Jump to content

James Tour: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Moulton (talk | contribs)
Petition: Because we wish to be accurate and adopt NPOV. Referencing the headline of the NY Times story is all that's need.
m Syntax of one sentence
Tags: Visual edit Mobile edit Mobile web edit
(554 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|American scientist}}
'''James Tour''' is a synthetic organic chemist, specializing in [[nanotechnology]]. He is well-known for his work in [[molecular electronics]] and molecular switching molecules. He has also been involved in other work, such as the creation of a [[nanocar]] and [[nanoputian|NanoKids]], an interactive learning DVD to teach children fundamentals of [[chemistry]] and [[physics]]. Dr. Tour was also a founder of the Molecular Electronics Corporation. He holds joint appointments in the departments of chemistry, [[computer science]], and [[mechanical engineering]] and [[materials science]] at [[Rice University]]. Dr. Tour received degrees from [[Syracuse University]] (BS, 1981), [[Purdue University]] (PhD, 1986) and completed postdoctoral work at the [[University of Wisconsin-Madison]] (1986-1987) and [[Stanford University]] (1987-1988).
{{Weasel|date=December 2024}}
{{Use mdy dates|date=August 2022}}
{{Infobox scientist
| name = James Tour
| image = JamesTour.jpg
| caption = Tour in 2018
| birth_date =
| birth_place = New York City, U.S.
| fields = [[Organic Chemistry]]<br />[[Materials Science]]<br />[[Nanotechnology]]
| workplaces = [[Rice University]], 1999-present<br />[[University of South Carolina]], 1988–1999
| patrons =
| alma_mater = [[Purdue University]], PhD<br />[[Syracuse University]], BS
| thesis_title = Metal-Promoted Cyclization and Transition-Metal-Promoted Carbonylative Cyclization Reactions
| thesis_url = https://docs.lib.purdue.edu/dissertations/AAI8622231/
| thesis_year = 1986
| doctoral_advisor = [[Ei-ichi Negishi]]
| academic_advisors =
| doctoral_students =
| notable_students =
| known_for = [[Molecular electronics]]<br />[[Nanotechnology]]<br />[[Graphene production techniques]]<br />[[Carbon nanotube chemistry]]<br />[[Nanocar]]<br />[[NanoPutian]]
| influences =
| influenced =
| awards = [[Oesper Award]] (2021)<br />[[Centenary Prize]] (2020)<br />[[Trotter Prize (Texas A&M)|Trotter Prize]] (2014)<br />[[Feynman Prize in Nanotechnology|Feynman Prize]] (2008)
| signature_alt =
| website = {{URL|http://www.jmtour.com}}
| footnotes =
| spouse =
}}
'''James Mitchell Tour''' is an American [[chemistry|chemist]] and [[nanotechnology|nanotechnologist]]. He is a Professor of Chemistry, Professor of Materials Science and Nanoengineering at [[Rice University]] in [[Houston]], [[Texas]].


== Education ==
He also sparked the controversial article "Better Killing Through Chemistry", which appeared in [[Scientific American]] a few months after the [[September 11 attacks]], by which he tried to raise awareness of the lack of reasonable controls on the accessibility of [[chemical weapon]] precursors within the United States.
Tour received degrees from [[Syracuse University]] (BS, 1981), [[Purdue University]] (PhD, 1986 under [[Ei-ichi Negishi]]) and completed postdoctoral work at the [[University of Wisconsin–Madison]] (1986–1987) and [[Stanford University]] (1987–1988).<ref name=":0">{{Cite web|url=https://www.jmtour.com/|title=James M Tour Group}}</ref>


