Jump to content

Circle packing in an equilateral triangle: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Hyacinth (talk | contribs)
m -->{{Packing problem}}
OwOUwUOwU (talk | contribs)
Added the missing figures of (possible) optimal packings
 
(22 intermediate revisions by 15 users not shown)
Line 1: Line 1:
{{short description|Two-dimensional packing problem}}
'''Circle packing in an equilateral triangle''' is a [[packing problem]] in [[discrete mathematics]] where the objective is to pack ''n'' unit circles into the smallest possible [[equilateral triangle]]. Optimal solutions are known for ''n''&nbsp;<&nbsp;13 and for any [[triangular number]] of circles, and conjectures are available for ''n''&nbsp;<&nbsp;28.<ref name="Melissen">{{citation

'''Circle packing in an equilateral triangle''' is a [[packing problem]] in [[discrete mathematics]] where the objective is to pack {{mvar|n}} [[unit circle]]s into the smallest possible [[equilateral triangle]]. Optimal solutions are known for {{math|''n'' < 13}} and for any [[triangular number]] of circles, and conjectures are available for {{math|''n'' < 28}}.<ref name="Melissen">{{citation
| last = Melissen | first = Hans
| last = Melissen | first = Hans
| doi = 10.2307/2324212
| doi = 10.2307/2324212
Line 8: Line 10:
| title = Densest packings of congruent circles in an equilateral triangle
| title = Densest packings of congruent circles in an equilateral triangle
| volume = 100
| volume = 100
| year = 1993}}.</ref><ref>{{citation
| year = 1993| jstor = 2324212
}}.</ref><ref>{{citation
| last1 = Melissen | first1 = J. B. M.
| last1 = Melissen | first1 = J. B. M.
| last2 = Schuur | first2 = P. C.
| last2 = Schuur | first2 = P. C.
| doi = 10.1016/0012-365X(95)90139-C
| doi = 10.1016/0012-365X(95)90139-C
| mr = 1356610
| mr = 1356610
| issue = 1-3
| issue = 1–3
| journal = [[Discrete Mathematics (journal)|Discrete Mathematics]]
| journal = [[Discrete Mathematics (journal)|Discrete Mathematics]]
| pages = 333–342
| pages = 333–342
| title = Packing 16, 17 or 18 circles in an equilateral triangle
| title = Packing 16, 17 or 18 circles in an equilateral triangle
| volume = 145
| volume = 145
| year = 1995| url = https://research.utwente.nl/en/publications/packing-16-17-of-18-circles-in-an-equilateral-triangle(b2172f19-9654-4ff1-9af4-59da1b6bef3d).html
| year = 1995}}.</ref><ref>{{citation
| doi-access = free
}}.</ref><ref>{{citation
| last1 = Graham | first1 = R. L. | author1-link = Ronald Graham
| last1 = Graham | first1 = R. L. | author1-link = Ronald Graham
| last2 = Lubachevsky | first2 = B. D.
| last2 = Lubachevsky | first2 = B. D.
Line 33: Line 38:
| doi = 10.4153/CMB-1961-018-7
| doi = 10.4153/CMB-1961-018-7
| mr = 0133065
| mr = 0133065
| journal = Canadian Mathematical Bulletin
| journal = [[Canadian Mathematical Bulletin]]
| pages = 153–155
| pages = 153–155
| title = A finite packing problem
| title = A finite packing problem
| volume = 4
| volume = 4
| year = 1961}}.</ref> This conjecture is now known to be true for {{math|''n'' ≤ 15}}.<ref>{{citation
| year = 1961| issue = 2
| doi-access = free
}}.</ref> This conjecture is now known to be true for {{math|''n'' ≤ 15}}.<ref>{{citation
| last = Payan | first = Charles
| last = Payan | first = Charles
| doi = 10.1016/S0012-365X(96)00201-4
| doi = 10.1016/S0012-365X(96)00201-4
Line 46: Line 53:
| title = Empilement de cercles égaux dans un triangle équilatéral. À propos d'une conjecture d'Erdős-Oler
| title = Empilement de cercles égaux dans un triangle équilatéral. À propos d'une conjecture d'Erdős-Oler
| volume = 165/166
| volume = 165/166
| year = 1997}}.</ref>
| year = 1997| doi-access = free
}}.</ref>


