André Neveu: Difference between revisions
Bibcode Bot (talk | contribs) m Adding 0 arxiv eprint(s), 7 bibcode(s) and 0 doi(s). Did it miss something? Report bugs, errors, and suggestions at User talk:Bibcode Bot |
Clean up |
||
(48 intermediate revisions by 35 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|French physicist (born 1946)}} |
|||
⚫ | |||
{{Infobox scientist |
|||
⚫ | |||
| birth_date = {{birth date and age|1946|8|28}} |
|||
| birth_place = [[Paris]], France |
|||
| fields = [[Theoretical physics]] |
|||
| alma_mater = [[École Normale Supérieure]]<br>[[University of Paris XI]] |
|||
| doctoral_advisor = [[Claude Bouchiat]]<br>{{Ill|Philippe Meyer (physicist)|lt=Philippe Meyer|fr|Philippe Meyer (physicien)}} |
|||
| doctoral_students = |
|||
| known_for = [[RNS formalism]]<br>[[Neveu–Schwarz algebra]]<br>[[Neveu–Schwarz B-field]]<br>[[Gross–Neveu model]] |
|||
| awards = [[Dirac Medal (ICTP)|Dirac Medal]] {{small|(2020)}}<br>[[Three Physicists Prize]] {{small|(2005)}}<br>[[Prix Paul Langevin]] {{small|(1973)}} <br>[[Peccot Lectures]] {{small|(1974-1975)}}<br>[[Jane Eliza Procter Fellowship|Procter Fellowship]] |
|||
⚫ | |||
⚫ | |||
==Biography== |
|||
⚫ | |||
Neveu studied in Paris at the [[École Normale Supérieure]] (ENS). In 1969, he received his diploma (Thèse de troisième cycle) at [[University of Paris XI]] in Orsay with {{Ill|Philippe Meyer (physicist)|lt=Philippe Meyer|fr|Philippe Meyer (physicien)}} and [[Claude Bouchiat]] and in 1971 he completed his doctorate ([[Doctorat d'État]]) there. |
|||
⚫ | In 1969, he and his classmate from ENS and Orsay, [[Joël Scherk]], together with [[John H. Schwarz]] and [[David Gross]] at Princeton University, examined divergences in one-loop diagrams of the [[bosonic string theory]] (and discovered the cause of [[tachyon#Tachyons in string theory|tachyon]] divergences).<ref>{{citation |
||
| title = Renormalization and Unitarity in the Dual-Resonance Model |
| title = Renormalization and Unitarity in the Dual-Resonance Model |
||
| last1 = Gross | first1 = David J. |
| last1 = Gross | first1 = David J. |
||
Line 7: | Line 22: | ||
| last3 = Scherk | first3 = J. |
| last3 = Scherk | first3 = J. |
||
| last4 = Schwarz | first4 = John H. |
| last4 = Schwarz | first4 = John H. |
||
| journal = |
| journal = Phys. Rev. D |
||
| volume = 2 |
| volume = 2 |
||
| pages = 697–710 |
| issue = 4 | pages = 697–710 |
||
| year = 1970 |
| year = 1970 |
||
| doi = 10.1103/PhysRevD.2.697 |
| doi = 10.1103/PhysRevD.2.697 |
||
|bibcode = 1970PhRvD...2..697G }}</ref> |
|bibcode = 1970PhRvD...2..697G }}</ref> From 1971 to 1974, Neveu was at the Laboratory for High Energy Physics of the University of Paris XI where he and Scherk showed that spin-1 excitations of strings could describe [[Yang–Mills theory|Yang–Mills theories]].<ref>{{citation |
||
| title = Connection between Yang-Mills fields and dual models |
| title = Connection between Yang-Mills fields and dual models |
||
| last1 = Neveu | first1 = A. |
| last1 = Neveu | first1 = A. |
||
Line 18: | Line 33: | ||
| journal = Nuclear Physics B |
| journal = Nuclear Physics B |
||
| volume = 36 |
| volume = 36 |
||
| year = 1972 |
| issue = 1 | year = 1972 |
||
| pages = 155–161 |
| pages = 155–161 |
||
| doi = 10.1016/0550-3213(72)90301-X |
| doi = 10.1016/0550-3213(72)90301-X |
||
|bibcode = 1972NuPhB..36..155N }}</ref> |
|bibcode = 1972NuPhB..36..155N }}</ref> In 1971, Neveu with John Schwarz in Princeton developed, at the same time as [[Pierre Ramond]] (1971), the first string theory that also described fermions (called [[RNS formalism]] after its three originators).<ref>{{citation |