==Petition==
== Career ==
Tour's work is primarily focused on carbon materials chemistry and nanotechnology. Tour's work on carbon materials encompasses fullerene purification,<ref>{{cite journal | last1 = Scrivens | first1 = W. A. | last2 = Tour | first2 = J. M. | year = 1992| title = Synthesis of Gram Quantities of C60 by Plasma Discharge in a Modified Round-Bottomed Flask. Key Parameters for Yield Optimization and Purification | journal = J. Org. Chem. | volume = 1992 | issue = 57| pages = 6932–6936 | doi=10.1021/jo00051a047}}</ref><ref>{{cite journal | last1 = Scrivens | first1 = W. A. | last2 = Bedworth | first2 = P. V. | last3 = Tour | first3 = J. M. | year = 1992| title = Purification of Gram Quantities of C60. A New Inexpensive and Facile Method | journal = J. Am. Chem. Soc. | volume = 1992 | issue = 114| pages = 7917–7919 | doi=10.1021/ja00046a051}}</ref> composites,<ref>{{cite journal | last1 = Higginbotham | first1 = A. L. | last2 = Moloney | first2 = P. G. | last3 = Waid | first3 = M. C. | last4 = Duque | first4 = J. G. | last5 = Kittrell | first5 = C. | last6 = Schmidt | first6 = H. K. | last7 = Stephenson | first7 = J. J. | last8 = Arepalli | first8 = S. | last9 = Yowell | first9 = L. L. | last10 = Tour | first10 = J. M. | year = 2008 | title = Carbon Nanotube Composite Curing Through Absorption of Microwave Radiation | journal = Composites Sci. Tech. | volume = 68 | issue = 15–16| pages = 3087–3092 | doi=10.1016/j.compscitech.2008.07.004}}</ref><ref>{{cite journal | last1 = Mitchell | first1 = C. A. | last2 = Bahr | first2 = J. L. | last3 = Arepalli | first3 = S. | last4 = Tour | first4 = J. M. | last5 = Krishnamoorti | first5 = R. | year = 2002 | title = Dispersion of Functionalized Carbon Nanotubes in Polystyrene | journal = Macromolecules | volume = 35 | issue = 23| pages = 8825–8830 | doi=10.1021/ma020890y| bibcode = 2002MaMol..35.8825M }}</ref> conductive inks for radio frequencies identification tags,<ref>Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.; Pyo, M.; Tour, J. M.; Cho, G. "All Printed and Roll-to-Roll Printable 13.56 MHz Operated 1-bit RF Tag on Plastic Foils," IEEE Trans. Elect. Dev 1 2010, 57, 571-580.</ref><ref>{{cite journal | last1 = Noh | first1 = J. | last2 = Jung | first2 = M. | last3 = Jung | first3 = K. | last4 = Lee | first4 = G. | last5 = Lim | first5 = S. | last6 = Kim | first6 = D. | last7 = Kim | first7 = S. | last8 = Tour | first8 = J. M. | last9 = Cho | first9 = G. | year = 2011 | title = Integrable single walled carbon nanotube (SWNT) network based thin film transistors using roll-to-roll gravure and inkjet | journal = Org. Electronics | volume = 12 | issue = 12| pages = 2185–2191 | doi=10.1016/j.orgel.2011.09.006}}</ref> carbon nanoreporters for identifying oil downhole,<ref>{{cite journal | last1 = Berlin | first1 = J. M. | last2 = Yu | first2 = J. | last3 = Lu | first3 = W. | last4 = Walsh | first4 = E. E. | last5 = Zhang | first5 = L. | last6 = Zhang | first6 = P. | last7 = Chen | first7 = W. | last8 = Kan | first8 = A. T. | last9 = Wong | first9 = M. S. | last10 = Tomson | first10 = M. B. | last11 = Tour | first11 = J. M. | year = 2011| title = Engineered Nanoparticles for Hydrocarbon Detection in Oil-field Rocks | journal = Energy Environ Sci | volume = 2011 | issue = 4| pages = 505–509 | doi=10.1039/c0ee00237b}}</ref><ref>{{cite journal | last1 = Hwang | first1 = C.-C. | last2 = Wang | first2 = L. | last3 = Lu | first3 = W. | last4 = Ruan | first4 = G. | last5 = Kini | first5 = G. C. | last6 = Xiang | first6 = C. | last7 = Samuel | first7 = E. L. G. | last8 = Shi | first8 = W. | last9 = Kan | first9 = A. T. | last10 = Wong | first10 = M. S. | last11 = Tomson | first11 = M. B. | last12 = Tour | first12 = J. M. | year = 2012| title = Highly Stable Carbon Nanoparticles Designed for Downhole Hydrocarbon Detection | journal = Energy Environ Sci | volume = 2012 | issue = 5| pages = 8304–8309 | doi = 10.1039/c2ee21574h }}</ref> graphene synthesis from cookies and insects,<ref>{{cite journal | last1 = Ruan | first1 = G. | last2 = Sun | first2 = Z. | last3 = Peng | first3 = Z. | last4 = Tour | first4 = J. M. | year = 2011 | title = Growth of Graphene from Food, Insects, and Waste | journal = ACS Nano | volume = 5 | issue = 9| pages = 7601–7607 | doi=10.1021/nn202625c| pmid = 21800842 }}</ref> graphitic electronic devices,<ref>{{cite journal | last1 = Sinitskii | first1 = A. | last2 = Tour | first2 = J. M. | year = 2009 | title = Lithographic Graphitic Memories | journal = ACS Nano | volume = 3 | issue = 9| pages = 2760–2766 | doi=10.1021/nn9006225| pmid = 19719147 }}</ref><ref>{{cite journal | last1 = Li | first1 = Y. | last2 = Sinitskii | first2 = A. | last3 = Tour | first3 = J. M. | year = 2008 | title = Electronic Two-Terminal Bistable Graphitic Memories | journal = Nature Materials | volume = 7 | issue = 12| pages = 966–971 | doi=10.1038/nmat2331| pmid = 19011617 | bibcode = 2008NatMa...7..966L }}</ref> carbon particle drug delivery for treatment of traumatic brain injury,<ref>{{cite journal | last1 = Sano | first1 = D. | last2 = Berlin | first2 = J. M. | last3 = Pham | first3 = T. T. | last4 = Marcano | first4 = D. C. | last5 = Valdecanas | first5 = D. R. | last6 = Zhou | first6 = G. | last7 = Milas | first7 = L. | last8 = Myers | first8 = J. N. | last9 = Tour | first9 = J. M. | year = 2012 | title = Noncovalent Assembly of Targeted Carbon Nanovectors Enables Synergistic Drug and Radiation Cancer Therapy in Vivo | journal = ACS Nano | volume = 6 | issue = 3| pages = 2497–2505 | doi = 10.1021/nn204885f | pmid = 22316245 | pmc = 3314092 }}</ref><ref>{{cite journal | last1 = Sharpe | first1 = M. A. | last2 = Marcano | first2 = D. C. | last3 = Berlin | first3 = J. M. | last4 = Widmayer | first4 = M. A. | last5 = Baskin | first5 = D. S. | last6 = Tour | first6 = J. M. | year = 2012 | title = Antibody-Targeted Nanovectors for the Treatment of Brain Cancers | journal = ACS Nano | volume = 6 | issue = 4| pages = 3114–3120 | doi = 10.1021/nn2048679 | pmid = 22390360 }}</ref> the merging of 2D graphene with 1D nanotubes to make a conjoined hybrid material,<ref>{{cite journal | last1 = Zhu | first1 = Y. | last2 = Li | first2 = L. | last3 = Zhang | first3 = C. | last4 = Casillas | first4 = G. | last5 = Sun | first5 = Z. | last6 = Yan | first6 = Z. | last7 = Ruan | first7 = G. | last8 = Peng | first8 = Z. | last9 = Raji | first9 = A.-R. O. | last10 = Kittrell | first10 = C. | last11 = Hauge | first11 = R. H. | last12 = Tour | first12 = J. M. | year = 2012 | title = A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material | journal = Nature Communications | volume = 3 | page = 1225 | doi = 10.1038/ncomms2234 | pmid = 23187625 | bibcode = 2012NatCo...3.1225Z | doi-access = free }}</ref> a new graphene-nanotube 2D material called rebar graphene,<ref>{{cite journal | last1 = Yan | first1 = Z. | last2 = Peng | first2 = Z. | last3 = Casillas | first3 = G. | last4 = Lin | first4 = J. | last5 = Xiang | first5 = C. | last6 = Zhou | first6 = H. | last7 = Yang | first7 = Y. | last8 = Ruan | first8 = G. | last9 = Raji | first9 = A.-R. O. | last10 = Samuel | first10 = E. L. G. | last11 = Hauge | first11 = R. H. | last12 = Yacaman | first12 = M. J. | last13 = Tour | first13 = J. M. | year = 2014 | title = Rebar Graphene | journal = ACS Nano | volume = 8| issue = 5| pages = 5061–5068| doi = 10.1021/nn501132n | pmid = 24694285 | pmc = 4046778 }}</ref> graphene quantum dots from coal,<ref>{{cite journal | last1 = Ye | first1 = R. | last2 = Xiang | first2 = C. | last3 = Lin | first3 = J. | last4 = Peng | first4 = Z. | last5 = Huang | first5 = K. | last6 = Yan | first6 = Z. | last7 = Cook | first7 = N. P. | last8 = Samuel | first8 = E. L. G. | last9 = Hwang | first9 = C.-C. | last10 = Ruan | first10 = G. | last11 = Ceriotti | first11 = G. | last12 = Raji | first12 = A.-R. O. | last13 = Martí | first13 = A. A. | last14 = Tour | first14 = J. M. | year = 2013 | title = Coal as an Abundant Source of Graphene Quantum Dots | journal = Nature Communications| volume = 4 | issue = 2943| pages = 1–6 | doi = 10.1038/ncomms3943 | pmid=24309588| bibcode = 2013NatCo...4.2943Y | doi-access = free }}</ref> gas barrier composites,<ref>{{cite journal | last1 = Xiang | first1 = C. | last2 = Cox | first2 = P. J. | last3 = Kukovecz | first3 = A. | last4 = Genorio | first4 = B. | last5 = Hashim | first5 = D. P. | last6 = Yan | first6 = Z. | last7 = Peng | first7 = Z. | last8 = Hwang | first8 = C.-C. | last9 = Ruan | first9 = G. | last10 = Samuel | first10 = E. L. G. | last11 = Sudeep | first11 = P. M. | last12 = Konya | first12 = Z. | last13 = Vajtai | first13 = R. | last14 = Ajayan | first14 = P. M. | last15 = Tour | first15 = J. M. | year = 2013 | title = Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances | url =http://publicatio.bibl.u-szeged.hu/4116/1/2437334.pdf | journal = ACS Nano | volume = 7 | issue = 11| pages = 10380–10386 | doi = 10.1021/nn404843n | pmid = 24102568 }}</ref> graphene nanoribbon deicing films,<ref>{{cite journal | last1 = Volman | first1 = V. | last2 = Zhu | first2 = Y. | last3 = Raji | first3 = A.-R. | last4 = Genorio | first4 = B. | last5 = Lu | first5 = W. | last6 = Xiang | first6 = C. | last7 = Kittrell | first7 = C. | last8 = Tour | first8 = J. M. | year = 2014 | title = Radio-Frequency-Transparent, Electrically Conductive Graphene Nanoribbon Thin Films as Deicing Heating Layers | journal = ACS Appl. Mater. Interfaces | volume = 6 | issue = 1| pages = 298–304 | doi = 10.1021/am404203y | pmid = 24328320 }}</ref> supercapacitors and battery device structures,<ref>{{cite journal | last1 = Yang | first1 = Y. | last2 = Fan | first2 = X. | last3 = Casillas | first3 = G. | last4 = Peng | first4 = Z. | last5 = Ruan | first5 = G. | last6 = Wang | first6 = G. | last7 = Yacaman | first7 = M. J. | last8 = Tour | first8 = J. M. | year = 2014 | title = Three-Dimensional Nanoporous Fe2O3/Fe3C Graphene Heterogeneous Thin Films for Lithium-Ion Batteries | pmc= 4004288 | journal = ACS Nano | volume = 8 | issue = 4| pages = 3939–3946 | doi = 10.1021/nn500865d | pmid = 24669862 }}</ref><ref>{{cite journal | last1 = Zhang | first1 = C. | last2 = Peng | first2 = Z. | last3 = Lin | first3 = J. | last4 = Zhu | first4 = Y. Ruan | last5 = Hwang | first5 = C.-C. | last6 = Lu | first6 = W. | last7 = Hauge | first7 = R. H. | last8 = Tour | first8 = J. M. | year = 2013 | title = Splitting of a Vertical Multiwalled Carbon Nanotube Carpet to a Graphene Nanoribbon Carpet and Its Use in Supercapacitors | journal = ACS Nano | volume = 7 | issue = 6| pages = 5151–5159 | doi = 10.1021/nn400750n | pmid = 23672653 }}</ref> and water splitting to H<sub>2</sub> and O<sub>2</sub> using metal chalcogenides.<ref>{{cite journal | last1 = Lin | first1 = J. | last2 = Peng | first2 = Z. | last3 = Wang | first3 = G. | last4 = Zakhidov | first4 = D. | last5 = Larios | first5 = E. | last6 = Yacaman | first6 = M. J. | last7 = Tour | first7 = J. M. | year = 2014 | title = Enhanced Electrocatalysis for Hydrogen Evolution Reactions from WS<sub>2</sub> Nanoribbons | journal = Advanced Energy Materials | volume = 4| issue = 10| page = 1301875| doi = 10.1002/aenm.201301875 | bibcode = 2014AdEnM...401875L | s2cid = 96788831 }}</ref>
In February 2006, the [[New York Times]] reported<ref> [http://www.nytimes.com/2006/02/21/science/sciencespecial2/21peti.html?ex=1298178000&en=de5bd718715864a0&ei=5088&partner=rssnyt&emc=rss Few Biologists but Many Evangelicals Sign Anti-Evolution Petition], Kenneth Chang, [[New York Times]], February 21, 2006.</ref> that Dr. Tour was one of a small number of nationally prominent researchers out of several hundred scientists and engineers whose names appeared on the [[Discovery Institute]]'s newly launched website promoting a controversial petition, "[[A Scientific Dissent From Darwinism]]", which states "We are skeptical of claims for the ability of random mutation and natural selection to account for the complexity of life. Careful examination of the evidence for Darwinian theory should be encouraged."<ref>[http://www.discovery.org/scripts/viewDB/filesDB-download.php?command=download&id=660 Signatories of 'A Scientific Dissent From Darwinism']</ref> The New York Times article cites Dr. Tour as saying that he remained open-minded about evolution, adding "I respect that work."


