Jump to content

Kravchuk polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Properties: Note on formulae not being trivial reformulations of the definition.
 
(10 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''Kravchuk polynomials''' or '''Krawtchouk polynomials''' (also written using several other transliterations of the Ukrainian name "Кравчу́к") are [[discrete orthogonal polynomials|discrete]] [[orthogonal polynomials]] associated with the [[binomial distribution]], introduced by {{harvs|txt|authorlink=Mikhail Kravchuk|first=Mikhail|last=Kravchuk|year= 1929}}.
'''Kravchuk polynomials''' or '''Krawtchouk polynomials''' (also written using several other transliterations of the Ukrainian surname {{lang|uk|Кравчу́к}}) are [[discrete orthogonal polynomials|discrete]] [[orthogonal polynomials]] associated with the [[binomial distribution]], introduced by {{harvs|txt|authorlink=Mikhail Kravchuk|first=Mykhailo|last=Kravchuk|year=1929}}.
The first few polynomials are (for ''q''=2):
The first few polynomials are (for ''q'' = 2):
* <math>\mathcal{K}_0(x; n) = 1</math>
: <math>\mathcal{K}_0(x; n) = 1,</math>
* <math>\mathcal{K}_1(x; n) = -2x + n</math>
: <math>\mathcal{K}_1(x; n) = -2x + n,</math>
* <math>\mathcal{K}_2(x; n) = 2x^2 - 2nx + {n\choose 2}</math>
: <math>\mathcal{K}_2(x; n) = 2x^2 - 2nx + \binom{n}{2},</math>
* <math>\mathcal{K}_3(x; n) = -\frac{4}{3}x^3 + 2nx^2 - (n^2 - n + \frac{2}{3})x + {n \choose 3}.</math>
: <math>\mathcal{K}_3(x; n) = -\frac{4}{3}x^3 + 2nx^2 - (n^2 - n + \frac{2}{3})x + \binom{n}{3}.</math>


The Kravchuk polynomials are a special case of the [[Meixner polynomials]] of the first kind.
The Kravchuk polynomials are a special case of the [[Meixner polynomials]] of the first kind.
Line 10: Line 10:
==Definition==
==Definition==
For any [[prime power]] ''q'' and positive integer ''n'', define the Kravchuk polynomial
For any [[prime power]] ''q'' and positive integer ''n'', define the Kravchuk polynomial
<math display="block">

\begin{aligned}
:<math>\mathcal{K}_k(x; n,q) = \mathcal{K}_k(x) = \sum_{j=0}^{k}(-1)^j (q-1)^{k-j} \binom {x}{j} \binom{n-x}{k-j}, \quad k=0,1, \ldots, n.</math>
\mathcal{K}_k(x; n,q) = \mathcal{K}_k(x) ={}&
\sum_{j=0}^{k}(-1)^j (q-1)^{k-j} \binom {x}{j} \binom{n-x}{k-j}
\\ ={}&
\sum_{j=0}^k (-1)^j (q-1)^{k-j} \frac{ x^{\underline{j}} }{ j! } \frac{ (n-x)^{\underline{k-j}} }{ (k-j)! }
\end{aligned}
</math>
for <math> k=0,1, \ldots, n </math>. In the second line, the factors depending on <math> x </math> have been rewritten in terms of [[falling factorial]]s, to aid readers uncomfortable with non-integer arguments of binomial coefficients.


==Properties==
==Properties==
Line 18: Line 25:
:<math>\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}. </math>
:<math>\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}. </math>
:<math>\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-1)^j q^{k-j} \binom {n-k+j}{j} \binom{n-x}{k-j}. </math>
:<math>\mathcal{K}_k(x; n,q) = \sum_{j=0}^{k}(-1)^j q^{k-j} \binom {n-k+j}{j} \binom{n-x}{k-j}. </math>

Note that there is more that merely recombination of material from the two binomial coefficients separating these from the above definition. In these formulae, only one term of the sum has degree <math> k </math>, whereas in the definition all terms have degree <math> k </math>.