||
| title = Factorizable dual model of pions |
| title = Factorizable dual model of pions |
||
| last1 = Neveu | first1 = A. |
| last1 = Neveu | first1 = A. |
||
Line 27: | Line 42: | ||
| journal = Nuclear Physics B |
| journal = Nuclear Physics B |
||
| volume = 31 |
| volume = 31 |
||
| year = 1971 |
| issue = 1 | year = 1971 |
||
| pages = 86–112 |
| pages = 86–112 |
||
| doi = 10.1016/0550-3213(71)90448-2 |
| doi = 10.1016/0550-3213(71)90448-2 |
||
Line 37: | Line 52: | ||
| journal = Physics Letters B |
| journal = Physics Letters B |
||
| volume = 34 |
| volume = 34 |
||
| year = 1971 |
| issue = 6 | year = 1971 |
||
| pages = 517–518 |
| pages = 517–518 |
||
| doi = 10.1016/0370-2693(71)90669-1 |
| doi = 10.1016/0370-2693(71)90669-1 |
||
Line 47: | Line 62: | ||
| journal = Phys. Rev. D |
| journal = Phys. Rev. D |
||
| volume = 4 |
| volume = 4 |
||
| pages = 1109–1111 |
| issue = 4 | pages = 1109–1111 |
||
| year = 1971 |
| year = 1971 |
||
| doi = 10.1103/PhysRevD.4.1109 |
| doi = 10.1103/PhysRevD.4.1109 |
||
Line 58: | Line 73: | ||
| journal = Physics Letters B |
| journal = Physics Letters B |
||
| volume = 35 |
| volume = 35 |
||
| year = 1971 |
| issue = 6 | year = 1971 |
||
| pages = 529–533 |
| pages = 529–533 |
||
| doi = 10.1016/0370-2693(71)90391-1 |
| doi = 10.1016/0370-2693(71)90391-1 |
||
|bibcode = 1971PhLB...35..529N }}. The version of Neveu and Schwarz differed from that of Ramond in the boundary terms. By the choice of the boundary terms they obtained [[fermion]] pairs to produce a model of the [[pion]], a [[boson]]. An important advantage of this string theory at that time was also that the unphysical tachyon of the bosonic string theory was eliminated.</ref> |
|bibcode = 1971PhLB...35..529N }}. The version of Neveu and Schwarz differed from that of Ramond in the boundary terms. By the choice of the boundary terms they obtained [[fermion]] pairs to produce a model of the [[pion]], a [[boson]]. An important advantage of this string theory at that time was also that the unphysical tachyon of the bosonic string theory was eliminated.</ref> This was an early appearance of the ideas of [[supersymmetry]] which were being developed independently at that time by several groups. A few years later, Neveu, working in Princeton with David Gross, developed the Gross–Neveu model.<ref>A quantum-field-theoretic model of Dirac fermions with a four-fermion interaction vertex and unitary symmetry in one spatial dimension. It is [[renormalizable]] and [[asymptotic freedom|asymptotically free]]. In this model phenomena such as dynamic bulk production and spontaneous symmetric breaking can be studied.{{citation |
||
| title = Dynamical symmetry breaking in asymptotically free field theories |
| title = Dynamical symmetry breaking in asymptotically free field theories |
||
| last1 = Gross | first1 = David J. |
| last1 = Gross | first1 = David J. |
||
Line 67: | Line 82: | ||
| journal = Phys. Rev. D |
| journal = Phys. Rev. D |
||
| volume = 10 |
| volume = 10 |
||
| pages = 3235–3253 |
| issue = 10 | pages = 3235–3253 |
||
| year = 1974 |
| year = 1974 |
||
| doi = 10.1103/PhysRevD.10.3235 |
| doi = 10.1103/PhysRevD.10.3235 |
||
|bibcode = 1974PhRvD..10.3235G }}</ref> |