In addition, Tour has conducted research on the synthesis of graphene oxide,<ref>{{cite journal | last1 = Dimiev | first1 = A. M. | last2 = Alemany | first2 = L. B. | last3 = Tour | first3 = J. M. | year = 2013 | title = Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model | journal = ACS Nano | volume = 7 | issue = 1| pages = 576–588 | doi = 10.1021/nn3047378 | pmid = 23215236 }}</ref><ref>{{cite journal | last1 = Zhu | first1 = Y. | last2 = James | first2 = D. K. | last3 = Tour | first3 = J. M. | year = 2012 | title = New Routes to Graphene, Graphene Oxide and Their Related Applications | journal = Adv. Mater. | volume = 24 | issue = 36| pages = 4924–4955 | doi = 10.1002/adma.201202321 | pmid = 22903803 | bibcode = 2012AdM....24.4924Z | s2cid = 205246630 }}</ref> its mechanism of formation,<ref>{{cite journal | last1 = Dimiev | first1 = A. M. | last2 = Tour | first2 = J. M. | year = 2014 | title = Mechanism of Graphene Oxide Formation | journal = ACS Nano | volume = 8 | issue = 3| pages = 3060–3068 | doi = 10.1021/nn500606a | pmid = 24568241 | doi-access = free | hdl = 1911/77432 | hdl-access = free }}</ref> and its use in capturing radionuclides from water.<ref>{{cite journal | last1 = Romanchuk | first1 = A. Yu. | last2 = Slesarev | first2 = A. S. | last3 = Kalmykov | first3 = S. N. | last4 = Kosynkin | first4 = D. V. | last5 = Tour | first5 = J. M. | year = 2013 | title = Graphene Oxide for Effective Radionuclide Removal | journal = Phys. Chem. Chem. Phys. | volume = 15 | issue = 7| pages = 2321–2327 | doi = 10.1039/c2cp44593j | pmid = 23296256 | bibcode = 2013PCCP...15.2321R }}</ref> Tour has developed oxide-based electronic memories that can also be transparent and built onto flexible substrates.<ref>{{cite journal | last1 = Yao | first1 = J. | last2 = Lin | first2 = J. | last3 = Dai | first3 = Y. | last4 = Ruan | first4 = G. | last5 = Yan | first5 = Z. | last6 = Li | first6 = L. | last7 = Zhong | first7 = L. | last8 = Natelson | first8 = D. | last9 = Tour | first9 = J. M. | year = 2012 | title = Highly Transparent Nonvolatile Resistive Memory Devices from Silicon Oxide and Graphene | journal = Nature Communications| volume = 3 | pages = 1–8 | doi = 10.1038/ncomms2110 | pmid = 23033077 | bibcode = 2012NatCo...3.1101Y | doi-access = free }}</ref> His group has also developed the use of porous metal structures to make renewable energy devices including batteries and supercapacitors, as well as electronic memories.<ref>{{cite journal | last1 = Yang | first1 = Y. | last2 = Ruan | first2 = G. | last3 = Xiang | first3 = C. | last4 = Wang | first4 = G. | last5 = Tour | first5 = J. M. | year = 2014| title = Flexible Three-Dimensional Nanoporous Metal-Based Energy Devices | journal = J. Am. Chem. Soc. | volume = 2014 | issue = 136| pages = 6187–6190 | doi = 10.1021/ja501247f | pmid = 24735477 }}</ref>
==References==
{{reflist|2}}


