mathematics]] |
||
| pages = 333–342 |
| pages = 333–342 |
||
| title = Packing 16, 17 or 18 circles in an equilateral triangle |
| title = Packing 16, 17 or 18 circles in an equilateral triangle |
||
| volume = 145 |
| volume = 145 |
||
| year = 1995| url = https://research.utwente.nl/en/publications/packing-16-17-of-18-circles-in-an-equilateral-triangle(b2172f19-9654-4ff1-9af4-59da1b6bef3d).html |
|||
⚫ | |||
| doi-access = free |
|||
⚫ | |||
| last1 = Graham | first1 = R. L. | author1-link = Ronald Graham |
| last1 = Graham | first1 = R. L. | author1-link = Ronald Graham |
||
| last2 = Lubachevsky | first2 = B. D. |
| last2 = Lubachevsky | first2 = B. D. |
||
Line 33: | Line 38: | ||
| doi = 10.4153/CMB-1961-018-7 |
| doi = 10.4153/CMB-1961-018-7 |
||
| mr = 0133065 |
| mr = 0133065 |
||
| journal = Canadian Mathematical Bulletin |
| journal = [[Canadian Mathematical Bulletin]] |
||
| pages = 153–155 |
| pages = 153–155 |
||
| title = A finite packing problem |
| title = A finite packing problem |
||
| volume = 4 |
| volume = 4 |
||
| year = 1961}}.</ref> This conjecture is now known to be true for {{math|''n'' ≤ |
| year = 1961| issue = 2 |
||
| doi-access = free |
|||
}}.</ref> This conjecture is now known to be true for {{math|''n'' ≤ 15}}.<ref>{{citation |
|||
| last = Payan | first = Charles |
| last = Payan | first = Charles |
||
| doi = 10.1016/S0012-365X(96)00201-4 |
| doi = 10.1016/S0012-365X(96)00201-4 |
||
Line 46: | Line 53: | ||
| title = Empilement de cercles égaux dans un triangle équilatéral. À propos d'une conjecture d'Erdős-Oler |
| title = Empilement de cercles égaux dans un triangle équilatéral. À propos d'une conjecture d'Erdős-Oler |
||
| volume = 165/166 |
| volume = 165/166 |
||
| year = 1997 |
| year = 1997| doi-access = free |
||
}}.</ref> |
|||
Minimum solutions for the side length of the triangle:<ref name="Melissen"/> |
Minimum solutions for the side length of the triangle:<ref name="Melissen"/> |
||
{{Table alignment}} |
|||
{| class="wikitable" |
{| class="wikitable defaultright col2center" |
||
|- |
|- |
||
! Number of circles |
! Number<br/> of circles |
||
! Triangle<br/> number |
|||
! Length |
! Length |
||
! Area |
|||
! Figure |
|||
|- |
|- |
||
| 1 |
| 1 |
||
| Yes |
|||
⚫ | |||
| <math>2 \sqrt {3}</math> = 3.464... |
|||
|align="right"| 5.196... |
|||
|[[File:CircleInEquilateralTrianglePacking(1).png|center|220x220px]] |
|||
|- |
|- |
||
| 2 |
| 2 |
||
| |
|||
⚫ | |||
| <math>2 + 2 \sqrt {3}</math> = 5.464... |
|||
⚫ | |||
|[[File:Circle_packing_in_equilateral_triangle_for_2_circles.png|center|220x220px]] |
|||
|- |
|- |
||
| 3 |
| 3 |
||
| Yes |
|||
⚫ | |||
| <math>2 + 2 \sqrt {3}</math> = 5.464... |
|||
⚫ | |||
|[[File:Circle_packing_in_equilateral_triangle_for_3_circles.png|center|220x220px]] |
|||
|- |
|- |
||
| 4 |
| 4 |
||
| |
|||
| 6.928... [[Image:4 cirkloj en 60 60 60 triangulo.png|120x120px]] |
|||
| <math>4 \sqrt {3}</math> = 6.928... |
|||
⚫ | |||
| [[File:Circle_packing_in_equilateral_triangle_for_4_circles.png|center|220x220px]] |
|||
|- |
|- |
||
| 5 |
| 5 |
||
| |
|||
| 7.464... [[Image:5 cirkloj en 60 60 60 triangulo v1.png|130x130px]] [[Image:5 cirkloj en 60 60 60 triangulo v2.png|130x130px]] |
|||
| <math>4 + 2 \sqrt {3}</math> = 7.464... |
|||
⚫ | |||
| [[File:Circle_packing_in_equilateral_triangle_for_5_circles.png|center|220x220px]] |
|||
|- |
|- |
||
| 6 |
| 6 |
||
| Yes |
|||
⚫ | |||
| <math>4 + 2 \sqrt {3}</math> = 7.464... |
|||
⚫ | |||
|[[File:Circle_packing_in_equilateral_triangle_for_6.png|center|220x220px]] |
|||
|- |
|- |
||
| 7 |
| 7 |
||
| |
|||
⚫ | |||
| <math>2 + 4 \sqrt {3}</math> = 8.928... |
|||
⚫ | |||
|[[File:Circle_packing_in_equilateral_triangle_for_7_circles.png|center|220x220px]] |
|||
|- |
|- |
||
| 8 |
| 8 |
||
| |
|||
⚫ | |||
| <math>2 + 2 \sqrt{3} + \tfrac {2} {3} \sqrt{33}</math> = 9.293... |
|||
⚫ | |||
|[[File:Circle packing in equilateral triangle for 8 circles.png|center|220x220px]] |
|||
|- |
|- |
||
| 9 |
| 9 |
||
| |
|||
⚫ | |||
| <math>6 + 2 \sqrt {3}</math> = 9.464... |
|||
⚫ | |||
|[[File:Circle_packing_in_equilateral_triangle_for_9_circles.png|right|220x220px]] |
|||
|- |
|- |
||
| 10 |
| 10 |
||
| Yes |
|||
⚫ | |||
| <math>6 + 2 \sqrt {3}</math> = 9.464... |
|||
⚫ | |||
|[[File:Circle_packing_in_equilateral_triangle_for_10_circles.png|right|220x220px]] |
|||
|- |
|- |
||
| 11 |
| 11 |
||
| |
|||