|bibcode = 1974PhRvD..10.3235G }}</ref> With [[Roger Dashen]] and Brosl Hasslacher, he examined, among other things, quantum-field-theoretic models of extended hadrons and semiclassical approximations in quantum field theory which are reflected in the DHN method of the quantization of [[solitons]]. From 1972 to 1977, Neveu was at the [[Institute for Advanced Study]] while spending half of the time in Orsay. From 1974 to 1983, he was at the Laboratory for Theoretical Physics of the ENS and from 1983 to 1989 in the theory department at [[CERN]]. From 1975, he was ''Maitre de recherche'' in the [[CNRS]] and from 1985 ''Directeur de recherche''. From 1989, he was at the Institute (Laboratory) for Theoretical Physics of the [[Montpellier 2 University|University of Montpellier II]] (now L2C, Laboratory Charles Coulomb). From 1994 to 1995, he was a visiting professor in the [[University of California]], Berkeley. |
||
In 1973, Neveu received the [[Paul Langevin Prize]] of the [[Société Française de Physique]].<ref>{{cite web|title = Liste exhaustive de tous les récipiendaires de prix SFP|url = http://sfp.in2p3.fr/Prix/prix_anciens.html|publisher = Société française de physique|access-date = 18 January 2011}}</ref> In 1988, he received the [[:de:Gentner-Kastler-Preis|Gentner-Kastler Prize]] awarded jointly by the Société Française de Physique and the [[Deutsche Physikalische Gesellschaft]] (DPG).<ref>{{cite web| url = http://www.dpg-physik.de/preise/preistraeger_gentnerkastler.html| title = Preisträger Gentner–Kastler| publisher = Deutsche Physikalische Gesellschaft| access-date = 23 January 2011 | archive-url = https://web.archive.org/web/20111127233223/http://www.dpg-physik.de/preise/preistraeger_gentnerkastler.html| archive-date = 27 November 2011| url-status = dead}}</ref> In 2020m he was awarded the [[Dirac Medal (ICTP)|Dirac Medal]] of the ICTP.<ref>[https://www.ictp.it/about-ictp/media-centre/news/2020/8/ictp-dirac-medal-2020-announced.aspx Dirac Medal 2020 of ICTP]</ref> |
|||
In 1973, Neveu received the [[Paul Langevin Prize]] of the [[Société Française de Physique]]<ref>{{cite web |
|||
|title = Liste exhaustive de tous les récipiendaires de prix SFP |
|||
|url = http://sfp.in2p3.fr/Prix/prix_anciens.html |
|||
|publisher = Société française de physique |
|||
|accessdate = 18 January 2011}}</ref>. In 1988 he received the [[:de:Gentner-Kastler-Preis|Gentner-Kastler Prize]] awarded jointly by the Société Française de Physique and the [[Deutsche Physikalische Gesellschaft]] (DPG)<ref>{{cite web |
|||
| url = http://www.dpg-physik.de/preise/preistraeger_gentnerkastler.html |
|||
| title = Preisträger Gentner–Kastler |
|||
| publisher = Deutsche Physikalische Gesellschaft |
|||
| accessdate = 23 January 2011 |
|||
}}</ref>. |
|||
Neveu is married and has three children. |
|||
==Writings== |
==Writings== |
||
Line 91: | Line 95: | ||
| journal = Physikalische Blätter |
| journal = Physikalische Blätter |
||
| volume = 44 |
| volume = 44 |
||
| issue = 7 |
|||
| year = 1988 |
| year = 1988 |
||
| page = 195 |
| page = 195 |
||
| doi=10.1002/phbl.19880440709 |
|||
⚫ | |||
| doi-access = free |
|||
⚫ | |||
* {{citation |
* {{citation |
||
| last = Neveu | first = A. |
| last = Neveu | first = A. |
||
| contribution = Dual resonance models and strings in QCD |
| contribution = Dual resonance models and strings in QCD |
||
Line 107: | Line 114: | ||
}} |
}} |
||
⚫ | |||
⚫ | |||
==External links== |
==External links== |
||
<!-- *[http://www.cnrs.fr/comitenational/doc/annuaire/cv_csd/mppu/Neveu_A.pdf CV of André Neveu] --> |
<!-- *[http://www.cnrs.fr/comitenational/doc/annuaire/cv_csd/mppu/Neveu_A.pdf CV of André Neveu] --> |
||
*[http://www.lpthe.jussieu.fr/sugra30/TALKS/Neveu.pdf Some of my recollections about Joël Scherk] |
*[http://www.lpthe.jussieu.fr/sugra30/TALKS/Neveu.pdf Some of my recollections about Joël Scherk] |