More recently, the Tour group's discovery of laser-induced graphene (LIG) has spurred innovations including an array of device structures made from LIG foams.<ref>{{Cite journal|last1=Stanford|first1=Michael G.|last2=Li|first2=John T.|last3=Chen|first3=Yuda|last4=McHugh|first4=Emily A.|last5=Liopo|first5=Anton|last6=Xiao|first6=Han|last7=Tour|first7=James M.|date=October 22, 2019|title=Self-Sterilizing Laser-Induced Graphene Bacterial Air Filter|journal=ACS Nano|language=en|volume=13|issue=10|pages=11912–11920|doi=10.1021/acsnano.9b05983|pmid=31560513|s2cid=203581358 |issn=1936-0851}}</ref> His lab's discovery of the flash graphene process in 2019 for the 10-millisecond bulk formation of graphene from carbon sources including coal, petroleum coke, [[biochar]], [[food waste]] and mixed [[plastic waste]], has implications in environmental stewardship through materials and waste [[upcycling]].<ref>{{Cite journal|last1=Luong|first1=Duy X.|last2=Bets|first2=Ksenia V.|last3=Algozeeb|first3=Wala Ali|last4=Stanford|first4=Michael G.|last5=Kittrell|first5=Carter|last6=Chen|first6=Weiyin|last7=Salvatierra|first7=Rodrigo V.|last8=Ren|first8=Muqing|last9=McHugh|first9=Emily A.|last10=Advincula|first10=Paul A.|last11=Wang|first11=Zhe|date=January 2020|title=Gram-scale bottom-up flash graphene synthesis|journal=Nature|language=en|volume=577|issue=7792|pages=647–651|doi=10.1038/s41586-020-1938-0|pmid=31988511|bibcode=2020Natur.577..647L|issn=1476-4687|doi-access=free}}</ref>
==Exterior links==


Tour worked in [[molecular electronics]] and molecular switching molecules. He pioneered the development of the [[Nanocar]], single-molecule vehicles with four independently rotating wheels, axles, and light-activated motors.<ref>{{cite journal | last1 = Chu | first1 = P.-L. | last2 = Wang | first2 = L.-Y. | last3 = Khatua | first3 = S. | last4 = Kolomeisky | first4 = A. | last5 = Link | first5 = S. | last6 = Tour | first6 = J. M. | year = 2013 | title = Synthesis and Single-Molecule Imaging of Highly Mobile Adamantane-Wheeled Nanocars | journal = ACS Nano | volume = 7 | issue = 1| pages = 35–41 | doi = 10.1021/nn304584a | pmid = 23189917 }}</ref> Tour was the first to show that Feringa-based motors<ref>{{cite journal | last1 = Carroll | first1 = GT | last2 = Pollard | first2 = MM | last3 = van Delden | first3 = RA | last4 = Feringa | first4 = BL | year = 2010 | title = Controlled rotary motion of light-driven molecular motors assembled on a gold surface | doi = 10.1039/C0SC00162G | journal = Chemical Science | volume = 1 | issue = 1| pages = 97–101 | hdl = 11370/4fb63d6d-d764-45e3-b3cb-32a4c629b942 | s2cid = 97346507 | url = https://www.rug.nl/research/portal/files/2613578/2010ChemSciCarroll1.pdf }}</ref> can be used to move a molecule on a surface using light<ref>{{cite journal | year = 2016 | title = Light-induced Translation of Motorized Molecules on a Surface | doi = 10.1021/acsnano.6b05650 | pmid = 27783488 | journal = ACS Nano | volume = 10 | issue = 12 | pages = 10945–10952 | last1 = Saywell | first1 = Alex | last2 = Bakker | first2 = Anne | last3 = Mielke | first3 = Johannes | last4 = Kumagai | first4 = Takashi | last5 = Wolf | first5 = Martin | last6 = García-López | first6 = Víctor | last7 = Chiang | first7 = Pinn-Tsong | last8 = Tour | first8 = James M. | last9 = Grill | first9 = Leonhard | url = http://eprints.nottingham.ac.uk/38562/1/Saywell_ACS_Nano_Oct_2016.pdf | access-date = September 25, 2019 | archive-date = September 25, 2019 | archive-url = https://web.archive.org/web/20190925181605/http://eprints.nottingham.ac.uk/38562/1/Saywell_ACS_Nano_Oct_2016.pdf | url-status = dead }}</ref> as opposed to electric current from an STM tip. His early career focused upon the synthesis of conjugated polymers and precise oligomers.<ref>{{cite journal | last1 = Tour | first1 = J. M. | year = 1996| title = Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures | journal = Chem. Rev. | volume = 1996 | issue = 96| pages = 537–553 | doi=10.1021/cr9500287| pmid = 11848764 }}</ref>

Tour has also been involved in scientific outreach, such as [[nanoputian|NanoKids]], an interactive learning DVD to teach children fundamentals of [[chemistry]] and [[physics]]. He also developed SciRave, a [[Dance Dance Revolution]] and [[Guitar Hero]] package to teach science concepts to middle school and elementary school students. He has testified before the US Congress on two occasions to warn about budget cuts.<ref name="Colapinto">{{Cite magazine|last=Colapinto|first=John|author-link=John Colapinto|title=Material Question|url=https://www.newyorker.com/magazine/2014/12/22/material-question|access-date=December 11, 2020|magazine=The New Yorker|date=December 14, 2014|language=en-us}}</ref>

In the ''[[Scientific American]]'' article "Better Killing Through Chemistry",<ref>{{cite journal |last= Musser |first= George |date=November 2001 |title= Better Killing through Chemistry: Buying chemical weapons material through the mail is quick and easy |journal= [[Scientific American]] |volume= 285 |issue= 6 |pages= 20–1 |url= http://www.sciam.com/article.cfm?articleID=000E51F9-AA56-1C75-9B81809EC588EF21 |access-date= September 6, 2007|doi= 10.1038/scientificamerican1201-20 |pmid= 11759580 }}</ref> which appeared a few months after the [[September 11 attacks]], Tour highlighted the ease of obtaining [[chemical weapon]] precursors in the [[United States]].

Tour is on the board and working with companies including Weebit (silicon oxide electronic memory),<ref>{{Cite web|title=Board of Directors – Weebit – A Quantum Leap In Data Storage|url=https://weebit-nano.com/board-of-directors/|access-date=June 18, 2020|website=Weebit|language=en-US}}</ref> Dotz (graphene quantum dots),<ref>{{Cite web|title=About|url=https://www.dotz.tech/about/|access-date=June 18, 2020|website=Tag {{!}} Trace {{!}} Verify|language=en-US}}</ref> [[Zeta Energy]] (batteries),<ref>{{Cite web|title=Home|url=https://www.zetaenergy.com/|access-date=June 18, 2020|website=Zeta Energy|language=en}}</ref> NeuroCords (spinal cord repair),<ref>{{Cite web|title=Spinal cord repair with graphene-polymer nanoribbons|url=https://www.materialstoday.com/carbon/news/spinal-cord-repair-with-graphene-nanoribbons/|access-date=June 18, 2020|website=Materials Today}}</ref> Xerient (treatment of pancreas cancer), LIGC Application Ltd. (laser-induced graphene),<ref>{{Cite web|date=March 6, 2020|title=Guardian G-Volt masks use graphene and electrical charge to repel viruses|url=https://www.dezeen.com/2020/03/06/guardian-g-volt-face-mask-graphene-coronavirus-bacteria/|access-date=June 18, 2020|website=Dezeen|language=en}}</ref> Nanorobotics (molecular nanomachines in medicine),<ref>{{Cite web|title=Nanorobotics|url=http://nanorobotics.tech/|access-date=June 18, 2020|website=nanorobotics.tech}}</ref> Universal Matter Ltd. (flash graphene synthesis),<ref>{{Cite web|title=About Us|url=https://www.universalmatter.com/about-us/|access-date=June 18, 2020|website=Universal Matter|language=en-US}}</ref> Roswell Biotechnologies (molecular electronic DNA sequencing),<ref>{{Cite web|url=https://www.roswellbiotech.com/technology/|access-date=June 18, 2020|title=Technology | website=Roswell Biotechnologies|archive-date=June 20, 2020|archive-url=https://web.archive.org/web/20200620103813/https://www.roswellbiotech.com/technology/|url-status=dead}}</ref> and Rust Patrol (corrosion inhibitors).<ref>{{Cite web|title=Technology|url=https://rust-patrol.com/technology/|access-date=June 18, 2020|website=Rust Patrol|language=en-US}}{{Dead link|date=September 2024 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>