Minimum solutions for the side length of the triangle:<ref name="Melissen"/>
Minimum solutions for the side length of the triangle:<ref name="Melissen"/>


{{Table alignment}}
{| class="wikitable"
{| class="wikitable defaultright col2center"
|-
|-
! Number of circles
! Number<br/> of circles
! Triangle<br/> number
! Length
! Length
! Area
! Figure
|-
|-
| 1
| 1
| Yes
| 3.464...
| <math>2 \sqrt {3}</math> = 3.464...
|align="right"| 5.196...
|[[File:CircleInEquilateralTrianglePacking(1).png|center|220x220px]]
|-
|-
| 2
| 2
|
| 5.464...
| <math>2 + 2 \sqrt {3}</math> = 5.464...
| 12.928...
|[[File:Circle_packing_in_equilateral_triangle_for_2_circles.png|center|220x220px]]
|-
|-
| 3
| 3
| Yes
| 5.464...
| <math>2 + 2 \sqrt {3}</math> = 5.464...
| 12.928...
|[[File:Circle_packing_in_equilateral_triangle_for_3_circles.png|center|220x220px]]
|-
|-
| 4
| 4
|
| 6.928... [[Image:4 cirkloj en 60 60 60 triangulo.png|120x120px]]
| <math>4 \sqrt {3}</math> = 6.928...
| 20.784...
| [[File:Circle_packing_in_equilateral_triangle_for_4_circles.png|center|220x220px]]
|-
|-
| 5
| 5
|
| 7.464... [[Image:5 cirkloj en 60 60 60 triangulo v1.png|130x130px]] [[Image:5 cirkloj en 60 60 60 triangulo v2.png|130x130px]]
| <math>4 + 2 \sqrt {3}</math> = 7.464...
| 24.124...
| [[File:Circle_packing_in_equilateral_triangle_for_5_circles.png|center|220x220px]]
|-
|-
| 6
| 6
| Yes
| 7.464...
| <math>4 + 2 \sqrt {3}</math> = 7.464...
|24.124...
|[[File:Circle_packing_in_equilateral_triangle_for_6.png|center|220x220px]]
|-
|-
| 7
| 7
|
| 8.928...
| <math>2 + 4 \sqrt {3}</math> = 8.928...
|34.516...
|[[File:Circle_packing_in_equilateral_triangle_for_7_circles.png|center|220x220px]]
|-
|-
| 8
| 8
|
| 9.293...
| <math>2 + 2 \sqrt{3} + \tfrac {2} {3} \sqrt{33}</math> = 9.293...
|37.401...
|[[File:Circle packing in equilateral triangle for 8 circles.png|center|220x220px]]
|-
|-
| 9
| 9
|
| 9.464...
| <math>6 + 2 \sqrt {3}</math> = 9.464...
|38.784...
|[[File:Circle_packing_in_equilateral_triangle_for_9_circles.png|right|220x220px]]
|-
|-
| 10
| 10
| Yes
| 9.464...
| <math>6 + 2 \sqrt {3}</math> = 9.464...
|38.784...
|[[File:Circle_packing_in_equilateral_triangle_for_10_circles.png|right|220x220px]]
|-
|-
| 11
| 11
|
| 10.730...
| <math>4 + 2 \sqrt {3} + \tfrac {4} {3} \sqrt{6}</math> = 10.730...
|49.854...
|[[File:Ircle_packing_in_equilateral_triangle_for_11_circles.png|right|220x220px]]
|-
|-
| 12
| 12
|
| 10.928...
| <math>4 + 4 \sqrt {3}</math> = 10.928...
|51.712...
|[[File:Circle_packing_in_equilateral_triangle_for_12_circles.png|right|220x220px]]
|-
|-
| 13
| 13
|
| 11.406...
| <math>4 + \tfrac {10} {3} \sqrt{3} + \tfrac {2} {3} \sqrt{6}</math> = 11.406...
|56.338...
|[[File:Circle_packing_in_equilateral_triangle_for_13_circles.png|220x220px]]
|-
|-
| 14
| 14
|
| 11.464...
| <math>8 + 2 \sqrt {3}</math> = 11.464...
|56.908...
|[[File:Circle_packing_in_equilateral_triangle_for_14_circles.png|220x220px]]
|-
|-
| 15
| 15
| Yes
| 11.464...
| <math>8 + 2 \sqrt {3}</math> = 11.464...
|56.908...
|[[File:Circle_packing_in_equilateral_triangle_for_15_circles.png|220x220px]]
|}
|}