||
*[https://inspirehep.net/author/profile/A.Neveu.1 Scientific publications of André Neveu] on [[INSPIRE-HEP]] |
|||
{{Authority control}} |
|||
⚫ | |||
⚫ | |||
{{Persondata <!-- Metadata: see [[Wikipedia:Persondata]]. --> |
|||
⚫ | |||
| ALTERNATIVE NAMES = |
|||
| SHORT DESCRIPTION = |
|||
| DATE OF BIRTH = 28 August 1946 |
|||
| PLACE OF BIRTH = Paris |
|||
| DATE OF DEATH = |
|||
| PLACE OF DEATH = |
|||
⚫ | |||
{{DEFAULTSORT:Neveu, Andre}} |
{{DEFAULTSORT:Neveu, Andre}} |
||
[[Category:1946 births]] |
[[Category:1946 births]] |
||
[[Category:Living people]] |
[[Category:Living people]] |
||
[[Category: |
[[Category:Scientists from Paris]] |
||
[[Category:French |
[[Category:French string theorists]] |
||
[[Category: |
[[Category:People associated with CERN]] |
||
[[Category:Paris-Sud University alumni]] |
|||
[[de:André Neveu]] |
|||
[[mg:André Neveu]] |
|||
[[sl:André Neveu]] |
Latest revision as of 07:06, 26 December 2024
André Neveu | |
---|---|
Born | Paris, France | August 28, 1946
Alma mater | École Normale Supérieure University of Paris XI |
Known for | RNS formalism Neveu–Schwarz algebra Neveu–Schwarz B-field Gross–Neveu model |
Awards | Dirac Medal (2020) Three Physicists Prize (2005) Prix Paul Langevin (1973) Peccot Lectures (1974-1975) Procter Fellowship |
Scientific career | |
Fields | Theoretical physics |
Doctoral advisor | Claude Bouchiat Philippe Meyer |
André Neveu (French: [nəvø]; born 28 August 1946) is a French physicist working on string theory and quantum field theory who coinvented the Neveu–Schwarz algebra and the Gross–Neveu model.
Biography
[edit]Neveu studied in Paris at the École Normale Supérieure (ENS). In 1969, he received his diploma (Thèse de troisième cycle) at University of Paris XI in Orsay with Philippe Meyer and Claude Bouchiat and in 1971 he completed his doctorate (Doctorat d'État) there.
In 1969, he and his classmate from ENS and Orsay, Joël Scherk, together with John H. Schwarz and David Gross at Princeton University, examined divergences in one-loop diagrams of the bosonic string theory (and discovered the cause of tachyon divergences).[1] From 1971 to 1974, Neveu was at the Laboratory for High Energy Physics of the University of Paris XI where he and Scherk showed that spin-1 excitations of strings could describe Yang–Mills theories.[2] In 1971, Neveu with John Schwarz in Princeton developed, at the same time as Pierre Ramond (1971), the first string theory that also described fermions (called RNS formalism after its three originators).[3] This was an early appearance of the ideas of supersymmetry which were being developed independently at that time by several groups. A few years later, Neveu, working in Princeton with David Gross, developed the Gross–Neveu model.[4] With Roger Dashen and Brosl Hasslacher, he examined, among other things, quantum-field-theoretic models of extended hadrons and semiclassical approximations in quantum field theory which are reflected in the DHN method of the quantization of solitons. From 1972 to 1977, Neveu was at the Institute for Advanced Study while spending half of the time in Orsay. From 1974 to 1983, he was at the Laboratory for Theoretical Physics of the ENS and from 1983 to 1989 in the theory department at CERN. From 1975, he was Maitre de recherche in the CNRS and from 1985 Directeur de recherche. From 1989, he was at the Institute (Laboratory) for Theoretical Physics of the University of Montpellier II (now L2C, Laboratory Charles Coulomb). From 1994 to 1995, he was a visiting professor in the University of California, Berkeley.