Tour's lab's research into graphene scaffolding gel has been shown to repair spinal cords of paralyzed mice.<ref name="Colapinto" />

Tour has about 650 research publications and over 200 patents, with an H-index > 170 with total citations over 130,000 (Google Scholar, as of November 2023).<ref>{{cite web | url=https://www.aiche.org/community/bio/james-tour#:~:text=Chao%20Professor%20of%20Chemistry%20and,over%2077%2C000%20(Google%20Scholar) | title=James Tour | date=September 18, 2020 }}</ref><ref>{{cite web | url=https://scholar.google.com/citations?user=YwoecRMAAAAJ&hl=en | title=James M. Tour }}</ref><ref>{{Cite web|url=https://profiles.rice.edu/faculty/james-tour|title=James Tour &#124; Faculty &#124; The People of Rice &#124; Rice University}}</ref>

== Awards ==
Tour was awarded the Royal Society of Chemistry's [[Centenary Prize]] for innovations in materials chemistry with applications in medicine and nanotechnology.<ref>{{Cite web|title=Professor James Tour {{!}} Centenary Prize winner 2020|url=https://www.rsc.org/awards-funding/awards/2020-winners/professor-james-tour/|access-date=June 24, 2020|website=Royal Society of Chemistry|language=en-GB}}</ref> Tour was inducted into the National Academy of Inventors in 2015.<ref>{{cite web |publisher = National Academy of Inventors |url = http://www.academyofinventors.org/search-fellows.asp?qFellows=%&Qa=2015&qSort=FASC |title = Current NAI Fellows 2015 |access-date = June 17, 2016 |archive-date = April 23, 2016 |archive-url = https://web.archive.org/web/20160423223910/http://www.academyofinventors.org/search-fellows.asp?qFellows=%&Qa=2015&qSort=FASC |url-status = dead }}</ref><ref>{{cite web | url=https://www.adscientificindex.com/scientist/james-m-tour/5003224#google_vignette | title=James M Tour - AD Scientific Index 2024 }}</ref> <ref>{{cite web | url=https://www.aiche.org/community/bio/james-tour | title=James Tour | date=September 18, 2020 }}</ref>

He was named among "The 50 most Influential Scientists in the World Today" by TheBestSchools.org in 2014.<ref>{{cite web|url=https://thebestschools.org/features/50-influential-scientists-world-today/|title=The 50 Most Influential Scientists in the World Today|author=Staff Writers|date=January 21, 2014|website=TheBestSchools.org}}</ref>

Tour was named "Scientist of the Year" by ''R&D Magazine'' in 2013.<ref>{{cite web|url=https://www.rdmag.com/news/2013/11/r-d-magazine-announces-2013-scientist-year|title=R&D Magazine announces 2013 Scientist of the Year|date=November 1, 2013|website=Research & Development}}</ref> Tour won the ACS Nano Lectureship Award from the American Chemical Society in 2012. Tour was ranked one of the top 10 chemists in the world over the past decade by Thomson Reuters in 2009.

That year, he was also made a fellow of the American Association for the Advancement of Science.

In 2005, Tour's journal article "Directional Control in Thermally Driven Single-Molecule Nanocars" was ranked the Most Accessed Journal Article by the American Chemical Society.<ref name="tour_resume">{{Cite web|url=http://www.jmtour.com/documents/JamesMTourResumeFeb13-1.pdf|title=Resume of James M. Tour, Ph.D.}}</ref>

Tour has twice won the George R. Brown Award for Superior Teaching at Rice University in 2007 and 2012.

In 2016, Tour was listed as an [[ISI highly cited researcher]].<ref>{{cite news |last1=Williams |first1=Mike |title=9 Rice faculty on prominent 'highly cited' list |url=https://news.rice.edu/2016/11/18/9-rice-faculty-on-prominent-highly-cited-list/ |access-date=October 29, 2019 |publisher=Rice University |date=November 18, 2016 |archive-date=October 29, 2019 |archive-url=https://web.archive.org/web/20191029170830/https://news.rice.edu/2016/11/18/9-rice-faculty-on-prominent-highly-cited-list/ |url-status=dead }}</ref>

==Opposition to evolution and origin of life studies==

Tour became a [[born-again Christian]] in his first year at Syracuse<ref name="Colapinto" /> and identifies as a [[Messianic Judaism|Messianic Jew]].<ref>{{Cite web|title=James M Tour Group » Personal Statement|url=https://www.jmtour.com/personal-topics/personal-statement/|access-date=December 11, 2020|language=en}}</ref> Tour signed the [[A Scientific Dissent from Darwinism|Scientific Dissent from Darwinism]],<ref name=":0" /> a statement issued by the [[Discovery Institute]] disputing the [[scientific consensus]] on [[evolution]], but, in spite of the Discovery Institute's promotion of the [[pseudoscience]] of [[intelligent design]], Tour does not consider himself to be an intelligent design proponent.<ref>{{Cite web |title=James M Tour Group » Evolution/Creation |url=https://www.jmtour.com/personal-topics/evolution-creation/ |access-date=2023-07-25 |language=en}}</ref> According to ''[[The New Yorker]]'', Tour said his signing of the "Dissent" "reflected only his personal doubts about how random mutation occurs at the molecular level... [and] that, apart from a habit of praying for divine guidance, he feels that religion plays no part in his scientific work."<ref name="Colapinto" />

On May 19, 2023, James Tour debated Dave Farina, science educator and creator of the Professor Dave Explains [[YouTube]] channel, at [[Rice University]] on [[abiogenesis]]. The topic of the debate was "Are we clueless about the origin of life?", with Tour arguing that humanity is clueless.<ref>{{Cite news |last=Shad |first=Nayeli |date=2023-05-26 |title=Rice’s James Tour and YouTuber ‘Professor Dave’ debate the origins of life |url=https://www.ricethresher.org/article/2023/05/rices-james-tour-and-youtuber-professor-dave-debate-the-origins-of-life |url-status=live |archive-url=https://web.archive.org/web/20230902090136/https://www.ricethresher.org/article/2023/05/rices-james-tour-and-youtuber-professor-dave-debate-the-origins-of-life |archive-date=2023-09-02 |access-date=2024-11-04 |work=[[The Rice Thresher]]}}</ref>

== References ==
{{reflist}}

== External links ==
* [http://www.jmtour.com/ James Tour Research Group]
* [http://www.jmtour.com/ James Tour Research Group]
* [http://nanokids.rice.edu/ NanoKids]
* [https://web.archive.org/web/20031215122151/http://nanokids.rice.edu/ NanoKids]
* [https://www.youtube.com/@DrJamesTour YouTube page]
* [http://www.sciam.com/article.cfm?articleID=000E51F9-AA56-1C75-9B81809EC588EF21 "Better Killing Through Chemistry" - Scientific American, December 2001]
{{Authority control}}


{{DEFAULTSORT:Tour, James}}
{{DEFAULTSORT:Tour, James}}
[[Category:American chemists]]
[[Category:1959 births]]
[[Category:Signatories of "A Scientific Dissent From Darwinism"]]
[[Category:American organic chemists]]
[[Category:Nanotechnologists]]
[[Category:Carbon scientists]]
[[Category:21st-century American chemists]]