A closely related problem is to cover the equilateral triangle with a given number of circles, having as small a radius as possible.<ref>{{citation
A closely related problem is to cover the equilateral triangle with a fixed number of equal circles, having as small a radius as possible.<ref>{{citation
| last = Nurmela | first = Kari J.
| last = Nurmela | first = Kari J.
| mr = 1780209
| mr = 1780209
Line 110: Line 167:
| url = http://projecteuclid.org/getRecord?id=euclid.em/1045952348
| url = http://projecteuclid.org/getRecord?id=euclid.em/1045952348
| volume = 9
| volume = 9
| year = 2000}}.</ref>
| year = 2000
| doi=10.1080/10586458.2000.10504649| s2cid = 45127090
}}.</ref>


==See also==
==See also==
*[[Circle packing in an isosceles right triangle]]
*[[Circle packing in an isosceles right triangle]]
*[[Malfatti circles]], a construction giving the optimal solution for three circles in an equilateral triangle
*[[Malfatti circles]], three circles of possibly unequal sizes packed into a triangle


==References==
==References==
Line 123: Line 182:
[[Category:Circle packing]]
[[Category:Circle packing]]



{{geometry-stub}}
{{elementary-geometry-stub}}

Latest revision as of 05:03, 23 December 2024

Circle packing in an equilateral triangle is a packing problem in discrete mathematics where the objective is to pack n unit circles into the smallest possible equilateral triangle. Optimal solutions are known for n < 13 and for any triangular number of circles, and conjectures are available for n < 28.[1][2][3]

A conjecture of Paul Erdős and Norman Oler states that, if n is a triangular number, then the optimal packings of n − 1 and of n circles have the same side length: that is, according to the conjecture, an optimal packing for n − 1 circles can be found by removing any single circle from the optimal hexagonal packing of n circles.[4] This conjecture is now known to be true for n ≤ 15.[5]

Minimum solutions for the side length of the triangle:[1]

Number
of circles
Triangle
number
Length Area Figure
1 Yes = 3.464... 5.196...
2 = 5.464... 12.928...
3 Yes = 5.464... 12.928...
4 = 6.928... 20.784...
5 = 7.464... 24.124...
6 Yes = 7.464... 24.124...
7 = 8.928... 34.516...
8 = 9.293... 37.401...
9 = 9.464... 38.784...
10 Yes = 9.464... 38.784...
11 = 10.730... 49.854...
12 = 10.928... 51.712...
13 = 11.406... 56.338...
14 = 11.464... 56.908...
15 Yes = 11.464... 56.908...

A closely related problem is to cover the equilateral triangle with a fixed number of equal circles, having as small a radius as possible.[6]

See also

[edit]

References

[edit]
  1. ^ a b Melissen, Hans (1993), "Densest packings of congruent circles in an equilateral triangle", The American Mathematical Monthly, 100 (10): 916–925, doi:10.2307/2324212, JSTOR 2324212, MR 1252928.
  2. ^ Melissen, J. B. M.; Schuur, P. C. (1995), "Packing 16, 17 or 18 circles in an equilateral triangle", Discrete Mathematics, 145 (1–3): 333–342, doi:10.1016/0012-365X(95)90139-C, MR 1356610.
  3. ^ Graham, R. L.; Lubachevsky, B. D. (1995), "Dense packings of equal disks in an equilateral triangle: from 22 to 34 and beyond", Electronic Journal of Combinatorics, 2: Article 1, approx. 39 pp. (electronic), MR 1309122.
  4. ^ Oler, Norman (1961), "A finite packing problem", Canadian Mathematical Bulletin, 4 (2): 153–155, doi:10.4153/CMB-1961-018-7, MR 0133065.
  5. ^ Payan, Charles (1997), "Empilement de cercles égaux dans un triangle équilatéral. À propos d'une conjecture d'Erdős-Oler", Discrete Mathematics (in French), 165/166: 555–565, doi:10.1016/S0012-365X(96)00201-4, MR 1439300.
  6. ^ Nurmela, Kari J. (2000), "Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles", Experimental Mathematics, 9 (2): 241–250, doi:10.1080/10586458.2000.10504649, MR 1780209, S2CID 45127090.