⚫ | |||
| <math>4 + 2 \sqrt {3} + \tfrac {4} {3} \sqrt{6}</math> = 10.730... |
|||
⚫ | |||
|[[File:Ircle_packing_in_equilateral_triangle_for_11_circles.png|right|220x220px]] |
|||
|- |
|- |
||
| 12 |
| 12 |
||
| |
|||
⚫ | |||
| <math>4 + 4 \sqrt {3}</math> = 10.928... |
|||
⚫ | |||
|[[File:Circle_packing_in_equilateral_triangle_for_12_circles.png|right|220x220px]] |
|||
|- |
|- |
||
| 13 |
| 13 |
||
| |
|||
⚫ | |||
| <math>4 + \tfrac {10} {3} \sqrt{3} + \tfrac {2} {3} \sqrt{6}</math> = 11.406... |
|||
⚫ | |||
|[[File:Circle_packing_in_equilateral_triangle_for_13_circles.png|220x220px]] |
|||
|- |
|- |
||
| 14 |
| 14 |
||
| |
|||
⚫ | |||
| <math>8 + 2 \sqrt {3}</math> = 11.464... |
|||
⚫ | |||
|[[File:Circle_packing_in_equilateral_triangle_for_14_circles.png|220x220px]] |
|||
|- |
|- |
||
| 15 |
| 15 |
||
| Yes |
|||
⚫ | |||
| <math>8 + 2 \sqrt {3}</math> = 11.464... |
|||
|56.908... |
|||
|[[File:Circle_packing_in_equilateral_triangle_for_15_circles.png|220x220px]] |
|||
|} |
|} |
||
A closely related problem is to cover the equilateral triangle with a |
A closely related problem is to cover the equilateral triangle with a fixed number of equal circles, having as small a radius as possible.<ref>{{citation |
||
| last = Nurmela | first = Kari J. |
| last = Nurmela | first = Kari J. |
||
| mr = 1780209 |
| mr = 1780209 |
||
Line 110: | Line 167: | ||
| url = http://projecteuclid.org/getRecord?id=euclid.em/1045952348 |
| url = http://projecteuclid.org/getRecord?id=euclid.em/1045952348 |
||
| volume = 9 |
| volume = 9 |
||
| year = 2000 |
| year = 2000 |
||
| doi=10.1080/10586458.2000.10504649| s2cid = 45127090 |
|||
}}.</ref> |
|||
==See also== |
==See also== |
||
*[[Circle packing in an isosceles right triangle]] |
*[[Circle packing in an isosceles right triangle]] |
||
*[[Malfatti circles]], |
*[[Malfatti circles]], three circles of possibly unequal sizes packed into a triangle |
||
==References== |
==References== |
||
Line 123: | Line 182: | ||
[[Category:Circle packing]] |
[[Category:Circle packing]] |
||
{{geometry-stub}} |
{{elementary-geometry-stub}} |
Latest revision as of 05:03, 23 December 2024
Circle packing in an equilateral triangle is a packing problem in discrete mathematics where the objective is to pack n unit circles into the smallest possible equilateral triangle. Optimal solutions are known for n < 13 and for any triangular number of circles, and conjectures are available for n < 28.[1][2][3]
A conjecture of Paul Erdős and Norman Oler states that, if n is a triangular number, then the optimal packings of n − 1 and of n circles have the same side length: that is, according to the conjecture, an optimal packing for n − 1 circles can be found by removing any single circle from the optimal hexagonal packing of n circles.[4] This conjecture is now known to be true for n ≤ 15.[5]
Minimum solutions for the side length of the triangle:[1]
A closely related problem is to cover the equilateral triangle with a fixed number of equal circles, having as small a radius as possible.[6]
See also
[edit]- Circle packing in an isosceles right triangle
- Malfatti circles, three circles of possibly unequal sizes packed into a triangle
References
[edit]- ^ a b Melissen, Hans (1993), "Densest packings of congruent circles in an equilateral triangle", The American Mathematical Monthly, 100 (10): 916–925, doi:10.2307/2324212, JSTOR 2324212, MR 1252928.
- ^ Melissen, J. B. M.; Schuur, P. C. (1995), "Packing 16, 17 or 18 circles in an equilateral triangle", Discrete Mathematics, 145 (1–3): 333–342, doi:10.1016/0012-365X(95)90139-C, MR 1356610.
- ^ Graham, R. L.; Lubachevsky, B. D. (1995), "Dense packings of equal disks in an equilateral triangle: from 22 to 34 and beyond", Electronic Journal of Combinatorics, 2: Article 1, approx. 39 pp. (electronic), MR 1309122.
- ^ Oler, Norman (1961), "A finite packing problem", Canadian Mathematical Bulletin, 4 (2): 153–155, doi:10.4153/CMB-1961-018-7, MR 0133065.
- ^ Payan, Charles (1997), "Empilement de cercles égaux dans un triangle équilatéral. À propos d'une conjecture d'Erdős-Oler", Discrete Mathematics (in French), 165/166: 555–565, doi:10.1016/S0012-365X(96)00201-4, MR 1439300.
- ^ Nurmela, Kari J. (2000), "Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles", Experimental Mathematics, 9 (2): 241–250, doi:10.1080/10586458.2000.10504649, MR 1780209, S2CID 45127090.