[[Category:American nanotechnologists]]
{{chemist-stub}}
[[Category:Syracuse University alumni]]
[[Category:Living people]]
[[Category:Purdue University alumni]]
[[Category:University of Wisconsin–Madison alumni]]
[[Category:Stanford University alumni]]
[[Category:Rice University faculty]]
[[Category:20th-century American chemists]]
[[Category:Scientists from New York City]]
[[Category:American Christians]]
[[Category:Messianic Jews]]

Revision as of 16:41, 25 December 2024

James Tour
Tour in 2018
Born
New York City, U.S.
Alma materPurdue University, PhD
Syracuse University, BS
Known forMolecular electronics
Nanotechnology
Graphene production techniques
Carbon nanotube chemistry
Nanocar
NanoPutian
AwardsOesper Award (2021)
Centenary Prize (2020)
Trotter Prize (2014)
Feynman Prize (2008)
Scientific career
FieldsOrganic Chemistry
Materials Science
Nanotechnology
InstitutionsRice University, 1999-present
University of South Carolina, 1988–1999
ThesisMetal-Promoted Cyclization and Transition-Metal-Promoted Carbonylative Cyclization Reactions (1986)
Doctoral advisorEi-ichi Negishi
Websitewww.jmtour.com

James Mitchell Tour is an American chemist and nanotechnologist. He is a Professor of Chemistry, Professor of Materials Science and Nanoengineering at Rice University in Houston, Texas.

Education

Tour received degrees from Syracuse University (BS, 1981), Purdue University (PhD, 1986 under Ei-ichi Negishi) and completed postdoctoral work at the University of Wisconsin–Madison (1986–1987) and Stanford University (1987–1988).[1]

Career

Tour's work is primarily focused on carbon materials chemistry and nanotechnology. Tour's work on carbon materials encompasses fullerene purification,[2][3] composites,[4][5] conductive inks for radio frequencies identification tags,[6][7] carbon nanoreporters for identifying oil downhole,[8][9] graphene synthesis from cookies and insects,[10] graphitic electronic devices,[11][12] carbon particle drug delivery for treatment of traumatic brain injury,[13][14] the merging of 2D graphene with 1D nanotubes to make a conjoined hybrid material,[15] a new graphene-nanotube 2D material called rebar graphene,[16] graphene quantum dots from coal,[17] gas barrier composites,[18] graphene nanoribbon deicing films,[19] supercapacitors and battery device structures,[20][21] and water splitting to H2 and O2 using metal chalcogenides.[22]

In addition, Tour has conducted research on the synthesis of graphene oxide,[23][24] its mechanism of formation,[25] and its use in capturing radionuclides from water.[26] Tour has developed oxide-based electronic memories that can also be transparent and built onto flexible substrates.[27] His group has also developed the use of porous metal structures to make renewable energy devices including batteries and supercapacitors, as well as electronic memories.[28]

More recently, the Tour group's discovery of laser-induced graphene (LIG) has spurred innovations including an array of device structures made from LIG foams.[29] His lab's discovery of the flash graphene process in 2019 for the 10-millisecond bulk formation of graphene from carbon sources including coal, petroleum coke, biochar, food waste and mixed plastic waste, has implications in environmental stewardship through materials and waste upcycling.[30]

Tour worked in molecular electronics and molecular switching molecules. He pioneered the development of the Nanocar, single-molecule vehicles with four independently rotating wheels, axles, and light-activated motors.[31] Tour was the first to show that Feringa-based motors[32] can be used to move a molecule on a surface using light[33] as opposed to electric current from an STM tip. His early career focused upon the synthesis of conjugated polymers and precise oligomers.[34]

Tour has also been involved in scientific outreach, such as NanoKids, an interactive learning DVD to teach children fundamentals of chemistry and physics. He also developed SciRave, a Dance Dance Revolution and Guitar Hero package to teach science concepts to middle school and elementary school students. He has testified before the US Congress on two occasions to warn about budget cuts.[35]

In the Scientific American article "Better Killing Through Chemistry",[36] which appeared a few months after the September 11 attacks, Tour highlighted the ease of obtaining chemical weapon precursors in the United States.

Tour is on the board and working with companies including Weebit (silicon oxide electronic memory),[37] Dotz (graphene quantum dots),[38] Zeta Energy (batteries),[39] NeuroCords (spinal cord repair),[40] Xerient (treatment of pancreas cancer), LIGC Application Ltd. (laser-induced graphene),[41] Nanorobotics (molecular nanomachines in medicine),[42] Universal Matter Ltd. (flash graphene synthesis),[43] Roswell Biotechnologies (molecular electronic DNA sequencing),[44] and Rust Patrol (corrosion inhibitors).[45]

Tour's lab's research into graphene scaffolding gel has been shown to repair spinal cords of paralyzed mice.[35]

Tour has about 650 research publications and over 200 patents, with an H-index > 170 with total citations over 130,000 (Google Scholar, as of November 2023).[46][47][48]

Awards

Tour was awarded the Royal Society of Chemistry's Centenary Prize for innovations in materials chemistry with applications in medicine and nanotechnology.[49] Tour was inducted into the National Academy of Inventors in 2015.[50][51] [52]

He was named among "The 50 most Influential Scientists in the World Today" by TheBestSchools.org in 2014.[53]

Tour was named "Scientist of the Year" by R&D Magazine in 2013.[54] Tour won the ACS Nano Lectureship Award from the American Chemical Society in 2012. Tour was ranked one of the top 10 chemists in the world over the past decade by Thomson Reuters in 2009.

That year, he was also made a fellow of the American Association for the Advancement of Science.

In 2005, Tour's journal article "Directional Control in Thermally Driven Single-Molecule Nanocars" was ranked the Most Accessed Journal Article by the American Chemical Society.[55]

Tour has twice won the George R. Brown Award for Superior Teaching at Rice University in 2007 and 2012.

In 2016, Tour was listed as an ISI highly cited researcher.[56]

Opposition to evolution and origin of life studies

Tour became a born-again Christian in his first year at Syracuse[35] and identifies as a Messianic Jew.[57] Tour signed the Scientific Dissent from Darwinism,[1] a statement issued by the Discovery Institute disputing the scientific consensus on evolution, but, in spite of the Discovery Institute's promotion of the pseudoscience of intelligent design, Tour does not consider himself to be an intelligent design proponent.[58] According to The New Yorker, Tour said his signing of the "Dissent" "reflected only his personal doubts about how random mutation occurs at the molecular level... [and] that, apart from a habit of praying for divine guidance, he feels that religion plays no part in his scientific work."[35]

On May 19, 2023, James Tour debated Dave Farina, science educator and creator of the Professor Dave Explains YouTube channel, at Rice University on abiogenesis. The topic of the debate was "Are we clueless about the origin of life?", with Tour arguing that humanity is clueless.[59]