=== Symmetry relations ===
For integers <math>i,k \ge 0</math>, we have that
:<math>\begin{align}
(q-1)^{i} {n \choose i} \mathcal{K}_k(i;n,q) = (q-1)^{k}{n \choose k} \mathcal{K}_i(k;n,q).
\end{align}</math>


===Orthogonality relations===
===Orthogonality relations===
Line 28: Line 43:
:<math>\begin{align}
:<math>\begin{align}
(1+(q-1)z)^{n-x}(1-z)^x &= \sum_{k=0}^\infty \mathcal{K}_k(x;n,q) {z^k}.
(1+(q-1)z)^{n-x}(1-z)^x &= \sum_{k=0}^\infty \mathcal{K}_k(x;n,q) {z^k}.
\end{align}</math>

===Three term recurrence===
The Kravchuk polynomials satisfy the three-term recurrence relation
:<math>\begin{align}
x \mathcal{K}_k(x;n,q) = - q(n-k) \mathcal{K}_{k+1}(x;n,q) + (q(n-k) + k(1-q)) \mathcal{K}_{k}(x;n,q) - k(1-q)\mathcal{K}_{k-1}(x;n,q).
\end{align}</math>
\end{align}</math>


==See also==
==See also==
* [[Krawtchouk matrix]]
* [[Hermite polynomials]]
* [[Hermite polynomials]]


Line 58: Line 80:
| volume = 41
| volume = 41
| year = 1995}}.
| year = 1995}}.
*{{Citation | first1=F. J.|last1=MacWilliams|first2=N. J. A.|last2=Sloane | title=The Theory of Error-Correcting Codes | publisher=North-Holland | year=1977 | isbn=0-444-85193-3}}
*{{Citation | first1=F. J. | last1=MacWilliams | first2=N. J. A. | last2=Sloane | title=The Theory of Error-Correcting Codes | publisher=North-Holland | year=1977 | isbn=0-444-85193-3 | url-access=registration | url=https://archive.org/details/theoryoferrorcor0000macw }}


==External links==
==External links==

Latest revision as of 14:15, 24 December 2024

Kravchuk polynomials or Krawtchouk polynomials (also written using several other transliterations of the Ukrainian surname Кравчу́к) are discrete orthogonal polynomials associated with the binomial distribution, introduced by Mykhailo Kravchuk (1929). The first few polynomials are (for q = 2):

The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.

Definition

[edit]

For any prime power q and positive integer n, define the Kravchuk polynomial for . In the second line, the factors depending on have been rewritten in terms of falling factorials, to aid readers uncomfortable with non-integer arguments of binomial coefficients.

Properties

[edit]

The Kravchuk polynomial has the following alternative expressions:

Note that there is more that merely recombination of material from the two binomial coefficients separating these from the above definition. In these formulae, only one term of the sum has degree , whereas in the definition all terms have degree .

Symmetry relations

[edit]

For integers , we have that

Orthogonality relations

[edit]

For non-negative integers r, s,

Generating function

[edit]

The generating series of Kravchuk polynomials is given as below. Here is a formal variable.

Three term recurrence

[edit]

The Kravchuk polynomials satisfy the three-term recurrence relation

See also

[edit]

References

[edit]
  • Kravchuk, M. (1929), "Sur une généralisation des polynomes d'Hermite.", Comptes Rendus Mathématique (in French), 189: 620–622, JFM 55.0799.01
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B. (1991), Classical Orthogonal Polynomials of a Discrete Variable, Springer Series in Computational Physics, Berlin: Springer-Verlag, ISBN 3-540-51123-7, MR 1149380.
  • Levenshtein, Vladimir I. (1995), "Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces", IEEE Transactions on Information Theory, 41 (5): 1303–1321, doi:10.1109/18.412678, MR 1366326.
  • MacWilliams, F. J.; Sloane, N. J. A. (1977), The Theory of Error-Correcting Codes, North-Holland, ISBN 0-444-85193-3
[edit]