In 1973, Neveu received the Paul Langevin Prize of the Société Française de Physique.[5] In 1988, he received the Gentner-Kastler Prize awarded jointly by the Société Française de Physique and the Deutsche Physikalische Gesellschaft (DPG).[6] In 2020m he was awarded the Dirac Medal of the ICTP.[7]
Writings
[edit]- Neveu, A. (1988), "Introduction to Strings and Superstrings", Physikalische Blätter, 44 (7): 195, doi:10.1002/phbl.19880440709 (On the occasion of the awarding of the Gentner-Kastler Prize)
- Neveu, A. (1982), "Dual resonance models and strings in QCD", in Zuber, Jean-Bernard; Stora, Raymond (eds.), Recent Advances in Field Theory and Statistical Mechanics, Les Houches, France, Aug 2 – Sep 10, 1982, Les Houches Summer School Proceedings, vol. 39, p. 760
Notes
[edit]- ^ Gross, David J.; Neveu, A.; Scherk, J.; Schwarz, John H. (1970), "Renormalization and Unitarity in the Dual-Resonance Model", Phys. Rev. D, 2 (4): 697–710, Bibcode:1970PhRvD...2..697G, doi:10.1103/PhysRevD.2.697
- ^ Neveu, A.; Scherk, J. (1972), "Connection between Yang-Mills fields and dual models", Nuclear Physics B, 36 (1): 155–161, Bibcode:1972NuPhB..36..155N, doi:10.1016/0550-3213(72)90301-X
- ^ Neveu, A.; Schwarz, J. H. (1971), "Factorizable dual model of pions", Nuclear Physics B, 31 (1): 86–112, Bibcode:1971NuPhB..31...86N, doi:10.1016/0550-3213(71)90448-2; Neveu, A.; Schwarz, J. H. (1971), "Tachyon-free dual model with a positive intercept trajectory", Physics Letters B, 34 (6): 517–518, Bibcode:1971PhLB...34..517N, doi:10.1016/0370-2693(71)90669-1; Neveu, A.; Schwarz, John H. (1971), "Quark Model of Dual Pions", Phys. Rev. D, 4 (4): 1109–1111, Bibcode:1971PhRvD...4.1109N, doi:10.1103/PhysRevD.4.1109; Neveu, A.; Schwarz, J. H.; Thorn, C. B. (1971), "Reformulation of the Dual Pion Model", Physics Letters B, 35 (6): 529–533, Bibcode:1971PhLB...35..529N, doi:10.1016/0370-2693(71)90391-1. The version of Neveu and Schwarz differed from that of Ramond in the boundary terms. By the choice of the boundary terms they obtained fermion pairs to produce a model of the pion, a boson. An important advantage of this string theory at that time was also that the unphysical tachyon of the bosonic string theory was eliminated.
- ^ A quantum-field-theoretic model of Dirac fermions with a four-fermion interaction vertex and unitary symmetry in one spatial dimension. It is renormalizable and asymptotically free. In this model phenomena such as dynamic bulk production and spontaneous symmetric breaking can be studied.Gross, David J.; Neveu, André (1974), "Dynamical symmetry breaking in asymptotically free field theories", Phys. Rev. D, 10 (10): 3235–3253, Bibcode:1974PhRvD..10.3235G, doi:10.1103/PhysRevD.10.3235
- ^ "Liste exhaustive de tous les récipiendaires de prix SFP". Société française de physique. Retrieved 18 January 2011.
- ^ "Preisträger Gentner–Kastler". Deutsche Physikalische Gesellschaft. Archived from the original on 27 November 2011. Retrieved 23 January 2011.
- ^ Dirac Medal 2020 of ICTP