References

  1. ^ a b "James M Tour Group".
  2. ^ Scrivens, W. A.; Tour, J. M. (1992). "Synthesis of Gram Quantities of C60 by Plasma Discharge in a Modified Round-Bottomed Flask. Key Parameters for Yield Optimization and Purification". J. Org. Chem. 1992 (57): 6932–6936. doi:10.1021/jo00051a047.
  3. ^ Scrivens, W. A.; Bedworth, P. V.; Tour, J. M. (1992). "Purification of Gram Quantities of C60. A New Inexpensive and Facile Method". J. Am. Chem. Soc. 1992 (114): 7917–7919. doi:10.1021/ja00046a051.
  4. ^ Higginbotham, A. L.; Moloney, P. G.; Waid, M. C.; Duque, J. G.; Kittrell, C.; Schmidt, H. K.; Stephenson, J. J.; Arepalli, S.; Yowell, L. L.; Tour, J. M. (2008). "Carbon Nanotube Composite Curing Through Absorption of Microwave Radiation". Composites Sci. Tech. 68 (15–16): 3087–3092. doi:10.1016/j.compscitech.2008.07.004.
  5. ^ Mitchell, C. A.; Bahr, J. L.; Arepalli, S.; Tour, J. M.; Krishnamoorti, R. (2002). "Dispersion of Functionalized Carbon Nanotubes in Polystyrene". Macromolecules. 35 (23): 8825–8830. Bibcode:2002MaMol..35.8825M. doi:10.1021/ma020890y.
  6. ^ Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.; Pyo, M.; Tour, J. M.; Cho, G. "All Printed and Roll-to-Roll Printable 13.56 MHz Operated 1-bit RF Tag on Plastic Foils," IEEE Trans. Elect. Dev 1 2010, 57, 571-580.
  7. ^ Noh, J.; Jung, M.; Jung, K.; Lee, G.; Lim, S.; Kim, D.; Kim, S.; Tour, J. M.; Cho, G. (2011). "Integrable single walled carbon nanotube (SWNT) network based thin film transistors using roll-to-roll gravure and inkjet". Org. Electronics. 12 (12): 2185–2191. doi:10.1016/j.orgel.2011.09.006.
  8. ^ Berlin, J. M.; Yu, J.; Lu, W.; Walsh, E. E.; Zhang, L.; Zhang, P.; Chen, W.; Kan, A. T.; Wong, M. S.; Tomson, M. B.; Tour, J. M. (2011). "Engineered Nanoparticles for Hydrocarbon Detection in Oil-field Rocks". Energy Environ Sci. 2011 (4): 505–509. doi:10.1039/c0ee00237b.
  9. ^ Hwang, C.-C.; Wang, L.; Lu, W.; Ruan, G.; Kini, G. C.; Xiang, C.; Samuel, E. L. G.; Shi, W.; Kan, A. T.; Wong, M. S.; Tomson, M. B.; Tour, J. M. (2012). "Highly Stable Carbon Nanoparticles Designed for Downhole Hydrocarbon Detection". Energy Environ Sci. 2012 (5): 8304–8309. doi:10.1039/c2ee21574h.
  10. ^ Ruan, G.; Sun, Z.; Peng, Z.; Tour, J. M. (2011). "Growth of Graphene from Food, Insects, and Waste". ACS Nano. 5 (9): 7601–7607. doi:10.1021/nn202625c. PMID 21800842.
  11. ^ Sinitskii, A.; Tour, J. M. (2009). "Lithographic Graphitic Memories". ACS Nano. 3 (9): 2760–2766. doi:10.1021/nn9006225. PMID 19719147.
  12. ^ Li, Y.; Sinitskii, A.; Tour, J. M. (2008). "Electronic Two-Terminal Bistable Graphitic Memories". Nature Materials. 7 (12): 966–971. Bibcode:2008NatMa...7..966L. doi:10.1038/nmat2331. PMID 19011617.
  13. ^ Sano, D.; Berlin, J. M.; Pham, T. T.; Marcano, D. C.; Valdecanas, D. R.; Zhou, G.; Milas, L.; Myers, J. N.; Tour, J. M. (2012). "Noncovalent Assembly of Targeted Carbon Nanovectors Enables Synergistic Drug and Radiation Cancer Therapy in Vivo". ACS Nano. 6 (3): 2497–2505. doi:10.1021/nn204885f. PMC 3314092. PMID 22316245.
  14. ^ Sharpe, M. A.; Marcano, D. C.; Berlin, J. M.; Widmayer, M. A.; Baskin, D. S.; Tour, J. M. (2012). "Antibody-Targeted Nanovectors for the Treatment of Brain Cancers". ACS Nano. 6 (4): 3114–3120. doi:10.1021/nn2048679. PMID 22390360.
  15. ^ Zhu, Y.; Li, L.; Zhang, C.; Casillas, G.; Sun, Z.; Yan, Z.; Ruan, G.; Peng, Z.; Raji, A.-R. O.; Kittrell, C.; Hauge, R. H.; Tour, J. M. (2012). "A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material". Nature Communications. 3: 1225. Bibcode:2012NatCo...3.1225Z. doi:10.1038/ncomms2234. PMID 23187625.
  16. ^ Yan, Z.; Peng, Z.; Casillas, G.; Lin, J.; Xiang, C.; Zhou, H.; Yang, Y.; Ruan, G.; Raji, A.-R. O.; Samuel, E. L. G.; Hauge, R. H.; Yacaman, M. J.; Tour, J. M. (2014). "Rebar Graphene". ACS Nano. 8 (5): 5061–5068. doi:10.1021/nn501132n. PMC 4046778. PMID 24694285.
  17. ^ Ye, R.; Xiang, C.; Lin, J.; Peng, Z.; Huang, K.; Yan, Z.; Cook, N. P.; Samuel, E. L. G.; Hwang, C.-C.; Ruan, G.; Ceriotti, G.; Raji, A.-R. O.; Martí, A. A.; Tour, J. M. (2013). "Coal as an Abundant Source of Graphene Quantum Dots". Nature Communications. 4 (2943): 1–6. Bibcode:2013NatCo...4.2943Y. doi:10.1038/ncomms3943. PMID 24309588.
  18. ^ Xiang, C.; Cox, P. J.; Kukovecz, A.; Genorio, B.; Hashim, D. P.; Yan, Z.; Peng, Z.; Hwang, C.-C.; Ruan, G.; Samuel, E. L. G.; Sudeep, P. M.; Konya, Z.; Vajtai, R.; Ajayan, P. M.; Tour, J. M. (2013). "Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances" (PDF). ACS Nano. 7 (11): 10380–10386. doi:10.1021/nn404843n. PMID 24102568.
  19. ^ Volman, V.; Zhu, Y.; Raji, A.-R.; Genorio, B.; Lu, W.; Xiang, C.; Kittrell, C.; Tour, J. M. (2014). "Radio-Frequency-Transparent, Electrically Conductive Graphene Nanoribbon Thin Films as Deicing Heating Layers". ACS Appl. Mater. Interfaces. 6 (1): 298–304. doi:10.1021/am404203y. PMID 24328320.
  20. ^ Yang, Y.; Fan, X.; Casillas, G.; Peng, Z.; Ruan, G.; Wang, G.; Yacaman, M. J.; Tour, J. M. (2014). "Three-Dimensional Nanoporous Fe2O3/Fe3C Graphene Heterogeneous Thin Films for Lithium-Ion Batteries". ACS Nano. 8 (4): 3939–3946. doi:10.1021/nn500865d. PMC 4004288. PMID 24669862.
  21. ^ Zhang, C.; Peng, Z.; Lin, J.; Zhu, Y. Ruan; Hwang, C.-C.; Lu, W.; Hauge, R. H.; Tour, J. M. (2013). "Splitting of a Vertical Multiwalled Carbon Nanotube Carpet to a Graphene Nanoribbon Carpet and Its Use in Supercapacitors". ACS Nano. 7 (6): 5151–5159. doi:10.1021/nn400750n. PMID 23672653.
  22. ^ Lin, J.; Peng, Z.; Wang, G.; Zakhidov, D.; Larios, E.; Yacaman, M. J.; Tour, J. M. (2014). "Enhanced Electrocatalysis for Hydrogen Evolution Reactions from WS2 Nanoribbons". Advanced Energy Materials. 4 (10): 1301875. Bibcode:2014AdEnM...401875L. doi:10.1002/aenm.201301875. S2CID 96788831.
  23. ^ Dimiev, A. M.; Alemany, L. B.; Tour, J. M. (2013). "Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model". ACS Nano. 7 (1): 576–588. doi:10.1021/nn3047378. PMID 23215236.
  24. ^ Zhu, Y.; James, D. K.; Tour, J. M. (2012). "New Routes to Graphene, Graphene Oxide and Their Related Applications". Adv. Mater. 24 (36): 4924–4955. Bibcode:2012AdM....24.4924Z. doi:10.1002/adma.201202321. PMID 22903803. S2CID 205246630.
  25. ^ Dimiev, A. M.; Tour, J. M. (2014). "Mechanism of Graphene Oxide Formation". ACS Nano. 8 (3): 3060–3068. doi:10.1021/nn500606a. hdl:1911/77432. PMID 24568241.
  26. ^ Romanchuk, A. Yu.; Slesarev, A. S.; Kalmykov, S. N.; Kosynkin, D. V.; Tour, J. M. (2013). "Graphene Oxide for Effective Radionuclide Removal". Phys. Chem. Chem. Phys. 15 (7): 2321–2327. Bibcode:2013PCCP...15.2321R. doi:10.1039/c2cp44593j. PMID 23296256.
  27. ^ Yao, J.; Lin, J.; Dai, Y.; Ruan, G.; Yan, Z.; Li, L.; Zhong, L.; Natelson, D.; Tour, J. M. (2012). "Highly Transparent Nonvolatile Resistive Memory Devices from Silicon Oxide and Graphene". Nature Communications. 3: 1–8. Bibcode:2012NatCo...3.1101Y. doi:10.1038/ncomms2110. PMID 23033077.
  28. ^ Yang, Y.; Ruan, G.; Xiang, C.; Wang, G.; Tour, J. M. (2014). "Flexible Three-Dimensional Nanoporous Metal-Based Energy Devices". J. Am. Chem. Soc. 2014 (136): 6187–6190. doi:10.1021/ja501247f. PMID 24735477.
  29. ^ Stanford, Michael G.; Li, John T.; Chen, Yuda; McHugh, Emily A.; Liopo, Anton; Xiao, Han; Tour, James M. (October 22, 2019). "Self-Sterilizing Laser-Induced Graphene Bacterial Air Filter". ACS Nano. 13 (10): 11912–11920. doi:10.1021/acsnano.9b05983. ISSN 1936-0851. PMID 31560513. S2CID 203581358.
  30. ^ Luong, Duy X.; Bets, Ksenia V.; Algozeeb, Wala Ali; Stanford, Michael G.; Kittrell, Carter; Chen, Weiyin; Salvatierra, Rodrigo V.; Ren, Muqing; McHugh, Emily A.; Advincula, Paul A.; Wang, Zhe (January 2020). "Gram-scale bottom-up flash graphene synthesis". Nature. 577 (7792): 647–651. Bibcode:2020Natur.577..647L. doi:10.1038/s41586-020-1938-0. ISSN 1476-4687. PMID 31988511.
  31. ^ Chu, P.-L.; Wang, L.-Y.; Khatua, S.; Kolomeisky, A.; Link, S.; Tour, J. M. (2013). "Synthesis and Single-Molecule Imaging of Highly Mobile Adamantane-Wheeled Nanocars". ACS Nano. 7 (1): 35–41. doi:10.1021/nn304584a. PMID 23189917.
  32. ^ Carroll, GT; Pollard, MM; van Delden, RA; Feringa, BL (2010). "Controlled rotary motion of light-driven molecular motors assembled on a gold surface" (PDF). Chemical Science. 1 (1): 97–101. doi:10.1039/C0SC00162G. hdl:11370/4fb63d6d-d764-45e3-b3cb-32a4c629b942. S2CID 97346507.
  33. ^ Saywell, Alex; Bakker, Anne; Mielke, Johannes; Kumagai, Takashi; Wolf, Martin; García-López, Víctor; Chiang, Pinn-Tsong; Tour, James M.; Grill, Leonhard (2016). "Light-induced Translation of Motorized Molecules on a Surface" (PDF). ACS Nano. 10 (12): 10945–10952. doi:10.1021/acsnano.6b05650. PMID 27783488. Archived from the original (PDF) on September 25, 2019. Retrieved September 25, 2019.
  34. ^ Tour, J. M. (1996). "Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures". Chem. Rev. 1996 (96): 537–553. doi:10.1021/cr9500287. PMID 11848764.
  35. ^ a b c d Colapinto, John (December 14, 2014). "Material Question". The New Yorker. Retrieved December 11, 2020.
  36. ^ Musser, George (November 2001). "Better Killing through Chemistry: Buying chemical weapons material through the mail is quick and easy". Scientific American. 285 (6): 20–1. doi:10.1038/scientificamerican1201-20. PMID 11759580. Retrieved September 6, 2007.
  37. ^ "Board of Directors – Weebit – A Quantum Leap In Data Storage". Weebit. Retrieved June 18, 2020.
  38. ^ "About". Tag | Trace | Verify. Retrieved June 18, 2020.
  39. ^ "Home". Zeta Energy. Retrieved June 18, 2020.
  40. ^ "Spinal cord repair with graphene-polymer nanoribbons". Materials Today. Retrieved June 18, 2020.
  41. ^ "Guardian G-Volt masks use graphene and electrical charge to repel viruses". Dezeen. March 6, 2020. Retrieved June 18, 2020.
  42. ^ "Nanorobotics". nanorobotics.tech. Retrieved June 18, 2020.
  43. ^ "About Us". Universal Matter. Retrieved June 18, 2020.
  44. ^ "Technology". Roswell Biotechnologies. Archived from the original on June 20, 2020. Retrieved June 18, 2020.
  45. ^ "Technology". Rust Patrol. Retrieved June 18, 2020.[permanent dead link]
  46. ^ "James Tour". September 18, 2020.
  47. ^ "James M. Tour".
  48. ^ "James Tour | Faculty | The People of Rice | Rice University".
  49. ^ "Professor James Tour | Centenary Prize winner 2020". Royal Society of Chemistry. Retrieved June 24, 2020.
  50. ^ "Current NAI Fellows 2015". National Academy of Inventors. Archived from the original on April 23, 2016. Retrieved June 17, 2016.
  51. ^ "James M Tour - AD Scientific Index 2024".
  52. ^ "James Tour". September 18, 2020.
  53. ^ Staff Writers (January 21, 2014). "The 50 Most Influential Scientists in the World Today". TheBestSchools.org.
  54. ^ "R&D Magazine announces 2013 Scientist of the Year". Research & Development. November 1, 2013.
  55. ^ "Resume of James M. Tour, Ph.D." (PDF).
  56. ^ Williams, Mike (November 18, 2016). "9 Rice faculty on prominent 'highly cited' list". Rice University. Archived from the original on October 29, 2019. Retrieved October 29, 2019.
  57. ^ "James M Tour Group » Personal Statement". Retrieved December 11, 2020.
  58. ^ "James M Tour Group » Evolution/Creation". Retrieved July 25, 2023.
  59. ^ Shad, Nayeli (May 26, 2023). "Rice's James Tour and YouTuber 'Professor Dave' debate the origins of life". The Rice Thresher. Archived from the original on September 2, 2023. Retrieved November 4, 2024.